JPH01275405A - Production of superconductor structure - Google Patents

Production of superconductor structure

Info

Publication number
JPH01275405A
JPH01275405A JP63103015A JP10301588A JPH01275405A JP H01275405 A JPH01275405 A JP H01275405A JP 63103015 A JP63103015 A JP 63103015A JP 10301588 A JP10301588 A JP 10301588A JP H01275405 A JPH01275405 A JP H01275405A
Authority
JP
Japan
Prior art keywords
superconductor
manufacturing
superconductor structure
structure according
composite compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63103015A
Other languages
Japanese (ja)
Inventor
Takeshi Kamata
健 鎌田
Takashi Hirao
孝 平尾
Kentaro Setsune
瀬恒 謙太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63103015A priority Critical patent/JPH01275405A/en
Publication of JPH01275405A publication Critical patent/JPH01275405A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Inorganic Insulating Materials (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To prevent the deterioration of a superconductor due to moisture, etc., and to obtain the title structure having stable superconducting characteristics by vapor-depositing an insulating film on the surface of the superconductor using a multiple oxide by an ion beam sputtering method. CONSTITUTION:An insulating film such as a film of AlN, Al2O3, Si3N4, SiO2, TiN, TiO2 or BN is vapor-deposited on the surface of a superconductor using a multiple oxide such as Bi-Sr-Ca-Cu-O or Tl-Ba-Ca-Cu-O by carrying out ion beam sputtering with one or more among Al, Ti, Si and B as the materials of a target for sputtering and an inert gas such as Ar or a gaseous mixture of the inert gas with O2 or N2 as gas for ion beams.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、エレクトロニクス用素子に応用される超電導
体構造物、特に複合化合物の超電導体構造物の製造方法
に間するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a superconductor structure applied to an electronic device, particularly a composite compound superconductor structure.

従来の技術 従来、超電導体としては、A15型2元系化合物として
窒化ニオブ(NbN)やニオブ3ゲルマニウム(Nb3
Ge)  などが知られていたが、これらの材料の超電
導転移温度Tcはたかだか24にであった。また、ベロ
アスカイト系化合物としては、B a−P b−B i
−0系(特開昭60−173885号)が知られている
が、この材料のTCは13に程度と低くエレクトロニク
ス素子等への実用化は困難であった。ところがTcが3
0〜40Kを示すB a−L a−Cu −0系の高温
超電導体が提案され[J、G−Bednorz and
 K、A、Muller。
Conventional technology Conventionally, niobium nitride (NbN) and niobium germanium (Nb3) have been used as A15 type binary compounds as superconductors.
Ge) and the like were known, but the superconducting transition temperature Tc of these materials was at most 24. In addition, as a velorskite compound, B a-P b-B i
-0 series (Japanese Unexamined Patent Publication No. 60-173885) is known, but the TC of this material is as low as 13, making it difficult to put it to practical use in electronic devices and the like. However, Tc is 3
A B a-L a-Cu -0-based high-temperature superconductor exhibiting a temperature of 0 to 40 K was proposed [J, G-Bednorz and
K., A., Muller.

ツアイト シュリフト フェア フィジーク(Zeit
shrift  fur  physik  B)−C
ondensed  Matter  64,189−
193 (1986)]、 次いで提案されたY−Ba
−Cu−0系では90KをこえるTcが報告されており
[M、に、Wu等、フィジカル レビュー レターズ(
Physical Review Letters) 
Vol、58.No、9,908−910 (1987
)]、液体窒素の沸点(77K)よりも高くなったこと
で実用化が有望となってきた。また、最近B 1−Sr
−Ca−Cu−0系あるいはT I −B a−Ca−
Cu−0系が120にでゼロ抵抗を示す可能性があるこ
とが報告されており、液体窒素で安定に動作しうる素子
の実用化が有望となってきた。
Zeit Schrift Fair Physique
shrift fur physik B)-C
Ondensed Matter 64,189-
193 (1986)], then the proposed Y-Ba
-Cu-0 series has been reported to have a Tc exceeding 90K [M, Ni, Wu et al., Physical Review Letters (
Physical Review Letters)
Vol, 58. No. 9,908-910 (1987
)], its practical application has become promising as it has become higher than the boiling point (77K) of liquid nitrogen. Also, recently B 1-Sr
-Ca-Cu-0 system or T I -B a-Ca-
It has been reported that the Cu-0 system may exhibit zero resistance at a temperature of 120 nm, and it has become promising to put into practical use an element that can stably operate in liquid nitrogen.

