JP2590142B2 - Superconductor - Google Patents

Superconductor

Info

Publication number
JP2590142B2
JP2590142B2 JP62263794A JP26379487A JP2590142B2 JP 2590142 B2 JP2590142 B2 JP 2590142B2 JP 62263794 A JP62263794 A JP 62263794A JP 26379487 A JP26379487 A JP 26379487A JP 2590142 B2 JP2590142 B2 JP 2590142B2
Authority
JP
Japan
Prior art keywords
film
oxide
superconducting
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62263794A
Other languages
Japanese (ja)
Other versions
JPH01107419A (en
Inventor
正昭 二本
幸雄 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62263794A priority Critical patent/JP2590142B2/en
Publication of JPH01107419A publication Critical patent/JPH01107419A/en
Application granted granted Critical
Publication of JP2590142B2 publication Critical patent/JP2590142B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超伝導材料薄膜を有する超伝導体に係り、
特に半導体分野で有用なSi上に高い超伝導臨界温度を持
つ酸化物係超伝導薄膜を形成した超伝導体に関する。
Description: TECHNICAL FIELD The present invention relates to a superconductor having a superconducting material thin film,
In particular, the present invention relates to a superconductor in which an oxide-based superconducting thin film having a high superconducting critical temperature is formed on Si, which is useful in the semiconductor field.

[従来の技術] 最近、Y−Ba−Cu酸化物などのペロブスカイト構造を
持つ酸化物材料が窒素の液化点(77K)以上の高い超伝
導臨界温度(Tc)を持つことが明らかにされた。ジョセ
フソン素子や半導体回路の導電膜にこの材料を応用する
には、薄膜状で基板に形成することが必要であり、スパ
ッタ法や真空蒸着法でこれら酸化物材料の薄膜形成が試
みられている。この様な技術の例は、ジャパニーズ ジ
ャーナル オブ アプライド フィジックス26巻,5号,
(1987年)頁L709−L710(Japanese Journal of Applie
d Physics Vol 26,No.5(1987)pp.L709−L710)に報じ
られている。
[Related Art] Recently, it has been revealed that an oxide material having a perovskite structure, such as a Y-Ba-Cu oxide, has a high superconducting critical temperature (Tc) higher than a liquefaction point of nitrogen (77 K). In order to apply this material to a Josephson element or a conductive film of a semiconductor circuit, it is necessary to form a thin film on a substrate, and attempts have been made to form a thin film of these oxide materials by a sputtering method or a vacuum evaporation method. . Examples of such technologies include the Japanese Journal of Applied Physics, Vol. 26, No. 5,
(1987) pp. L709-L710 (Japanese Journal of Applie)
d Physics Vol 26, No. 5 (1987) pp. L709-L710).

半導体分野で大量に使われているSi素子にこれら超伝
導酸化物材料を応用するには,良好な超伝導特性を示す
酸化物薄膜をSi基板上に安定に形成する技術を開発する
必要がある。しかし,例えば超伝導性を示す (0δ0.5)の膜をスパッタ法などの方法でSi基板
上に形成すると、膜形成あるいは膜形成後の熱処理の過
程でSiと反応が起り,超伝導特性が劣化、もしくは失な
われてしまうという問題が起ることが判明した。
In order to apply these superconducting oxide materials to Si devices, which are widely used in the semiconductor field, it is necessary to develop a technology to stably form oxide thin films with good superconducting properties on Si substrates. . But show superconductivity, for example When a film of (0δ0.5) is formed on a Si substrate by a method such as a sputtering method, a reaction occurs with Si during the film formation or a heat treatment process after the film formation, and the superconductivity is deteriorated or lost. It turned out that the problem occurred.

[発明が解決しようとする問題点] 本発明は、Siと超伝導性を示す酸化物薄膜の反応を抑
制し、Si基板上に良好な超伝導特性を示す超伝導薄膜を
安定に形成する技術を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention suppresses the reaction between Si and an oxide thin film having superconductivity, and stably forms a superconducting thin film having good superconductivity on a Si substrate. The purpose is to provide.

[問題点を解決するための手段] 上記目的を達成するために、Si基板とMI−MII−Cu−
O系の超伝導酸化物薄膜(MI:少なくとも1種の希土類
金属、MII:少なくとも1種のアルカリ土類金属)の間に
両者の反応を抑制する障壁層を設ける方法を採りあげ、
障壁層の構成と材料について検討した。
[Means for Solving the Problems] In order to achieve the above object, a Si substrate and M I -M II -Cu-
A method of providing a barrier layer between the O-based superconducting oxide thin films (M I : at least one rare earth metal, M II : at least one alkaline earth metal) for suppressing the reaction between both,
The structure and material of the barrier layer were studied.

