JP2835235B2 - Method of forming oxide superconductor thin film - Google Patents

Method of forming oxide superconductor thin film

Info

Publication number
JP2835235B2
JP2835235B2 JP4041879A JP4187992A JP2835235B2 JP 2835235 B2 JP2835235 B2 JP 2835235B2 JP 4041879 A JP4041879 A JP 4041879A JP 4187992 A JP4187992 A JP 4187992A JP 2835235 B2 JP2835235 B2 JP 2835235B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
substrate
thin film
superconductor thin
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4041879A
Other languages
Japanese (ja)
Other versions
JPH05213698A (en
Inventor
功紀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4041879A priority Critical patent/JP2835235B2/en
Publication of JPH05213698A publication Critical patent/JPH05213698A/en
Application granted granted Critical
Publication of JP2835235B2 publication Critical patent/JP2835235B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、共振器,ストリップラ
イン,フィルター等の高周波応用デバイス用に好適な、
表面抵抗の小さい酸化物超電導体薄膜の形成方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for high-frequency devices such as resonators, strip lines, and filters.
The present invention relates to a method for forming an oxide superconductor thin film having a small surface resistance.

【0002】[0002]

【従来の技術】近年、超電導の臨界温度(Tc)が液体
窒素温度(77K)を超えるLnBaCuO系,YBa
CuO系,BiSrCaCuO系,TlBaCaCuO
系等の酸化物超電導体が次々に発見され、超電導機構の
解明とともに、電力,電磁場,エレクトロニクス等の種
々分野への実用化研究が大いに進展した。而して、前述
の酸化物超電導体のエレクトロニクス分野への応用に
は、酸化物超電導体の薄膜化技術が必須であり、これま
でに、スパッタリング法,レーザー蒸着法,各種の物理
気相蒸着法(PVD法)又は化学蒸着法(CVD法)等
の気相成長法の応用研究がなされてきた。而して、上述
の気相成長法による酸化物超電導体薄膜の形成方法は、
酸化物超電導体との格子整合性の良い、MgOやLaA
lO3 等の単結晶基板の (100)面上に酸化物超電導体の
各々の構成元素を酸化雰囲気で蒸着させて酸化物超電導
体に反応させるとともに、結晶を超電導特性に優れたC
軸配向させる方法である。
2. Description of the Related Art In recent years, the critical temperature (Tc) of superconductivity has exceeded the temperature of liquid nitrogen (77 K).
CuO system, BiSrCaCuO system, TlBaCaCuO
Oxide superconductors have been discovered one after another, and research on their practical application in various fields such as power, electromagnetic fields, and electronics has been greatly advanced, along with elucidation of the superconducting mechanism. In order to apply the above-mentioned oxide superconductor to the field of electronics, a technique for thinning the oxide superconductor is indispensable. So far, sputtering, laser vapor deposition, various physical vapor deposition methods, etc. Application studies of a vapor phase growth method such as a (PVD method) or a chemical vapor deposition method (CVD method) have been made. Thus, the method for forming an oxide superconductor thin film by the above-described vapor phase growth method includes:
MgO or LaA with good lattice matching with oxide superconductor
The constituent elements of the oxide superconductor are deposited in an oxidizing atmosphere on the (100) plane of a single-crystal substrate such as lO 3 to react with the oxide superconductor, and the crystal is formed of C having excellent superconducting properties.
This is a method of axially orienting.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
気相成長法により形成される酸化物超電導体薄膜は、図
2にその側断面図を示したように、基板2上に形成され
た酸化物超電導体結晶体11中に、CuOの結晶粒12が基
板面に垂直に柱状に成長し、酸化物超電導体薄膜の表面
に露出した組織からなるもので、この柱状のCuO結晶
粒は、酸化物超電導体薄膜を直流送電に用いる場合は殆
ど問題ないが、高周波応用デバイス等に用いる場合は酸
化物超電導体薄膜の表面に露出した、CuO結晶粒及び
CuO結晶粒と酸化物超電導体結晶体との境界部分が酸
化物超電導体薄膜におけるミリ波,マイクロ波の損失を
大ならしめ、その結果表面抵抗が著しく増加して、高い
高周波特性が得られなくなるという問題があった。
However, as shown in the side sectional view of FIG. 2, the oxide superconductor thin film formed by the vapor In the superconductor crystal 11, CuO crystal grains 12 grow in a columnar shape perpendicular to the substrate surface, and have a structure exposed to the surface of the oxide superconductor thin film. There is almost no problem when using the superconductor thin film for direct current transmission, but when using it for high frequency application devices, etc., the CuO crystal grains exposed on the surface of the oxide superconductor thin film and the CuO crystal grains and the oxide superconductor crystal The boundary portion increases the loss of millimeter waves and microwaves in the oxide superconductor thin film, and as a result, the surface resistance is significantly increased, and high frequency characteristics cannot be obtained.

