JPS63298920A - Manufacture of membranous superconductor - Google Patents

Manufacture of membranous superconductor

Info

Publication number
JPS63298920A
JPS63298920A JP62132507A JP13250787A JPS63298920A JP S63298920 A JPS63298920 A JP S63298920A JP 62132507 A JP62132507 A JP 62132507A JP 13250787 A JP13250787 A JP 13250787A JP S63298920 A JPS63298920 A JP S63298920A
Authority
JP
Japan
Prior art keywords
thin film
superconductor according
oxygen
film superconductor
composite compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62132507A
Other languages
Japanese (ja)
Other versions
JPH0818912B2 (en
Inventor
Kentaro Setsune
瀬恒 謙太郎
Takeshi Kamata
健 鎌田
Yoshio Manabe
由雄 真鍋
Takashi Hirao
孝 平尾
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62132507A priority Critical patent/JPH0818912B2/en
Publication of JPS63298920A publication Critical patent/JPS63298920A/en
Publication of JPH0818912B2 publication Critical patent/JPH0818912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To make it possible to manufacture a compound membranous superconductor of a good property easily by applying oxygen ions on a specific complex compound membrane attached to the surface of a base body in order to oxidize the metallic main component in the membrane. CONSTITUTION:For the formation of a membranous superconductor, first a complex compound membrane of oxide including A element, B element, and Cu at the mol ratio of elements, 0.5 <= (A+B)/Cu <= 2.5 is attached on a base body in a physical gaseous phase growing method. In this case, A is at least one of Sc, Y, and lanthan family elements, B is at least one of IIa group elements such as Ba, Sr, Ca, Be, and Mg. Then, the complex compound membrane is treated further by oxygen ions which are grown by the discharge of a gas including oxygen. In this case, the base body is heated at a temperature between 400 deg.C and 800 deg.C.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超電導体の製造方法に関するものである。特に
化合物薄膜超電導体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing superconductors. In particular, it relates to a method for manufacturing compound thin film superconductors.

従来の技術 高温超電導体として、A15型2元系化合物として窒化
ニオブ(NbN)やゲルマニウムニオブ(N b s 
G e )などが知られていたが、これらの材料の超電
導転移温度はたかだか24°にであった。′一方、ペロ
ブスカイト系3元化合物は、さらに高い転移温度が期待
され、Ba−La−Cu−0系の高温超電導体が提案さ
れた[ J、 G、 Bend。
Conventional technology As high-temperature superconductors, niobium nitride (NbN) and germanium niobium (N b s ) are used as A15 type binary compounds.
G e ), etc. were known, but the superconducting transition temperature of these materials was at most 24°. 'On the other hand, perovskite-based ternary compounds are expected to have even higher transition temperatures, and Ba-La-Cu-0-based high-temperature superconductors have been proposed [J, G, Bend.

rz and K、A、!1uller、ツァイト シ
ュリフト フェアフィジーク(Ze tshrift 
f Qrphysik B)−Condensed M
atter 64.189−193 (1986) I
oさらに、Y−Ba−Cu−0系がより高温の超電導材
料であることが、最近提案された。(文献)  [M、
 L Wu等。
rz and K, A,! 1uller, Zetshrift Fairphysik
f Qrphysik B)-Condensed M
atter 64.189-193 (1986) I
Additionally, it has recently been proposed that the Y-Ba-Cu-0 system is a higher temperature superconducting material. (Literature) [M,
L Wu et al.

フィジカルレビュー レターズ(Physical R
eview Letters) Vol、58 No9
.908−910 (1987) ]]Y−Ba−Cu
−0の材料の超電導機構の詳細は明らかではないが、転
移温度が液体窒素温度以上に高くなる可能性があり、高
温超電導体として従来の2元系化合物より、より有望な
特性が期上述のように複合化合物被膜を酸素雰囲気中等
で熱処理することにより、超電導の良好な特性を得るこ
とができることにより、その条件設定が難しいことと、
処理するのに長い時間かかることと、更には800℃以
上での高温プロセスのため、高温炉等が必要であるとい
う問題があった。
Physical Review Letters (Physical R
View Letters) Vol, 58 No9
.. 908-910 (1987) ]]Y-Ba-Cu
The details of the superconducting mechanism of -0 materials are not clear, but the transition temperature may be higher than the liquid nitrogen temperature, and the properties mentioned above are more promising than conventional binary compounds as high-temperature superconductors. Although good superconducting properties can be obtained by heat-treating a composite compound film in an oxygen atmosphere, etc., it is difficult to set the conditions.
There are problems in that it takes a long time to process and, furthermore, a high-temperature furnace or the like is required due to the high-temperature process at 800° C. or higher.

問題点を解決するための手段 本発明の製造方法で形成する薄膜超電導体の基本構成は
、基体表面に少(ともA、B、Cuを含む酸化物で、元
素のモル比率が の3元化合物被膜12を付着させたことを特徴としてい
る。本発明者らは、この積の超電導体が、加熱された基
体上に、上記複合化合物被膜を例えば蒸着というプロセ
スで付着させ、さらに酸素イオンを照射することにより
、形成されることを見い出し発明に致ったものである。
Means for Solving the Problems The basic composition of the thin film superconductor formed by the manufacturing method of the present invention is a ternary compound on the surface of the substrate, which is an oxide containing A, B, and Cu, with a molar ratio of the elements. The superconductor of this product is characterized by having a coating 12 deposited thereon. This invention was based on the discovery that it can be formed by doing this.