この結果、障壁層として、基板側が酸化シリコン膜
(第1層膜)、基側から遠い側がBeO,MgOの群、TiO2,Zr
O2,HfO2の群、もしくはSc2O3,Y2O3,R2O3(R:希土類金
属)の群のいずれかの群の中から選ばれた少なくとも1
種の酸化物膜(第2層膜)である2層構造の障壁層を用
いることにより上記目的を達成できることを見い出し
た。
As a result, as a barrier layer, a silicon oxide film (first layer film) on the substrate side, a group of BeO and MgO on the side far from the base side, TiO 2 , Zr
At least one selected from the group consisting of O 2 and HfO 2 , or Sc 2 O 3 , Y 2 O 3 and R 2 O 3 (R: rare earth metal)
It has been found that the above object can be achieved by using a barrier layer having a two-layer structure, which is a kind of oxide film (second layer film).

[作用] 第1図は、本発明によってSi基板上に形成した超伝導
酸化物薄膜を有する試料の断面構造を示す。Si基板1の
上に酸化シリコンから成る第1層膜2と以下に述べる酸
化物材料から成る第2層膜3の2つの層から成る反応障
壁層上に超伝導酸化物薄膜4を形成するものである。第
1層の酸化シリコン膜2は、基板1のSiと第2層の酸化
物膜3の付着強度を増すとともに、Siと第2層の酸化物
膜の間に入る応力や歪を緩和する効果を果す。第2層の
酸化物膜3は超伝導酸化物薄膜4と反応し難く、超伝導
特性(臨界温度Tc,臨界電流密度Jc)を劣化させない効
果を示す。また、この第2層の酸化物膜3はその上に超
伝導酸化物膜を形成したとき緻密で表面の平坦性の良い
状態で膜成長が起るのを助けるとともに、さらにある場
合にはペルブスカイト構造を持つ超伝導酸化物膜が(00
1)配向膜として成長するのを促進する積極的な効果を
果す。(001)面と平行な方向は超伝導電流が通り易い
方向であり、(001)配向膜ではTc,Jcを向上させること
ができるので実用上望ましい。
[Operation] FIG. 1 shows a cross-sectional structure of a sample having a superconducting oxide thin film formed on a Si substrate according to the present invention. Forming a superconducting oxide thin film 4 on a reaction barrier layer composed of two layers, a first layer film 2 made of silicon oxide on a Si substrate 1 and a second layer film 3 made of an oxide material described below. It is. The first-layer silicon oxide film 2 has an effect of increasing the adhesion strength between Si of the substrate 1 and the second-layer oxide film 3 and relieving stress and strain between Si and the second-layer oxide film. To fulfill. The second oxide film 3 hardly reacts with the superconducting oxide thin film 4 and has an effect of not deteriorating superconducting characteristics (critical temperature Tc, critical current density Jc). The second layer oxide film 3 assists the growth of the film in a state where the superconducting oxide film is formed thereon with a dense and good surface flatness, and in some cases, the perovskite The superconducting oxide film with the structure (00
1) It has a positive effect of promoting growth as an alignment film. The direction parallel to the (001) plane is a direction in which the superconducting current can easily pass, and the (001) oriented film is practically desirable because Tc and Jc can be improved.

第2層の酸化物膜3として用いる材料は、BeO,MgOの
群、TiO2,ZrO2,HfO2の群、もしくはSc2O3,Y2O3,Re2O
3(Re:希土類金属La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,T
m,Yb,Lu)の群のいずれかの群の中から選ばれた少なく
とも1種の酸化物が良い。ここで、少なくとも1種とい
う意味は、例えば、TiO2,ZrO2,HfO2の群を例にとるとTi
O2,ZrO2,HfO2のいずれかの単独でも、TiO2+ZrO2,ZrO2
+HfO2,HfO2+TiO2の様に2種の酸化物の混合でも、あ
るいはTiO2+ZrO2+HfO2の様に3種の酸化物の混合でも
良いということである。
The material used for the second oxide film 3 is a group of BeO, MgO, a group of TiO 2 , ZrO 2 , HfO 2 , or Sc 2 O 3 , Y 2 O 3 , Re 2 O
3 (Re: rare earth metals La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
At least one oxide selected from the group consisting of m, Yb, and Lu) is preferred. Here, the meaning of at least one kind is, for example, TiO in the group of TiO 2 , ZrO 2 , and HfO 2.
Even if any of O 2 , ZrO 2 , and HfO 2 is used alone, TiO 2 + ZrO 2 , ZrO 2
That is, two kinds of oxides such as + HfO 2 , HfO 2 + TiO 2 or a mixture of three kinds of oxides such as TiO 2 + ZrO 2 + HfO 2 may be used.