【0004】[0004]

【課題を解決する為の手段】本発明はかかる状況に鑑み
鋭意研究を行い、MgO単結晶基板等の (100)面上にC
uを含有する酸化物超電導体のCu以外の構成元素から
なる複合酸化物を蒸着させ、この上に酸化物超電導体の
各々の構成元素を蒸着させるとCuO結晶粒が生成しな
くなることを知見し、更に研究を重ねて本発明を完成す
るに至ったものである。即ち、本発明は、 (100)単結晶
基板上に、Cuを構成元素として含有する酸化物超電導
体の各々の構成元素を酸化雰囲気中で蒸着させ、前記基
板上に酸化物超電導体を膜状に形成する酸化物超電導体
薄膜の形成方法において、Cu元素の蒸着開始を他元素
より遅らせて、前記酸化物超電導体のCu元素を除く構
成元素からなる複合酸化物層を基板直上に数原子層の厚
さに設け、しかるのち、この複合酸化物層の上にCuを
含む酸化物超電導体の各々の構成元素を蒸着させること
を特徴とするものである。
SUMMARY OF THE INVENTION In view of such circumstances, the present invention has conducted intensive studies and has found that C (C) is formed on a (100) plane of a MgO single crystal substrate or the like.
It was found that when a composite oxide consisting of constituent elements other than Cu of an oxide superconductor containing u was deposited, and when each constituent element of the oxide superconductor was deposited thereon, CuO crystal grains would not be generated. The present invention has been completed through further studies. That is, the present invention provides a method for depositing each constituent element of an oxide superconductor containing Cu as a constituent element in an oxidizing atmosphere on a (100) single crystal substrate, and forming the oxide superconductor in a film form on the substrate. In the method for forming an oxide superconductor thin film formed on the substrate, the start of vapor deposition of the Cu element is delayed more than the other elements, and a composite oxide layer composed of constituent elements other than the Cu element of the oxide superconductor is formed on the substrate by several atomic layers. Then, each constituent element of the oxide superconductor containing Cu is vapor-deposited on the composite oxide layer.

【0005】本発明方法は、YBa2 Cu3 Y 、Bi
2 Sr2 Ca2 Cu3 Y 、Bi2Sr2 Ca1 Cu2
Y 、Tl2 Ba2 Ca2 Cu3 Y 、Tl2 Ba2
1Cu2 Y 、又は一般式LnBa2 Cu3
7-x (式中LnはY及びランタノイド金属元素の中の1
元素又は複数元素)等の組成のCuを構成元素として含
有する任意の酸化物超電導体の薄膜形成に適用される。
本発明方法において、Cuを構成元素として含有する酸
化物超電導体のCu元素を除く構成元素からなる複合酸
化物層を基板直上に設ける理由は、CuOが成長し易い
MgO等の (100)単結晶基板上に、Cuが直接蒸着して
CuOの結晶粒が成長するのを防止する為である。又前
記複合酸化物層の厚さを数原子層の厚さに限定した理由
は、前記複合酸化物層が厚くなると (100)単結晶基板の
格子定数が十分に引き継がれなくなり、その結果この複
合酸化物層上に形成される酸化物超電導体薄膜のC軸配
向性が低下する為である。前記複合酸化物層の厚さは、
数原子層の厚さつまり10Å程度の厚さで、蒸着時間にし
て数秒程度である。
[0005] The method of the present invention comprises the steps of YBa 2 Cu 3 O Y , Bi
2 Sr 2 Ca 2 Cu 3 O Y , Bi 2 Sr 2 Ca 1 Cu 2
O Y , Tl 2 Ba 2 Ca 2 Cu 3 O Y , Tl 2 Ba 2 C
a 1 Cu 2 O Y or a general formula LnBa 2 Cu 3 O
7-x (where Ln is one of Y and the lanthanoid metal element)
The present invention is applied to the formation of a thin film of any oxide superconductor containing Cu having a composition such as element or plural elements) as a constituent element.
In the method of the present invention, the reason why the composite oxide layer made of the constituent elements other than the Cu element of the oxide superconductor containing Cu as a constituent element is provided immediately above the substrate is that (100) single crystal of MgO or the like in which CuO easily grows. This is for preventing Cu from being directly vapor-deposited on the substrate to grow crystal grains of CuO. The reason why the thickness of the composite oxide layer is limited to a thickness of several atomic layers is that when the composite oxide layer is thick, the lattice constant of the (100) single crystal substrate is not sufficiently inherited, and as a result, This is because the C-axis orientation of the oxide superconductor thin film formed on the oxide layer is reduced. The thickness of the composite oxide layer,
The thickness is several atomic layers, that is, about 10 mm, and the deposition time is about several seconds.