発明が解決しようとする課題 Y−Ba−Cu−0系やBi−Sr−Ca−Cu−0に
代表される複合化合物材料により形成された超電導体は
、大気中に放置すると超電導特性が劣化することが判明
しており、実用化のためにその特性の安定化が強く要望
されている。本発明者等はこの種の材料に対し最適手法
で最適材料により表面コーティングすれば超電導特性が
安定化されると考え、表面ダメージの少ないイオンビー
ムスパッタリング法を用いると超電導体の組成を変化さ
せることなく特性の安定化が実現できることを発見し、
これに基づいて新規な複合化合物材料を用いた新しい超
電導構造物の製造方法を発明した。
Problems to be Solved by the Invention Superconductors formed from composite compound materials such as Y-Ba-Cu-0 and Bi-Sr-Ca-Cu-0 deteriorate in superconducting properties when left in the atmosphere. It has been found that stabilization of its properties is strongly desired for practical use. The present inventors believe that superconducting properties can be stabilized by coating the surface of this type of material with an optimal material using an optimal method, and that it is possible to change the composition of the superconductor by using ion beam sputtering, which causes less surface damage. discovered that it was possible to stabilize the characteristics without
Based on this, we invented a new method for manufacturing superconducting structures using a new composite compound material.

課題を解決するための手段 本発明における複合化合物を用いた超電導体構造物の製
造方法は、たとえば複合化合物としてBi−Sr−Ca
−Cu −0系酸化物からなる超電導体の表面に、イオ
ンビームスパッタリング法により絶縁性被膜を蒸着する
ことを特徴としている。
Means for Solving the Problems The method of manufacturing a superconductor structure using a composite compound according to the present invention includes, for example, Bi-Sr-Ca as a composite compound.
It is characterized in that an insulating film is deposited on the surface of a superconductor made of -Cu -0 based oxide by ion beam sputtering.

作用 本発明にかかる超電導体構造物の製造方法は、イオンビ
ームスパッタリング法により複合化合物超電導体の表面
にダメージを与えることなく、しかも超電導体の組成を
変化させることなく絶縁性保護膜を形成することができ
るところに大きな特色がある。また、面処理として超電
導体に酸素イオンを照射することにより表面における欠
損酸素を補ってから保護膜を形成することができる。従
って、非常に高精度で安定性に優れた超電導体構造物が
本発明の製造方法により簡屯に実現される。
Function: The method of manufacturing a superconductor structure according to the present invention forms an insulating protective film by ion beam sputtering without damaging the surface of a composite compound superconductor and without changing the composition of the superconductor. Its great feature is that it can do this. Further, as surface treatment, the superconductor is irradiated with oxygen ions to compensate for oxygen deficiencies on the surface, and then a protective film can be formed. Therefore, a superconductor structure with extremely high precision and excellent stability can be easily realized by the manufacturing method of the present invention.

実施例 本発明の実施例を図面を用いて説明する。Example Embodiments of the present invention will be described using the drawings.

第1図において、本発明における超電導体構造物の一例
は、B 1−3r−Ca−Cu −0系の酸化物あるい
は、元素のモル比率が、 0.5≦(A+B)/Cu≦2.5 であるA元素、B元素およびCuを含む酸化物の超電導
体11と、上記超電導体の表面に、イオンビームスパッ
タリング法により蒸着して設けた絶縁性保護膜12から
なる構造となっている。ここに、AはSc、Yおよびラ
ンタン系列元素(原子番号57〜71)のうち少なくと
も一種、Bは■a族元素のうち少なくとも一種の元素を
示す。
In FIG. 1, an example of the superconductor structure according to the present invention is such that the molar ratio of the B1-3r-Ca-Cu-0-based oxide or element is 0.5≦(A+B)/Cu≦2. The structure consists of an oxide superconductor 11 containing elements A, B, and Cu, which are 5, and an insulating protective film 12 deposited on the surface of the superconductor by ion beam sputtering. Here, A represents at least one element selected from Sc, Y, and lanthanum series elements (atomic numbers 57 to 71), and B represents at least one element selected from the a-group elements.