第1層の酸化シリコン2は非晶質状が適当である。第
2層の酸化物3は多結晶でも良いが非晶質状の方が更に
望ましい。多結晶の場合、表面に結晶粒界が分布するた
めミクロな起伏が生じ、この上に超伝導酸化物膜を形成
するとこの起伏のために膜の表面の平坦性が悪化する。
さらに,超伝導酸化物膜4を構成する結晶粒の成長方向
が第2層の酸化物膜3表面に露出した不規則な結晶粒の
軸方位分布の影響を受けて多様化することが多い。この
場合、超伝導酸化物膜4は多結晶状になり、Jcを大きく
できないといった問題が生ずる。これに対し、第2層の
酸化物膜3を非晶質状にすると膜表面は平滑になり易
く、この場合、表面平坦性の良い超伝導酸化物膜の形成
が容易になる。さらに、超伝導酸化物4を構成する結晶
粒は基板1との相互作用が大きくない場合には、(00
1)面を基板と平行にして核生成する傾向が強いので、
非晶質状の第2層酸化物3上では(001)配向性を持つ
超伝導酸化物薄膜4が得易くなり、TcやJcが向上する望
ましい効果が生ずる。
The first layer of silicon oxide 2 is suitably amorphous. The oxide 3 of the second layer may be polycrystalline, but is more preferably amorphous. In the case of polycrystal, microscopic undulations occur due to the distribution of crystal grain boundaries on the surface, and when a superconducting oxide film is formed thereon, the undulations deteriorate the flatness of the film surface.
Furthermore, the growth direction of the crystal grains constituting the superconducting oxide film 4 is often diversified under the influence of the axial orientation distribution of the irregular crystal grains exposed on the surface of the second oxide film 3. In this case, the superconducting oxide film 4 becomes polycrystalline, which causes a problem that Jc cannot be increased. On the other hand, when the oxide film 3 of the second layer is made amorphous, the surface of the film tends to be smooth, and in this case, it is easy to form a superconducting oxide film having good surface flatness. Further, when the crystal grains constituting the superconducting oxide 4 do not have a large interaction with the substrate 1, (0000)
1) Since there is a strong tendency to nucleate with the surface parallel to the substrate,
On the amorphous second layer oxide 3, a superconducting oxide thin film 4 having (001) orientation is easily obtained, and a desirable effect of improving Tc and Jc occurs.

第1層の酸化シリコン膜2の形成は、Si基板1を熱酸
化やプラズマ酸化などの方法で酸化することによって形
成しても、あるいはスパッタ法、蒸着法、気相成長法
(CVD法)などで酸化シリコン膜を形成しても良い。適
当な膜厚は0.5nm〜2μmであり、0.5nm未満では前述の
第1層の果すべき役割が生ぜず、また2μmを越えると
成膜に時間を要するので実用的でなくなる。実用上、特
に望ましい膜厚の範囲は1〜500nmである。第2層の酸
化物膜3の形成と同種の酸化物をスパッタ法,真空蒸着
法などの物理蒸着法で行っても、CVD法などで行って
も、あるいは酸化物を構成する金属元素の膜を形成して
酸化しても、金属元素を物理蒸着法で蒸着しながら酸素
を導入して酸化し酸化膜として形成する方法を採っても
良い。非晶質状の緻密で平坦性の良い膜を得るには高周
波スパッタ法、マグネトロンスパッタ法などのスパッタ
法を用いる方が望ましい。第2層の酸化物膜3の膜厚は
2nm〜2μmの範囲が適当である。2nm未満では超伝導酸
化物膜が第1層の酸化シリコン膜2とピンホールなどの
欠陥を通して反応する頻度が増大するので望ましくな
く、また2μmを越えると成膜に時間を要するばかりで
なく、膜の表面平坦性が劣化する傾向が増大するので実
用的でなくなる。実用的にとくに望ましい膜厚の範囲は
5〜500nmである。
The first layer of the silicon oxide film 2 may be formed by oxidizing the Si substrate 1 by a method such as thermal oxidation or plasma oxidation, or by a sputtering method, a vapor deposition method, a vapor deposition method (CVD method), or the like. May be used to form a silicon oxide film. An appropriate film thickness is 0.5 nm to 2 μm. If it is less than 0.5 nm, the above-mentioned role of the first layer does not play any role. If it exceeds 2 μm, it takes a long time to form a film, which is not practical. In practice, a particularly desirable range of the film thickness is 1 to 500 nm. An oxide of the same type as that of the second oxide film 3 may be formed by a physical vapor deposition method such as a sputtering method or a vacuum vapor deposition method, a CVD method, or a film of a metal element constituting the oxide. Or a method of forming an oxide film by introducing oxygen while oxidizing a metal element by a physical vapor deposition method. In order to obtain an amorphous dense and highly flat film, it is preferable to use a sputtering method such as a high frequency sputtering method or a magnetron sputtering method. The thickness of the second oxide film 3 is
A range of 2 nm to 2 μm is appropriate. If the thickness is less than 2 nm, the frequency of the superconducting oxide film reacting with the first silicon oxide film 2 through defects such as pinholes increases, which is not desirable. Becomes less practical because the tendency of the surface flatness to deteriorate is increased. A practically particularly desirable thickness range is 5 to 500 nm.