【0006】以下に、本発明の酸化物超電導体薄膜の形
成方法を図を参照して具体的に説明する。図1は本発明
方法にて用いる分子線エピタキシー(MBE)装置の態
様例を示す要部説明図である。このMBE装置は、チャ
ンバー1内に、蒸発源を入れる複数のセルa,b,c,
dと前記蒸発源から発生するガスを蒸着させる為の基板
2とを対向配置させて構成したものである。前記セルa
〜dには、蒸発源を加熱する為の電子銃3と基板2への
蒸着量を制御する為のセル用シャッターイ,ロ,ハ,ニ
と蒸発速度をモニターする水晶振動式膜厚計4が夫々設
けられている。又前記基板2の下方には基板用シャッタ
ー5が配置されている。前記膜厚計4の計測結果は電子
銃3にフィードバックされて、蒸着速度が自動制御され
る。又基板2はヒーター10により所定温度に制御され、
基板2上に蒸着する酸化物超電導体層の結晶構造が調整
される。チャンバー1内は、排気用ポンプ6により所定
圧力に排気される。セルa〜d近傍は蒸発源の酸化防止
の為、5×10-7Torrの高真空に保持される。基板2近傍
には、基板2上に形成される酸化物超電導体層に酸素が
十分供給されるように、酸素ガス、又は酸素原子を遊離
し得るO3 やN2 O等の活性ガスがガスボンベ7からガ
スフローメーター8を通しノズル9から吹付けられる。
基板2とセルa〜d間には双方の真空度の差を保持する
為に図示しない差動排気板が配置される。
Hereinafter, a method for forming an oxide superconductor thin film of the present invention will be specifically described with reference to the drawings. FIG. 1 is an explanatory view of a main part showing an example of an embodiment of a molecular beam epitaxy (MBE) apparatus used in the method of the present invention. This MBE apparatus includes a plurality of cells a, b, c,
d and a substrate 2 for depositing a gas generated from the evaporation source are arranged to face each other. The cell a
To d, an electron gun 3 for heating the evaporation source, a cell shutter for controlling the amount of vapor deposition on the substrate 2, and a quartz vibrating film thickness meter 4 for monitoring the evaporation rate. Are provided respectively. A substrate shutter 5 is disposed below the substrate 2. The measurement result of the film thickness meter 4 is fed back to the electron gun 3 to automatically control the deposition rate. The substrate 2 is controlled to a predetermined temperature by the heater 10,
The crystal structure of the oxide superconductor layer deposited on the substrate 2 is adjusted. The inside of the chamber 1 is evacuated to a predetermined pressure by an exhaust pump 6. The vicinity of the cells a to d is kept at a high vacuum of 5 × 10 −7 Torr to prevent oxidation of the evaporation source. In the vicinity of the substrate 2, an oxygen gas or an active gas such as O 3 or N 2 O capable of releasing oxygen atoms is supplied in a gas cylinder so that oxygen is sufficiently supplied to the oxide superconductor layer formed on the substrate 2. 7 passes through a gas flow meter 8 and is sprayed from a nozzle 9.
A differential exhaust plate (not shown) is arranged between the substrate 2 and the cells a to d in order to maintain a difference between the two degrees of vacuum.