本発明者らは、特にこの種の複合化合物超電導体が、大
気中での放置により超電導特性が著しく劣化することを
見出し、さらに、この種の劣化の防止に、適正材料を用
いた保護膜の超電導体表面へのコーティングが有効であ
ることを発見した。
The present inventors have found that the superconducting properties of this type of composite compound superconductor in particular deteriorate significantly when left in the atmosphere. We discovered that coating the surface of superconductors is effective.

またさらに、超電導体表面に保護膜をコーティングする
際に、超電導特性を変化させないために、超電導体表面
にダメージを与えることや、超電導体表面の組成、特に
酸素濃度を変えることのないようにしなければならない
ことを本発明者らは発見した。これらの発見に基づいて
、この種の酸化物超電導体の劣化を防止しようとするの
が、本発明にかかる超電導体構造物の製造方法である。
Furthermore, when coating the superconductor surface with a protective film, care must be taken not to damage the superconductor surface or change the composition of the superconductor surface, especially the oxygen concentration, so as not to change the superconducting properties. The present inventors have discovered that this must be the case. Based on these findings, the method for manufacturing a superconductor structure according to the present invention attempts to prevent this type of oxide superconductor from deteriorating.

超電導体の劣化は、例えば大気中に放置すると、転移温
度が低くなる現象である。この劣化の原因の詳細は明か
ではないが、大気中の水分、炭酸ガス等により、超電導
体が変質したものと考えられる。大気中の水分などの防
止には、通常表面コーティングを用いる。この場合、本
発明者らは、保護膜材料ならびに保護膜形成方法を適切
に選択しないと保護膜をコーティングする際に、超電導
特性を低下させてしまうことを見出した。すなわち、コ
ーティングする保護膜材料としては、例えば窒化アルミ
ニウム、酸化アルミニウム、窒化シリコン、酸化シリコ
ン、窒化チタン、酸化チタン、窒化ボロン等を用いると
、コーティングによる特性の変化がない上、大気中放置
しても顕著な特性劣化がなく、適切な材料であることを
確認した。また、保護膜形成方法としては、表面にダメ
ージを与えるようなスパッタリング法やプラズマCVD
法は、表面に損傷を与えるだけでなく、超電導体表面の
酸素を還元してぬきとってしまい、表面の組成を変えて
しまう点でも不適切であることを確認した。また、本発
明者らは保護膜を形成する際、複合化合物超電導体11
の温度を200℃以上に設定した場合、酸素が抜けて特
性が劣化することを見出しており、加熱しない方法を用
いることが望まれる。本発明におけるイオンビームスパ
ッタリング法は表面ダメージが少なく、しかも基体温度
が100℃以下であっても緻密な膜を形成することがで
き、保護膜形成方法として有効であることを確認した。
Deterioration of a superconductor is a phenomenon in which, for example, when it is left in the atmosphere, its transition temperature becomes lower. Although the details of the cause of this deterioration are not clear, it is thought that the superconductor has been altered by moisture, carbon dioxide, etc. in the atmosphere. Surface coatings are usually used to prevent atmospheric moisture. In this case, the present inventors have discovered that if the protective film material and protective film forming method are not appropriately selected, the superconducting properties will be degraded when the protective film is coated. In other words, if aluminum nitride, aluminum oxide, silicon nitride, silicon oxide, titanium nitride, titanium oxide, boron nitride, etc. are used as the material for the protective film to be coated, the coating will not change the properties, and the product can be left in the atmosphere. There was no noticeable deterioration in properties, confirming that the material was suitable. In addition, methods for forming the protective film include sputtering methods that damage the surface, and plasma CVD methods.
It was confirmed that this method is inappropriate because it not only damages the surface, but also reduces and removes the oxygen on the superconductor surface, changing the composition of the surface. In addition, when forming the protective film, the present inventors also found that the composite compound superconductor 11
It has been found that when the temperature is set at 200° C. or higher, oxygen escapes and the characteristics deteriorate, so it is desirable to use a method that does not involve heating. It was confirmed that the ion beam sputtering method of the present invention causes little surface damage and can form a dense film even at a substrate temperature of 100° C. or lower, and is effective as a method for forming a protective film.

また、保護膜を形成する前に前処理として酸素イオンを
照射した場合1、M!電導体表面の欠t0酸素を補い、
超電導特性を改善することができる。
In addition, when oxygen ions are irradiated as a pretreatment before forming the protective film, 1, M! Replenishes the deficient t0 oxygen on the surface of the conductor,
Superconducting properties can be improved.