[実施例] 以下、本発明を実施例により詳細に説明する。[Examples] Hereinafter, the present invention will be described in detail with reference to examples.

実施例 1 3種類のターゲット材料を装着できる高周波スパッタ
装置を用いて、Si基板上に以下の手順で酸化物超伝導薄
膜の形成を行った。基板として3インチ径のSi(100)
ウェハを用いた。ターゲットの1つとしてSiO2を第2の
ターゲットはBeO,MgO,TiO2,ZrO2,HfO2,Sc2O3,および希
土類の酸化物R2O3(R=La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,H
o,Er,Tm,Yb,Lu),SiO2,Al2O3,Ta2O3,SiC,TiC,Si3N4,BN,
MgO・SiO2,BeO・MgO,Ti0.6Zr0.4O2,(Ti0.3Zr0.5H
f0.2)O2,(Y0.8La0.22O3の34種類の中から1個ずつ
選んで使用した。第3のターゲットとしてYBa2Cu4.6OX
なる組成の焼結体を装着した。
Example 1 An oxide superconducting thin film was formed on a Si substrate by the following procedure using a high-frequency sputtering apparatus capable of mounting three types of target materials. 3 inch diameter Si (100) as substrate
A wafer was used. One of the targets is SiO 2 and the second target is BeO, MgO, TiO 2 , ZrO 2 , HfO 2 , Sc 2 O 3 , and a rare earth oxide R 2 O 3 (R = La, Ce, Pr, Nd , Sm, Eu, Gd, Tb, Dy, H
o, Er, Tm, Yb, Lu), SiO 2 , Al 2 O 3 , Ta 2 O 3 , SiC, TiC, Si 3 N 4 , BN,
MgO ・ SiO 2 , BeO ・ MgO, Ti 0.6 Zr 0.4 O 2 , (Ti 0.3 Zr 0.5 H
f 0.2 ) O 2 , (Y 0.8 La 0.2 ) 2 O 3 One of each of 34 types was selected and used. YBa 2 Cu 4.6 O X as the third target
A sintered body having the following composition was mounted.