【0007】[0007]

【作用】本発明方法では、 (100)単結晶基板上に、Cu
を構成元素として含有する酸化物超電導体の各々の構成
元素を酸化雰囲気中で蒸着させ、前記基板上に酸化物超
電導体を膜状に形成する酸化物超電導体薄膜の形成方法
において、Cu元素の蒸着開始を他元素より遅らせて、
前記酸化物超電導体のCu元素を除く構成元素からなる
複合酸化物層を基板直上に設けるので、Cu元素が基板
面に直接蒸着せず、従ってCuO結晶粒の生成が阻止さ
れる。又前記複合酸化物層は数原子層の厚さに設けるの
で、前記複合酸化物層上に形成される酸化物超電導体層
は基板の (100)面の格子定数を引き継いで、C軸が基板
面に垂直方向に向いた超電導特性に優れた結晶配向をも
って成長する。
According to the method of the present invention, Cu is deposited on a (100) single crystal substrate.
In a method for forming an oxide superconductor thin film in which each constituent element of an oxide superconductor containing as a constituent element is deposited in an oxidizing atmosphere and the oxide superconductor is formed into a film on the substrate, Delay the start of vapor deposition compared to other elements,
Since the composite oxide layer made of the constituent elements other than the Cu element of the oxide superconductor is provided immediately above the substrate, the Cu element is not directly deposited on the substrate surface, and thus the generation of CuO crystal grains is prevented. Since the composite oxide layer is provided with a thickness of several atomic layers, the oxide superconductor layer formed on the composite oxide layer takes over the lattice constant of the (100) plane of the substrate, and the C axis is It grows with a crystal orientation excellent in superconducting properties oriented in a direction perpendicular to the plane.

【0008】[0008]

【実施例】以下に本発明を実施例により詳細に説明す
る。 実施例1 図1に示したMBE装置を用いて、MgO単結晶基板の
(100)面上にY系の酸化物超電導体薄膜を形成した。蒸
発源として、セルa,b,c,にY,Ba,Cuの金属
を夫々充填し、前記各々の金属を電子銃3によって、
Y:Ba:Cuが基板上で1:2:3の原子比になるよ
うに独立に加熱蒸発させた。各々の元素の蒸発速度は水
晶振動式膜厚計4により個別に計測し各々の電子銃3に
フィードバックして自動制御した。Y,Ba,Cuの蒸
発速度が所定の速度になったことを確認したのち、シャ
ッターイ,ロ及び5を開放して、YとBaを基板2上に
蒸着させた。蒸着開始2秒後(蒸着層の厚さにして約10
Åに相当する。) にCu用セルc直上のシャッターハも
開放した。MgO単結晶基板2はヒーター10により 670
℃に加熱保持した。蒸着層に酸素が十分取込まれるよう
に前記基板2近傍に酸素ガスをノズル9から吹き付け
た。酸素圧は基板2近傍で5×10-4Torrに調節した。こ
のようにして、基板2上にYBa2 Cu3 7-x の組成
の酸化物超電導体薄膜を3000Å厚さに形成した。
The present invention will be described below in detail with reference to examples. Example 1 Using the MBE apparatus shown in FIG.
A Y-based oxide superconductor thin film was formed on the (100) plane. The cells a, b, and c are filled with metals of Y, Ba, and Cu, respectively, as the evaporation sources.
Y: Ba: Cu was heated and evaporated independently so that the atomic ratio of Y: Ba: Cu on the substrate was 1: 2: 3. The evaporation rate of each element was individually measured by a quartz vibrating film thickness meter 4 and fed back to each electron gun 3 for automatic control. After confirming that the evaporation rates of Y, Ba, and Cu reached a predetermined rate, the shutters B, B and 5 were opened, and Y and Ba were deposited on the substrate 2. 2 seconds after the start of vapor deposition (approximately 10
Equivalent to Å. 2) The shutter immediately above the Cu cell c was also opened. The MgO single crystal substrate 2 is heated by the heater 10 for 670 minutes.
Heated and maintained at ° C. Oxygen gas was blown from the nozzle 9 to the vicinity of the substrate 2 so that oxygen was sufficiently taken in the deposition layer. The oxygen pressure was adjusted to 5 × 10 −4 Torr near the substrate 2. Thus, an oxide superconductor thin film having a composition of YBa 2 Cu 3 O 7-x was formed on the substrate 2 to a thickness of 3000 mm.