複合化合物超電導体を実用化する場合、この種の#i!
電導体を薄膜化し、基体のEにfIlt層して用いる。
When a composite compound superconductor is put into practical use, this type of #i!
The conductor is made into a thin film and used as a fIlt layer on E of the substrate.

従って、超電導体は、基体上に形成された被膜である場
合が多、く、この種のコーティング被膜は、この被膜化
さ、れた超電導体の表面に形成する。
Therefore, a superconductor is often a coating formed on a substrate, and this type of coating is formed on the surface of the coated superconductor.

すなわち、本発明における超電導体構造物は、第2図に
示すごとく、コーティング被膜12を有する薄膜化され
た超電導体11と、これを支える基体2Iからなる。′ この場合、本発明者らは基体について最適材料があるこ
とを見出した。すなわち、第2図において、超電導体被
膜11は基体21の表面上に例えばスパッタリング法で
形成する。この場合、基体21は、超電導を示す複合化
合物被膜11の保持を目的としている。この被膜11は
通常数100℃の高温で形成し、超電導を例えば液体窒
素温度(−195℃)の低温で動作させるため、特に基
体21と被膜11の密着性が悪くなり、しばしば被膜1
1が破損されることを本発明者らは確認した。ざらに本
発明者らは、詳細な基体の熱的特性を各種の材質につい
て調べた結果、基体の線熱膨張係数α> I O−’/
℃であれば、上記被膜の破損がなく、実用されることを
確認した。
That is, the superconductor structure according to the present invention, as shown in FIG. 2, consists of a thinned superconductor 11 having a coating film 12 and a base 2I that supports it. ' In this case, we found that there is an optimal material for the substrate. That is, in FIG. 2, superconductor coating 11 is formed on the surface of base 21 by, for example, a sputtering method. In this case, the purpose of the base 21 is to hold the composite compound coating 11 exhibiting superconductivity. This coating 11 is usually formed at a high temperature of several hundred degrees Celsius, and since the superconductor is operated at a low temperature of, for example, liquid nitrogen temperature (-195 degrees Celsius), the adhesion between the substrate 21 and the coating 11 is particularly poor, and the coating 11 is often
The present inventors confirmed that 1 was damaged. Roughly speaking, the present inventors investigated the detailed thermal characteristics of the substrate for various materials, and found that the linear thermal expansion coefficient α>I O-'/
℃, it was confirmed that the above film would not be damaged and could be put to practical use.

以下本発明の内容をさらに深く理解させるために、さら
に具体的な具体実施例を示す。
In order to further understand the content of the present invention, more specific examples will be shown below.

(具体実施例) M g O単結晶(100)面を基体21として用い、
高周波ブレナーマグネトロンスバッタにより、焼結した
Y B a2c u a、50xターゲツトをA「と0
2の混合ガス雰囲気でスパッタリング蒸着して、上記基
体上に結晶性のYBa2Cu30v−δ被膜11を付着
させた。
(Specific Example) Using a M g O single crystal (100) plane as the substrate 21,
Using a high frequency Brenner magnetron scatterer, the sintered YB a2c u a, 50x target was
A crystalline YBa2Cu30v-delta coating 11 was deposited on the substrate by sputtering deposition in a mixed gas atmosphere of 2.

この場合、混合ガス圧力は0.4Pa、 スパッタリン
グ電力130W、スパッタリング時間1時間、被膜の膜
厚0.5μm、 基体温度640℃であった。上記被膜
11を付着させた後、500Paの酸素雰囲気中におい
て室温まで冷却し、大気中にて取り出した。このように
して得られた被膜11は超電導を示し、その転移温度は
オンセット89 Kで、オフセット75 Kであった。
In this case, the mixed gas pressure was 0.4 Pa, the sputtering power was 130 W, the sputtering time was 1 hour, the film thickness was 0.5 μm, and the substrate temperature was 640° C. After the coating 11 was deposited, it was cooled to room temperature in an oxygen atmosphere of 500 Pa, and then taken out into the atmosphere. The coating 11 thus obtained exhibited superconductivity, with a transition temperature of 89 K on set and 75 K on offset.