膜形成に先立ってSi基板を逆スパッタ法でArイオンで
エッチングし、表面の洗浄化を行った。Si基板の半分を
シャッタで覆いながら、SiO2膜を25nmスパッタ蒸着し
た。基板温度:250℃、スパッタ雰囲気:3mTorrAr,膜形成
速度:2nm/minとした。ついでシャッタを開いて第2層膜
を厚さ300nm形成した。基板温度を700℃に上げ3mTorrの
Ar+10%O2雰囲気中でYBa2Cu4.OXターゲットをスパッタ
蒸着し、500nm厚のY−Ba−Cu−O膜を形成した。続い
て1気圧の酸素雰囲気中で成膜後の試料を820℃で1時
間保った後、100℃/hの速度で室温まで冷却した。得ら
れた試料のY−Ba−Cu−O膜の欠陥(剥離やクラッ
ク)、表面の平滑性、超伝導特性のTc,Jcの評価を行っ
た。結果を表1にまとめて示す。欠陥の指標として、O:
剥離やクラックの一切認められなかったもの,△:全面
積の5%以下の領域で剥離やクラックが認められたも
の、×:5%を越える領域で剥離やクラックが存在したも
の、として表わした。表面の平滑性は、○:鏡面状、
△:100倍の光学顕微鏡で検査したとき起伏が認められな
かったもの、×:目視で明らかに曇りや起伏が認められ
たもの、で表した。Jcは70Kにおける臨界電流密度の値
で示した。−印はTcが70Kに達しておらず、測定不能を
示す。
Prior to film formation, the Si substrate was etched with Ar ions by reverse sputtering to clean the surface. While covering half of the Si substrate with a shutter, a 25-nm SiO 2 film was deposited by sputtering. The substrate temperature was 250 ° C., the sputtering atmosphere was 3 mTorrAr, and the film formation speed was 2 nm / min. Next, the shutter was opened to form a second layer film having a thickness of 300 nm. Raise the substrate temperature to 700 ℃ and 3mTorr
It was sputter deposited YBa 2 Cu 4. O X target Ar + 10% O 2 atmosphere, to form the YBa-Cu-O film of 500nm thickness. Subsequently, the sample after film formation was kept at 820 ° C. for 1 hour in an oxygen atmosphere at 1 atm, and then cooled to room temperature at a rate of 100 ° C./h. The Y-Ba-Cu-O film of the obtained sample was evaluated for defects (peeling and cracking), surface smoothness, and Tc and Jc of superconductivity. The results are summarized in Table 1. O:
No peeling or cracking was observed. Δ: Peeling or cracking was observed in an area of 5% or less of the total area. ×: Peeling or cracking was present in an area exceeding 5%. . Surface smoothness: ○: mirror-like,
Δ: No undulation was observed when inspected with a 100-fold optical microscope, ×: Clear clouding or undulation was visually observed. Jc is indicated by the value of the critical current density at 70K. The-mark indicates that Tc did not reach 70K and measurement was impossible.

表1から明らかなように、Si基板と酸化物超伝導電動
膜の間にSiO2からなる第1層とBeO,MgO,TiO2,ZrO2,Hf
o2,Sc2O3,Y2O3,R2O3(R=La,Ce,Pr,Nd,Sm,En,Gd,Tb,D
y,Ho,Er,Tm,Yb,Lu),BeO・MgO,Ti0.6Zr0.4O2,(Ti0.3Zr
0.5Hf0.2)O2,(Y0.8La0.22O3のいずれかの酸化物か
ら成る第2層の2層構造からなる障壁層を設けることに
より,表面平滑性が良く、欠陥も少なく、かつ、良好な
超伝導特性を示す酸化物超伝導薄膜が得られる。これに
対し、第1層のSiO2膜を省いた場合には窒素の液化点
(77K)以上のTcを持つ酸化物超伝導薄膜が得られる場
合もあるが、70KにおけるJcは105A/cm2以下と小さい。
障壁層を2層にした効果は明らかである。また,Si基板
上にSi酸化物以外のBeO,MgO,TiO2などを形成すると膜に
ヒビや剥離などの欠陥が生じ易いことは表1において、
第1層を省いた場合の結果よりも明らかであり、第1層
としてSiの酸化物が必要であることも自明である。
As is clear from Table 1, the first layer made of SiO 2 and BeO, MgO, TiO 2 , ZrO 2 , Hf were placed between the Si substrate and the oxide superconducting electric film.
o 2 , Sc 2 O 3 , Y 2 O 3 , R 2 O 3 (R = La, Ce, Pr, Nd, Sm, En, Gd, Tb, D
y, Ho, Er, Tm, Yb, Lu), BeO ・ MgO, Ti 0.6 Zr 0.4 O 2 , (Ti 0.3 Zr
By providing a barrier layer having a two-layer structure of a second layer made of any one of oxides of 0.5 Hf 0.2 ) O 2 and (Y 0.8 La 0.2 ) 2 O 3 , surface smoothness is good and defects are small, In addition, an oxide superconducting thin film exhibiting good superconducting properties can be obtained. On the other hand, when the SiO 2 film as the first layer is omitted, an oxide superconducting thin film having a Tc higher than the liquefaction point of nitrogen (77 K) may be obtained, but Jc at 70 K is 10 5 A / cm 2 or less.
The effect of using two barrier layers is apparent. Further, BeO other than Si oxide on a Si substrate, MgO, that defects such as cracks and peeling in the film to form and TiO 2 is liable to occur in Table 1,
It is clearer than the result when the first layer is omitted, and it is obvious that the first layer requires an oxide of Si.