【0009】実施例2 図1に示したMBE装置を用いて、MgO単結晶基板の
(100)面上にBi系の酸化物超電導体薄膜を形成した。
蒸発源として、セルa,b,c,dにBi2 3 ,S
r,Ca,Cuの酸化物又は金属材を充填し、夫々を電
子銃3によって、Bi:Sr:Ca:Cuが基板上で
2:2:2:3の原子比になるように独立に加熱蒸発さ
せた。各々の元素の蒸発速度は水晶振動式膜厚計4によ
り個別に計測し制御した。Bi,Sr,Ca,Cuの各
元素の蒸発速度が所定の速度になったことを確認したの
ち、シャッターイ,ロ,ハ及び5を開放してBi,S
r,Caの各元素を基板上に蒸着した。蒸着開始2秒後
(蒸着層の厚さにして約10Åに相当する。)に、Cu用
セルd直上のシャッターニも開放した。MgO単結晶基
板2はヒーター10により 800℃に加熱保持した。蒸着層
に酸素が十分取込まれるように酸素ガスをノズル9から
前記基板2近傍に吹き付けた。酸素圧は基板2近傍で5
×10-4Torrになるように調節した。このようにして、基
板2上にBi2 Sr2 Ca2 Cu3 7-x の組成の酸化
物超電導体薄膜を3000Å厚さに形成した。
Embodiment 2 Using the MBE apparatus shown in FIG.
A Bi-based oxide superconductor thin film was formed on the (100) plane.
As the evaporation source, cells a, b, c, to d Bi 2 O 3, S
An oxide or metal material of r, Ca, Cu is filled and each is independently heated by the electron gun 3 so that Bi: Sr: Ca: Cu has an atomic ratio of 2: 2: 2: 3 on the substrate. Evaporated. The evaporation rate of each element was measured and controlled individually by a quartz vibrating film thickness meter 4. After confirming that the evaporation rate of each element of Bi, Sr, Ca, and Cu has reached a predetermined rate, the shutters I, B, C, and 5 are opened and Bi, S
Each element of r and Ca was deposited on the substrate. Two seconds after the start of the vapor deposition (corresponding to a thickness of the vapor deposition layer of about 10 °), the shutter immediately above the cell d for Cu was also opened. The MgO single crystal substrate 2 was heated and maintained at 800 ° C. by the heater 10. Oxygen gas was blown from the nozzle 9 to the vicinity of the substrate 2 so that oxygen was sufficiently taken into the deposition layer. Oxygen pressure is 5 near substrate 2
It was adjusted to be × 10 -4 Torr. Thus, an oxide superconductor thin film having a composition of Bi 2 Sr 2 Ca 2 Cu 3 O 7-x was formed on the substrate 2 to a thickness of 3000 mm.

【0010】比較例1 実施例1において、Cu用セルc直上のシャッターニ
を、蒸着開始10秒後に開放した他は、実施例1と同じ方
法によりY系酸化物超電導体薄膜を形成した。 比較例2 実施例1において、シャッターイ,ロ,ハ及び5を同時
に開放して蒸着を開始した他は、実施例1と同じ方法に
よりY系酸化物超電導体薄膜を形成した。 比較例3 実施例2において、シャッターイ,ロ,ハ,ニ及び5を
同時に開放して蒸着を開始した他は、実施例2と同じ方
法によりBi系酸化物超電導体薄膜を形成した。このよ
うにして得られた各々の酸化物超電導体薄膜について、
Tc及び臨界電流密度(Jc)を、所定箇所に金端子を
取付け、直流4端子法により測定した。又表面抵抗(R
s )を10GHzのマイクロ波を照射した状態で測定し
た。測定はいずれも液体窒素中(77K)にて行った。
結果を表1に示した。
Comparative Example 1 A Y-based oxide superconductor thin film was formed in the same manner as in Example 1 except that the shutter immediately above the Cu cell c was opened 10 seconds after the start of vapor deposition. Comparative Example 2 A Y-based oxide superconductor thin film was formed in the same manner as in Example 1, except that the shutters I, B, C, and 5 were simultaneously opened to start vapor deposition. Comparative Example 3 A Bi-based oxide superconductor thin film was formed in the same manner as in Example 2, except that the shutters I, B, C, D, and 5 were simultaneously opened to start vapor deposition. For each of the thus obtained oxide superconductor thin films,
Tc and critical current density (Jc) were measured by a DC four-terminal method with a gold terminal attached to a predetermined location. Surface resistance (R
s) was measured in a state irradiated with a microwave of 10 GHz. All measurements were performed in liquid nitrogen (77K).
The results are shown in Table 1.