さらに、上記被膜11を大気中に放置せずに60℃に保
持した被膜11の表面に、アルミニウムをターゲットと
して、制御性のよいカウフマン型のイオン源を用いたイ
オンビームスパッタリング法により、酸素20%の分圧
雰囲気中で酸化アルミニウム促護膜」2を形成した。こ
のとき、イオンビームガスとしてArガスを用いた。ま
た、イオンの加速エネルギーは1kVで、ビーム電流は
50mAで、成膜時の真空度は3X 10−’To r
rであった。
Further, the surface of the coating 11, which was kept at 60° C. without being left in the atmosphere, was coated with 20% oxygen by ion beam sputtering method using an easily controllable Kaufman type ion source using aluminum as a target. An aluminum oxide protective film 2 was formed in a partial pressure atmosphere of . At this time, Ar gas was used as the ion beam gas. The ion acceleration energy was 1 kV, the beam current was 50 mA, and the degree of vacuum during film formation was 3X 10-' Tor.
It was r.

こうして酸化アルミニウムをコーティングしたY−Ba
−Cu−0超電導体構造物は、超電導特性を測定すると
、転移温度はオンセラ)89にで、オフセラ) 74 
Kということで超電導特性にはほとんど変化はなかった
。また、これを大気中で放置してもこの特性には変化は
みられなかった。第3図にこのY−Ba−Cu−0薄膜
に酸化アルミニウムをコーティングした超電導体構造物
のオージェ電子分光分析界面特性を示す。図かられかる
ように、超電導被膜中にもコーティング保護膜中にも各
々の構成元素は認められない。従って、保護膜が超電導
体の組成を変えることなくコーティングされていること
がわかる。
Y-Ba coated with aluminum oxide in this way
-When measuring the superconducting properties of the -Cu-0 superconductor structure, the transition temperature is 89) and 74
K, there was almost no change in the superconducting properties. Moreover, no change in this property was observed even when this was left in the atmosphere. FIG. 3 shows the Auger electron spectroscopy interface characteristics of a superconductor structure in which this Y-Ba-Cu-0 thin film is coated with aluminum oxide. As can be seen from the figure, the respective constituent elements are not observed in the superconducting film or the coating protective film. Therefore, it can be seen that the protective film is coated without changing the composition of the superconductor.

以上より、複合化合物超電導体の保護膜として酸化アル
ミニウム、保護膜形成方法としてイオンイオンビームス
パッタリング法が有効であることが判明した。
From the above, it has been found that aluminum oxide is effective as a protective film for a composite compound superconductor, and ion beam sputtering is effective as a method for forming the protective film.

絶縁性被膜をコーティングする際、一般に超電導体の表
面に絶縁性被膜材料と超電導体材料の混ざり合ったミキ
シング層が形成される。ターゲットに照射するイオンビ
ームの加速電圧が10kVを越える場合、上記ミキシン
グ層が超電導特性に悪い影響を及ぼすが、10kV以下
であれば超電導特性に影響がないことを本発明者らは発
見した。
When coating an insulating film, a mixing layer in which the insulating film material and the superconductor material are mixed is generally formed on the surface of the superconductor. The present inventors have discovered that when the accelerating voltage of the ion beam irradiating the target exceeds 10 kV, the mixing layer has a negative effect on the superconducting properties, but when the accelerating voltage is 10 kV or less, the superconducting properties are not affected.