実施例 2 実施例1と同じ装置を用いて、同様の条件で、第1層
として50nm厚のSiO2膜、第2層として200nm厚のZrO2
を形成した後、Y−Ba−Cu−OのYの位置をNd,Sm,Eu,G
d,Dy,Ho,Er,Tm,もしくはYbのうち1〜2種以上の元素で
置き換えた酸化物、あるいはBaの一部をSrもしくはCaで
置き換えた酸化物を形成した。熱処理後の薄膜の状態と
超伝導特性を調べたところ、いずれも剥離やクラックは
存在せず、表面の鏡面状で、Tcも77K以上、Jcも105A/cm
2以上の値が得られた。本発明の方法は、MI−MII−Cu−
O系の酸化物薄膜(MI:少なくとも1種の希土類金属、M
II:少なくとも1種のアルカリ土類金属)をSi基板上に
形成するのに有効であることが確認された。
Example 2 Using the same apparatus as in Example 1, under the same conditions and under the same conditions, a 50 nm thick SiO 2 film as the first layer and a 200 nm thick ZrO 2 film as the second layer were formed, and then Y-Ba-Cu- The Y position of O is Nd, Sm, Eu, G
An oxide in which one or more elements of d, Dy, Ho, Er, Tm, or Yb were replaced, or an oxide in which part of Ba was replaced with Sr or Ca was formed. Examination of the state of the thin film after heat treatment and the superconducting properties revealed that there was no peeling or cracking, the surface was mirror-like, Tc was 77K or more, and Jc was 10 5 A / cm.
Values of 2 or more were obtained. The method of the present invention is characterized in that M I -M II -Cu-
O-based oxide thin film (M I : at least one rare earth metal, M
II : at least one alkaline earth metal) was confirmed to be effective on the Si substrate.

また、Si基板の種類を(110)、もしくは(111)と変
えて試みても、いずれも同様の効果が得られ、Siの基板
の方位にほとんど依存しないことも確認された。
In addition, it was confirmed that the same effect was obtained even when the type of the Si substrate was changed to (110) or (111), and that the Si substrate was hardly dependent on the orientation of the Si substrate.

実施例 3 (100)Si基板上に熱酸化法で100nm厚のSiO2膜を形成
した。この基板を2枚に分割し、1枚は真空蒸着装置に
装着して約600℃に加熱しながら300nm厚だけZrO2を電子
ビーム衝撃加熱法で蒸着した。このZrO2膜は多結晶で結
晶粒径は10〜150nmの間に分布していることが後の解析
で判明した。他の1枚の基板はマグネトロンスパッタ装
置に装着し、同様に600℃に加熱しながら50nm/minの速
度でZrO2膜を300nm原形成した。このZrO2膜は後の解析
で非晶質状であることが確認された。これら2種の試料
を高周波スパッタ装置に装着し、試料を600℃に加熱し
ながらEu−Ba−Cu−O膜を600nm原形成し、ついで酸素
雰囲気中で650〜820℃のある温度に2時間保った後、徐
冷し、Eu−Ba−Cu−O系超伝導薄膜を形成した。2種類
の試料の表面はいずれも鏡面状であった。これら試料の
Eu−Ba−Cu−O系超伝導薄膜の構造をX線回折法を電子
顕微鏡で調べた結果とTc,70Kで測定したJcの測定結果を
表2に示す。
Example 3 An SiO 2 film having a thickness of 100 nm was formed on a (100) Si substrate by a thermal oxidation method. This substrate was divided into two, and one was mounted on a vacuum vapor deposition apparatus and heated to about 600 ° C., and ZrO 2 was vapor-deposited to a thickness of 300 nm by electron beam impact heating. Later analysis revealed that this ZrO 2 film was polycrystalline and the crystal grain size was distributed between 10 and 150 nm. The other substrate was mounted on a magnetron sputtering apparatus, and a 300 nm original ZrO 2 film was formed at a rate of 50 nm / min while heating to 600 ° C. in the same manner. This ZrO 2 film was confirmed to be amorphous by a later analysis. These two types of samples were mounted on a high-frequency sputtering apparatus, and while the samples were heated to 600 ° C., an Eu—Ba—Cu—O film was originally formed at 600 nm, and then heated to a certain temperature of 650 to 820 ° C. for 2 hours in an oxygen atmosphere. After keeping the temperature, the mixture was gradually cooled to form a Eu-Ba-Cu-O-based superconducting thin film. The surfaces of the two types of samples were both mirror-like. Of these samples
The structure of the Eu-Ba-Cu-O-based superconducting thin film is shown in Table 2 by X-ray diffractometry using an electron microscope and the Tc and Jc measured at 70K.