【0011】[0011]

【表1】 [Table 1]

【0012】表1より明らかなように、本発明例品(No
1,2)はTc及びJcが高く、しかも表面抵抗(R
s)が小さく、ミリ波・マイクロ波デバイス用として優
れた特性のものであった。各々の酸化物超電導体薄膜に
ついて、X線回折を行った結果、いずれもC軸配向して
いた。又透過電子顕微鏡で微細組織を観察したところ、
CuO結晶粒は全く観察されなかった。他方、比較例品
のNo3は、Cuの蒸着開始が遅すぎた為Cuを含有しな
い複合酸化物層が厚くなりすぎて、前記複合酸化物層上
に形成した酸化物超電導体層は基板の (100)面の格子定
数を十分に引き継げず、その結果C軸配向性が低下して
超電導特性が全て悪化した。又No4とNo5は、Cu元素
を他元素と同時に蒸着開始した為にCuOの柱状結晶粒
が基板に垂直方向に成長し、これが酸化物超電導体薄膜
表面に露出して、いずれも表面抵抗(Rs)が増加し
た。
As is clear from Table 1, the sample of the present invention (No.
1, 2) have high Tc and Jc and have a high surface resistance (R
s) was small and had excellent characteristics for use in millimeter-wave / microwave devices. As a result of performing X-ray diffraction for each oxide superconductor thin film, each was found to be C-axis oriented. When the microstructure was observed with a transmission electron microscope,
No CuO grains were observed. On the other hand, in Comparative Example No. 3, the composite oxide layer containing no Cu was too thick because the start of deposition of Cu was too slow, and the oxide superconductor layer formed on the composite oxide layer was The lattice constant of the (100) plane could not be sufficiently inherited, and as a result, the C-axis orientation decreased and all the superconducting properties deteriorated. In No. 4 and No. 5, columnar crystal grains of CuO grew in the direction perpendicular to the substrate because the Cu element was vapor-deposited at the same time as the other elements, and this was exposed on the surface of the oxide superconductor thin film. )increased.

【0013】[0013]

【効果】以上述べたように、本発明方法によれば、表面
抵抗を増加させるCuO結晶粒の生成が阻止されるの
で、高周波応用デバイス用に適した酸化物超電導体薄膜
が得られ、工業上顕著な効果を奏する。
As described above, according to the method of the present invention, the generation of CuO crystal grains that increase the surface resistance is prevented, so that an oxide superconductor thin film suitable for high-frequency devices can be obtained. Has a remarkable effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にて用いる分子線エピタキシー装置の態
様例を示す要部説明図である。
FIG. 1 is a main part explanatory view showing an example of an embodiment of a molecular beam epitaxy apparatus used in the present invention.

【図2】CuOの柱状結晶粒が混在した酸化物超電導体
薄膜の側断面説明図である。
FIG. 2 is an explanatory side sectional view of an oxide superconductor thin film in which columnar crystal grains of CuO are mixed.

【符号の説明】[Explanation of symbols]

1 チャンバー 2 基板 3 電子銃 4 水晶振動式膜厚計 5 基板用シャッター 6 排気用ポンプ 7 ガスボンベ 8 マスフローメーター 9 ノズル 10 ヒーター 11 酸化物超電導結晶体 12 CuOの結晶粒 a,b,c,d セル イ,ロ,ハ,ニ セル用シャッター DESCRIPTION OF SYMBOLS 1 Chamber 2 Substrate 3 Electron gun 4 Quartz vibrating film thickness meter 5 Substrate shutter 6 Exhaust pump 7 Gas cylinder 8 Mass flow meter 9 Nozzle 10 Heater 11 Oxide superconducting crystal 12 CuO crystal grains a, b, c, d cells Shutters for i, b, c, nicelle