次に、第二の具体実施例について述べる。第一の具体実
施例と同じ条件で作成した超電導体被膜11を用い、こ
の被膜11を試料台に取り付け60℃に保持した。この
超電導被膜の超電導臨界温度は、オンセット91K、オ
フセット73にであった。マイクロ波を導入したプラズ
マ発生室に電子サイクロトロン共鳴条件を満たす磁界を
印加し、前記プラズマ発生室のガス導入口より、Arお
よび窒素の混合ガスを導入して解離度の高いプラズマを
発生させ、プラズマ中のArイオンおよび窒素イオンを
引き出し口より引き出し、引出し口に設置されたアルミ
ニウムターゲットをスパッタして超電導被膜11の上に
窒化アルミニウムを形成した。但し、成膜時の真空度は
2X10−3Torr、イオン電流密度は3mA/cm
2、マイクロ波電力は150Wであった。このとき、形
成された超電導体構造物は、オンセラ)90K、オフセ
ット74にの超電導臨界温度を示し、超電導特性にC■
とんと変化はなかった。イオンビームのイオン源として
、上記のような方法、すなわち、ECRプラズマを用い
た場合、イオンの活性度が大きいため、低温でより緻密
な絶縁性被膜がコーティングする超電導体に対してほと
んど影響を及ぼさずに得られる点でより有効な方法であ
る。
Next, a second specific example will be described. A superconductor film 11 prepared under the same conditions as in the first specific example was used, and this film 11 was mounted on a sample stand and maintained at 60°C. The superconducting critical temperature of this superconducting film was 91 K at onset and 73 K at offset. A magnetic field that satisfies electron cyclotron resonance conditions is applied to a plasma generation chamber into which microwaves have been introduced, and a mixed gas of Ar and nitrogen is introduced from the gas inlet of the plasma generation chamber to generate plasma with a high degree of dissociation. The Ar ions and nitrogen ions inside were drawn out from the outlet, and an aluminum target placed at the outlet was sputtered to form aluminum nitride on the superconducting film 11. However, the degree of vacuum during film formation was 2X10-3 Torr, and the ion current density was 3 mA/cm.
2. The microwave power was 150W. At this time, the formed superconductor structure exhibits a superconducting critical temperature of 90 K (oncela) and an offset of 74, and has superconducting properties of C
There was no significant change. When using the method described above, that is, ECR plasma, as an ion source for an ion beam, the ions have a high degree of activity, so the dense insulating film at low temperatures has little effect on the superconductor coated. This is a more effective method in that it can be obtained without any additional costs.

なお、実施例において、超電導体としてBi−Sr−C
a−Cu−0系、T I −B a−Ca−Cu−0系
、あるいは、へ元素としてY以外にランタン系列元素や
、Scに置き換えても、また、B元素をSr、Ca等■
a族元素に置き換えても、それぞれ超電導転移温度が変
化する程度で本質的な発明の特性を変えるものではない
In addition, in the examples, Bi-Sr-C was used as the superconductor.
a-Cu-0 series, T I -B a-Ca-Cu-0 series, or replacing the B element with a lanthanum series element other than Y or Sc, or replacing the B element with Sr, Ca, etc.
Even if they are replaced with group a elements, the essential characteristics of the invention do not change except that the superconducting transition temperature changes.

発明の効果 本発明にかかる超電導体構造物の製造方法は、イオンビ
ームスパッタリング法を用い、超電導体の表面にダメー
ジを与えることなく、また、表面の組成を変えることな
く保護膜をコーティングし、さらに超電導体を薄膜化し
ているところに大きな特徴がある。保護膜を形成するこ
とにより、水分の侵入による超電導特性の劣化ならびに
外的損傷を防止することが可能となり、従って、安定で
信頼性の高い超電導体構造物が本発明で実現される。
Effects of the Invention The method for manufacturing a superconductor structure according to the present invention uses an ion beam sputtering method to coat a protective film without damaging the surface of the superconductor or changing the composition of the surface, and further A major feature is that the superconductor is made into a thin film. By forming the protective film, it is possible to prevent deterioration of superconducting properties due to moisture intrusion and external damage, and therefore, a stable and highly reliable superconductor structure can be realized in the present invention.

本発明を用いてSiあるいはCaAsなとのデバイスと
の集積化が可能であると共に、ジョセフソン素子など各
種の超電導デバイスの要素材料として実用される。特に
、この種の化合物超電導体の転移温度が室温になる可能
性もあり、実用の範囲は広く本発明の工業的価値は極め
て高い。
Using the present invention, it is possible to integrate devices such as Si or CaAs, and it can also be put to practical use as an elemental material for various superconducting devices such as Josephson elements. In particular, the transition temperature of this type of compound superconductor may be room temperature, so the practical scope of the present invention is wide and the industrial value of the present invention is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の一実施例の超電導体構造物の
基本構成図、第3図は本発明で形成した超電導体構造物
のオージェ電子分光分析界面特性図である。 11・・・複合化合物超電導体、12・・・保護膜、2
1・・ ・基体。 代理人の氏名 弁理士 中尾敏男 はか1名第1図 第3図 スパ゛ソダワング時間C分)
1 and 2 are basic configuration diagrams of a superconductor structure according to an embodiment of the present invention, and FIG. 3 is an Auger electron spectroscopy analysis interface characteristic diagram of a superconductor structure formed according to the present invention. 11... Composite compound superconductor, 12... Protective film, 2
1... Base. Name of agent: Patent attorney Toshio Nakao (1 person Figure 1 Figure 3 Sponsorship time C minutes)