表2より明らかなように非晶質状のZrO2膜上に形成し
たEu−Ba−Cu−O膜の方がJcの値が多結晶状のZrO2膜上
に形成した場合に比べ、約102倍向上している。これ
は、超伝導酸化物膜の構造が(001)配向し、膜面と平
行な方向に超伝導電流が流れ易い方向がそろったためと
解釈できる。また、別途行なったEu−Ba−Cu−O膜の成
長過程を調べる実験において、非晶質状のZrO2上では
(001)面を基板と平行に保ってペロブスカイト構造を
持つEu−Ba−Cu−O結晶が核生成し易いためとわかっ
た。この傾向はZrO2以外のMgO,BeOY2O3,HfO2などの酸化
物膜上でも認められた。また、ペロブスカイト構造を共
通に持つ他の超伝導酸化物の場合もEu−Ba−Cu−Oの場
合と同様な効果が期待できることは、薄膜成長機構を考
慮すれば自明である。
As is clear from Table 2, the Eu-Ba-Cu-O film formed on the amorphous ZrO 2 film has a value of Jc which is about the same as that formed on the polycrystalline ZrO 2 film. 10 2 times have improved. This can be interpreted as that the structure of the superconducting oxide film is (001) oriented and the direction in which the superconducting current easily flows is aligned in a direction parallel to the film surface. In another experiment for investigating the growth process of the Eu-Ba-Cu-O film, a Eu-Ba-Cu having a perovskite structure was maintained on the amorphous ZrO 2 while keeping the (001) plane parallel to the substrate. It was found that -O crystals easily formed nuclei. This tendency was also observed on oxide films other than ZrO 2 such as MgO, BeOY 2 O 3 and HfO 2 . It is obvious from the consideration of the thin film growth mechanism that the same effect can be expected in the case of other superconducting oxides having a common perovskite structure as in the case of Eu-Ba-Cu-O.

比較例 1 実施例2と同様であるも、障壁層の第1層のSiO2膜の
厚さを0.4nmとした以外は同様な試料を作製した。繰り
返し同様な実験を行なった結果、約20%の割合で酸化物
超伝導薄膜にヒビや剥離などの欠陥が認められた。
Comparative Example 1 A sample similar to that of Example 2 was produced except that the thickness of the SiO 2 film as the first layer of the barrier layer was changed to 0.4 nm. As a result of repeating the same experiment, defects such as cracks and peeling were observed in the oxide superconducting thin film at a rate of about 20%.

比較例 2 実施例2と同様であるも、障壁層の第2層の酸化物膜
の厚さを1.8nmとした以外は同様の試料を作製した。繰
り返し同様の実験を行なった結果、約40%の割合で酸化
物超伝導薄膜のTcが20K以下に低下する傾向が認められ
た。
Comparative Example 2 A sample similar to that of Example 2 was produced except that the thickness of the oxide film as the second layer of the barrier layer was changed to 1.8 nm. As a result of repeating the same experiment, it was found that the Tc of the oxide superconducting thin film tended to decrease to 20K or less at a rate of about 40%.