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 39/02 ZAA H01L 39/02 ZAAD 39/24 ZAA 39/24 ZAAB ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 39/02 ZAA H01L 39/02 ZAAD 39/24 ZAA 39/24 ZAAB

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (100)単結晶基板上に、Cuを構成元素
として含有する酸化物超電導体の各々の構成元素を酸化
雰囲気中で蒸着させ、前記基板上に酸化物超電導体を膜
状に形成する酸化物超電導体薄膜の形成方法において、
Cu元素の蒸着開始を他元素より遅らせて、前記酸化物
超電導体のCu元素を除く構成元素からなる複合酸化物
層を基板直上に数原子層の厚さに設け、しかるのち、こ
の複合酸化物層の上にCuを含む酸化物超電導体の各々
の構成元素を蒸着させることを特徴とする酸化物超電導
体薄膜の形成方法。
1. An oxide superconductor containing Cu as a constituent element is vapor-deposited on an (100) single crystal substrate in an oxidizing atmosphere, and the oxide superconductor is formed into a film on the substrate. In the method for forming an oxide superconductor thin film to be formed,
By delaying the start of vapor deposition of the Cu element relative to other elements, a composite oxide layer composed of constituent elements other than the Cu element of the oxide superconductor is provided with a thickness of several atomic layers immediately above the substrate, and then the composite oxide A method for forming an oxide superconductor thin film, comprising depositing each constituent element of an oxide superconductor containing Cu on a layer.
JP4041879A 1992-01-31 1992-01-31 Method of forming oxide superconductor thin film Expired - Lifetime JP2835235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4041879A JP2835235B2 (en) 1992-01-31 1992-01-31 Method of forming oxide superconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4041879A JP2835235B2 (en) 1992-01-31 1992-01-31 Method of forming oxide superconductor thin film

Publications (2)

Publication Number Publication Date
JPH05213698A JPH05213698A (en) 1993-08-24
JP2835235B2 true JP2835235B2 (en) 1998-12-14

Family

ID=12620562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4041879A Expired - Lifetime JP2835235B2 (en) 1992-01-31 1992-01-31 Method of forming oxide superconductor thin film

Country Status (1)

Country Link
JP (1) JP2835235B2 (en)

Also Published As

Publication number Publication date
JPH05213698A (en) 1993-08-24

Similar Documents

Publication Publication Date Title
US4912087A (en) Rapid thermal annealing of superconducting oxide precursor films on Si and SiO2 substrates
US6156376A (en) Buffer layers on metal surfaces having biaxial texture as superconductor substrates
US5212148A (en) Method for manufacturing oxide superconducting films by laser evaporation
US6150034A (en) Buffer layers on rolled nickel or copper as superconductor substrates
JP2567460B2 (en) Superconducting thin film and its manufacturing method
JP2004530046A (en) Method and apparatus for fabricating buffer layer and structure of crystalline thin film with biaxial texture
US5712227A (en) Substrate having a superconductor layer
US4874741A (en) Non-enhanced laser evaporation of oxide superconductors
US5885939A (en) Process for forming a-axis-on-c-axis double-layer oxide superconductor films
US5480861A (en) Layered structure comprising insulator thin film and oxide superconductor thin film
JPH0354116A (en) Compound oxide superconducting thin film and production thereof
JP2835235B2 (en) Method of forming oxide superconductor thin film
JPH0297427A (en) Production of oxide superconducting thin film
EP0590560B1 (en) Thin-film superconductor and method of fabricating the same
EP0487421B1 (en) Process for preparing a thin film of Bi-type oxide superconductor
EP0459905B1 (en) Process for preparing high-temperature superconducting thin films
EP0620602B1 (en) Method for depositing another thin film on an oxide thin film having perovskite crystal structure
US4981839A (en) Method of forming superconducting oxide films using zone annealing
EP0504804A1 (en) Bi system copper oxide superconducting thin film and method of forming the same
US5314870A (en) Preparing thin film of oxide superconductor
JP2818701B2 (en) Surface treatment method for oxide high-temperature superconductor
US4950644A (en) Method for the epitaxial preparation of a layer of a metal-oxide superconducting material with a high transition temperature
Braginski et al. In-situ fabrication, processing and characterization of superconducting oxide films
JPH02175613A (en) Production of oxide superconducting thin film
Li et al. Heteroepitaxial growth of MgO films by dual ion beam sputtering