Claims (1)

【特許請求の範囲】 (1)複合化合物を用いた超電導体の表面に、イオンビ
ームスパッタリング法により絶縁性被膜を蒸着すること
を特徴とする超電導体構造物の製造方法。 (2)基体上に超電導体被膜を積層した多層構造の超電
導体で構成したことを特徴とする特許請求の範囲第1項
記載の超電導体構造物の製造方法。 (3)複合化合物としてBi−Sr−Ca−Cu−Oあ
るいはTl−Ba−Ca−Cu−Oの酸化物を用いるこ
とを特徴とする特許請求の範囲第1項記載の超電導体構
造物の製造方法。 (4)複合化合物として元素のモル比率が 0.5≦(A+B)/Cu≦2.5 であるA元素、B元素およびCuを含む酸化物を用いる
ことを特徴とする特許請求の範囲第1項記載の超電導体
構造物の製造方法。 ここに、AはSc、Yおよびランタン系列元素(原子番
号57〜71)のうち少なくとも一種、BはIIa族元素
のうち少なくとも一種の元素を示す。 (5)スパッタリングターゲットとしてアルミニウム、
シリコン、チタン、ボロンのうち少なくとも一種で構成
したことを特徴とする特許請求の範囲第1項記載の超電
導体構造物の製造方法。 (6)イオンビーム用ガスとして、不活性ガスのみある
いは、不活性ガスと酸素あるいは窒素の混合ガスを用い
ることを特徴とする特許請求の範囲第1項記載の超電導
体構造物の製造方法。 (7)酸素あるいは窒素の少なくとも一種が存在するガ
ス雰囲気中で形成することを特徴とする特許請求の範囲
第1項記載の超電導体構造物の製造方法。 (8)イオン源として、少なくとも不活性ガスを含むガ
スの真空槽内での放電により生成したプラズマを用いる
ことを特徴とする特許請求の範囲第1項記載の超電導体
構造物の製造方法。 (9)真空槽内での放電により生成したイオンをこの真
空槽内のプラズマとスパッタリングターゲットとの間に
直流電圧を印加して加速し照射することを特徴とする特
許請求の範囲第8項記載の超電導体構造物の製造方法。 (10)印加する直流電圧を10kV以下とすることを
特徴とする特許請求の範囲第9項記載の超電導体構造物
の製造方法。 (11)イオン源装置として、電子サイクロトロン共鳴
吸収条件を満たすように磁界およびマイクロ波を印加し
てプラズマを発生させるプラズマ処理装置を用いること
を特徴とする特許請求の範囲第8項記載の超電導体構造
物の製造方法。 (12)複合化合物超電導体の表面を酸素イオン照射処
理することを特徴とする特許請求の範囲第1項記載の超
電導体構造物の製造方法。 (13)絶縁性被膜蒸着時の複合化合物超電導体の温度
を100℃以下に設定することを特徴とする特許請求の
範囲第1項記載の超電導体構造物の製造方法。 (14)基体を、線膨張係数α>10^−^6/℃の材
質で構成したことを特徴とする特許請求の範囲第2項記
載の超電導体構造物の製造方法。
[Scope of Claims] (1) A method for manufacturing a superconductor structure, which comprises depositing an insulating film on the surface of a superconductor using a composite compound by ion beam sputtering. (2) A method for manufacturing a superconductor structure according to claim 1, characterized in that the superconductor structure is made of a multilayered superconductor in which a superconductor film is laminated on a base. (3) Production of a superconductor structure according to claim 1, characterized in that an oxide of Bi-Sr-Ca-Cu-O or Tl-Ba-Ca-Cu-O is used as the composite compound. Method. (4) Claim 1, characterized in that an oxide containing element A, element B, and Cu whose molar ratio of elements is 0.5≦(A+B)/Cu≦2.5 is used as the composite compound. A method for manufacturing a superconductor structure as described in . Here, A represents at least one element among Sc, Y, and lanthanum series elements (atomic numbers 57 to 71), and B represents at least one element among group IIa elements. (5) Aluminum as a sputtering target,
2. The method of manufacturing a superconductor structure according to claim 1, wherein the superconductor structure is made of at least one of silicon, titanium, and boron. (6) The method for manufacturing a superconductor structure according to claim 1, characterized in that an inert gas alone or a mixed gas of an inert gas and oxygen or nitrogen is used as the ion beam gas. (7) A method for manufacturing a superconductor structure according to claim 1, wherein the superconductor structure is formed in a gas atmosphere containing at least one of oxygen and nitrogen. (8) The method for manufacturing a superconductor structure according to claim 1, wherein plasma generated by discharging a gas containing at least an inert gas in a vacuum chamber is used as the ion source. (9) Claim 8, characterized in that ions generated by electric discharge in a vacuum chamber are accelerated and irradiated by applying a DC voltage between the plasma in the vacuum chamber and the sputtering target. A method for manufacturing a superconductor structure. (10) The method for manufacturing a superconductor structure according to claim 9, characterized in that the applied DC voltage is 10 kV or less. (11) The superconductor according to claim 8, wherein the ion source device is a plasma processing device that generates plasma by applying a magnetic field and microwaves so as to satisfy electron cyclotron resonance absorption conditions. Method of manufacturing structures. (12) A method for manufacturing a superconductor structure according to claim 1, characterized in that the surface of the composite compound superconductor is subjected to oxygen ion irradiation treatment. (13) A method for manufacturing a superconductor structure according to claim 1, characterized in that the temperature of the composite compound superconductor during the deposition of the insulating film is set to 100° C. or lower. (14) The method for manufacturing a superconductor structure according to claim 2, wherein the substrate is made of a material having a coefficient of linear expansion α>10^-^6/°C.
JP63103015A 1988-04-26 1988-04-26 Production of superconductor structure Pending JPH01275405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63103015A JPH01275405A (en) 1988-04-26 1988-04-26 Production of superconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63103015A JPH01275405A (en) 1988-04-26 1988-04-26 Production of superconductor structure