[発明の効果] 以上述べたように、本発明によれば半導体分野で有用
なSi基板上に高い臨界温度と高い臨界電流密度を持つ酸
化物系超伝導薄膜を再現性良く形成できる。この様な技
術は優れた特性を持つ酸化物系超伝導材料の用途を拡大
するもので、産業上も有効なものである。
[Effects of the Invention] As described above, according to the present invention, an oxide-based superconducting thin film having a high critical temperature and a high critical current density can be formed on a Si substrate useful in the semiconductor field with good reproducibility. Such a technique expands the use of an oxide-based superconducting material having excellent characteristics and is industrially effective.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明によってSi基板上に形成した酸化物超
伝導薄膜を持つ試料の断面図である。 1……Si基板、2……酸化シリコンから成る第1層膜、
3……酸化物材料から成る第2層膜、4……超伝導酸化
物薄膜。
FIG. 1 is a sectional view of a sample having an oxide superconducting thin film formed on a Si substrate according to the present invention. 1 ... Si substrate, 2 ... First layer film made of silicon oxide,
3... Second layer film made of oxide material, 4... Superconducting oxide thin film.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Si基板と、該Si基板上に形成された酸化シ
リコン膜と、該酸化シリコン膜上に形成されたBeO,MgO
の群、TiO2,ZrO2,HfO2の群、もしくはSc2O3,Y2O3,R2O3
(R:希土類金属)の群のいずれか一の群の中から選ばれ
た少なくとも1種の酸化物からなる酸化物膜と、該酸化
物膜上に形成されたMI−MII−Cu−O系超伝導酸化物薄
膜(MI:少なくとも1種の希土類金属、MII:少なくとも
1種のアルカリ土類金属)を有し、上記酸化物膜は多結
晶状又は非晶質状のいずれかであることを特徴とする超
伝導体。
An Si substrate, a silicon oxide film formed on the Si substrate, and BeO, MgO formed on the silicon oxide film.
Group, TiO 2 , ZrO 2 , HfO 2 group, or Sc 2 O 3 , Y 2 O 3 , R 2 O 3
An oxide film made of at least one oxide selected from the group consisting of (R: rare earth metal), and M I -M II -Cu- formed on the oxide film. An O-based superconducting oxide thin film (M I : at least one rare earth metal, M II : at least one alkaline earth metal), wherein the oxide film is either polycrystalline or amorphous A superconductor characterized by the following.
【請求項2】上記酸化シリコン膜の厚さは1〜500nmの
範囲にあることを特徴とする特許請求の範囲第1項に記
載の超伝導体。
2. The superconductor according to claim 1, wherein said silicon oxide film has a thickness in a range of 1 to 500 nm.
【請求項3】上記酸化物膜の厚さは5〜500nmの範囲に
あることを特徴とする特許請求の範囲第1項又は第2項
に記載の超伝導体。
3. The superconductor according to claim 1, wherein said oxide film has a thickness in a range of 5 to 500 nm.
JP62263794A 1987-10-21 1987-10-21 Superconductor Expired - Lifetime JP2590142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62263794A JP2590142B2 (en) 1987-10-21 1987-10-21 Superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62263794A JP2590142B2 (en) 1987-10-21 1987-10-21 Superconductor

Publications (2)

Publication Number Publication Date
JPH01107419A JPH01107419A (en) 1989-04-25
JP2590142B2 true JP2590142B2 (en) 1997-03-12

Family

ID=17394344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263794A Expired - Lifetime JP2590142B2 (en) 1987-10-21 1987-10-21 Superconductor

Country Status (1)

Country Link
JP (1) JP2590142B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179070A (en) * 1988-04-30 1993-01-12 Sumitomo Electric Industries, Ltd. Semiconductor substrate having a superconducting thin film with a buffer layer in between
US5086035A (en) * 1990-02-06 1992-02-04 Eastman Kodak Company Electrically conductive article (i)
JP5622755B2 (en) * 2012-01-23 2014-11-12 株式会社東芝 Superconducting wire manufacturing apparatus and manufacturing method
CN113684449B (en) * 2021-08-06 2023-09-08 南京波长光电科技股份有限公司 Low-absorption high-power optical fiber laser antireflection film and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450575A (en) * 1987-08-21 1989-02-27 Nec Corp Substrate for electronic device

Also Published As

Publication number Publication date
JPH01107419A (en) 1989-04-25

Similar Documents

Publication Publication Date Title
US6933065B2 (en) High temperature superconducting thick films
JP2664066B2 (en) Superconducting thin film and method for producing the same
US7736761B2 (en) Buffer layer for thin film structures
US7737085B2 (en) Coated conductors
WO2006071542A2 (en) Architecture for coated conductors
US7258927B2 (en) High rate buffer layer for IBAD MgO coated conductors
JP2590142B2 (en) Superconductor
US5252543A (en) Superconducting thin film and wire on a smooth substrate
JPH026394A (en) Superconductive thin layer
JPH01167221A (en) Production of superconducting thin film
JP2702711B2 (en) Manufacturing method of thin film superconductor
JP2545422B2 (en) Composite oxide superconducting thin film and method for producing the same
JP2501609B2 (en) Method for producing complex oxide superconducting thin film
JP2545423B2 (en) Composite oxide superconducting thin film and method for producing the same
JPH01188661A (en) Superconducting thin film of compound oxide and production thereof
JP2544760B2 (en) Preparation method of superconducting thin film
JP2525842B2 (en) Superconducting wire and its manufacturing method
JP2821885B2 (en) Superconducting thin film forming method
JP2577056B2 (en) Preparation method of composite oxide superconducting thin film
JP2913653B2 (en) Oxide superconducting thin film structure
JP2544761B2 (en) Preparation method of superconducting thin film
JPH01164727A (en) Formation of superconducting thin film
JPH0761867B2 (en) Method for producing complex oxide superconducting thin film
JPH01188665A (en) Production of superconducting thin film
JPH0244781A (en) Superconductive element and manufacture thereof