Publications (1)

Publication Number Publication Date
JPH01275405A true JPH01275405A (en) 1989-11-06

Family

ID=14342820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63103015A Pending JPH01275405A (en) 1988-04-26 1988-04-26 Production of superconductor structure

Country Status (1)

Country Link
JP (1) JPH01275405A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104988466A (en) * 2015-06-02 2015-10-21 淮阴工学院 Method for preparing alpha-Al2O3 coating by using double-glow plasma diffusion metalizing technology at low temperature
JP2021136390A (en) * 2020-02-28 2021-09-13 東京エレクトロン株式会社 Manufacturing method for semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104988466A (en) * 2015-06-02 2015-10-21 淮阴工学院 Method for preparing alpha-Al2O3 coating by using double-glow plasma diffusion metalizing technology at low temperature
JP2021136390A (en) * 2020-02-28 2021-09-13 東京エレクトロン株式会社 Manufacturing method for semiconductor device

Similar Documents

Publication Publication Date Title
Goyal et al. The RABiTS approach: Using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors
US5212148A (en) Method for manufacturing oxide superconducting films by laser evaporation
JP2664066B2 (en) Superconducting thin film and method for producing the same
JP2567460B2 (en) Superconducting thin film and its manufacturing method
JP2004530046A (en) Method and apparatus for fabricating buffer layer and structure of crystalline thin film with biaxial texture
US5057201A (en) Process for depositing a superconducting thin film
Witanachchi et al. Effect of buffer layers on low‐temperature growth of mirror‐like superconducting thin films on sapphire
US4874741A (en) Non-enhanced laser evaporation of oxide superconductors
US5480861A (en) Layered structure comprising insulator thin film and oxide superconductor thin film
US7642222B1 (en) Method for improving performance of high temperature superconductors within a magnetic field
JPH01275405A (en) Production of superconductor structure
JPH0286014A (en) Composite oxide superconducting thin film and film forming method
JPS63239742A (en) Manufacture for film superconductor
JPH01275406A (en) Production of superconductor structure
US4981839A (en) Method of forming superconducting oxide films using zone annealing
JP2590142B2 (en) Superconductor
JP2702711B2 (en) Manufacturing method of thin film superconductor
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
JPS63292524A (en) Manufacture of superconductive film
JPH0365502A (en) Preparation of superconductive thin film
JPH0818913B2 (en) Method of manufacturing thin film superconductor
JP2835235B2 (en) Method of forming oxide superconductor thin film
JPH01126206A (en) Superconducting thin film
Hong AT&T Bell Laboratories, Murray Hill, New Jersey 07974, USA
JPH01246132A (en) Production of thin film superconductor