ここにAはSc、Yおよびランタン系列元素(原子番号
57−71)のうちす(なくとも一種、BはB a r
 S r 。
Here, A is at least one of Sc, Y, and lanthanum series elements (atomic number 57-71), B is Bar
Sr.

Ca + B e * M gなどIIa族元素のうち
の少なくとも一種の元素を示す。
Indicates at least one element of Group IIa elements such as Ca + B e * M g.

作用 本発明にかかる薄膜超電導体の製造方法は、超電導体を
薄膜化している所に大きな特色がある。
Function: The method for producing a thin film superconductor according to the present invention has a major feature in that the superconductor is made into a thin film.

すなわち、薄膜化は超電導体の素材を原子状態という極
微粒子に分解してから基体上に堆積させ、その後酸素イ
オン照射処理を行うので形成された超電導体の組成は本
質的に、従来の焼結体に比べて均質である。したがって
非常に高精度の超電導体が本発明の方法を用いて実現さ
れる。
In other words, thinning involves decomposing the superconductor material into ultrafine particles in the atomic state, depositing them on the substrate, and then irradiating them with oxygen ions, so the composition of the formed superconductor is essentially that of conventional sintering. It is homogeneous compared to the body. Superconductors of very high precision are therefore realized using the method of the invention.

実施例 本発明の実施例を図面とともに説明する。Example Embodiments of the present invention will be described with reference to the drawings.

第1図において、3元化合物被膜12は、例えばスパッ
タリング法で形成する。この場合、基体11は、超電導
を示す3元化合物被膜12の保持を目的としている。こ
の被膜12は通常数100℃の高温で形成し、超電導を
例えば液体窒素温度(−195℃)の低温で動作させる
ため、特に基体11と被膜12の密着性が悪(なり、し
ばしば被膜12が破損されることを本発明者らは確認し
た。さらに本発明者らは、詳細な基体の熱的特性を各種
の材質について調べた結果、基体1熱膨張係数α> 1
0−6/eであれば、上記被膜の破損がなく、実用され
ることを確認した。例えばαく1Q−6/iの石英ガラ
スを基体に用いると、被膜12は無数の亀裂が入り不連
続な被膜となり、実用に供しに(いことを本発明者らは
確認した。
In FIG. 1, a ternary compound film 12 is formed by, for example, a sputtering method. In this case, the substrate 11 is intended to hold a ternary compound coating 12 exhibiting superconductivity. This coating 12 is usually formed at a high temperature of several hundred degrees Celsius, and since the superconductor is operated at a low temperature of, for example, liquid nitrogen temperature (-195 degrees Celsius), the adhesion between the substrate 11 and the coating 12 is particularly poor (and the coating 12 is often The inventors have confirmed that the thermal expansion coefficient α of the substrate 1 is greater than 1 as a result of investigating the detailed thermal characteristics of the substrate for various materials.
It was confirmed that if it was 0-6/e, the coating would not be damaged and could be put to practical use. For example, the present inventors have confirmed that if quartz glass with α of 1Q-6/i is used as the substrate, the coating 12 will have numerous cracks and become a discontinuous coating, making it unsuitable for practical use.

さらに、本発明者らは、第1図の基体11に機能性から
見て、最適の材料があることを見い出した。
Furthermore, the present inventors have discovered that there is an optimal material for the base body 11 shown in FIG. 1 from the viewpoint of functionality.

すなわち、結晶性の高い3元化合物被膜12を基体11
の表面13に形成させるためには、単結晶の基体が有効
である。本発明者らは詳細に最適基体材料を調べた結果
、基体11として、酸化マグネシウム、サファイア(α
−AI203)、スピネル、チタン酸ストロンチウム、
シリコン、ガリウム砒素等の単結晶が有効であることを
確認した。もっとも、これは表面13に効果的に結晶性
の高い被膜12を成長させるためのものであるから、少
なくとも基体表面13が単結晶であればよい。
That is, the highly crystalline ternary compound coating 12 is applied to the substrate 11.
A single crystal substrate is effective for forming it on the surface 13 of. As a result of detailed investigation into the optimal substrate material, the present inventors found that the substrate 11 was made of magnesium oxide, sapphire (α
-AI203), spinel, strontium titanate,
It was confirmed that single crystals such as silicon and gallium arsenide are effective. However, since this is for effectively growing a highly crystalline coating 12 on the surface 13, it is sufficient if at least the substrate surface 13 is a single crystal.

本発明者らは、この種の超電導体を任意の形状例えば円
筒状に加工する場合、基体としては単結晶よりも、所謂
焼結磁器が有効であることを確認するともに、最適の磁
器材料を見い出した。すなわち、磁器基体として、アル
ミナ、酸化マグルシウム、酸化デルコニウム、ステアタ
イト、ホルステライト、ベリリア、スピネル等が基体の
加工等、超電導被膜12の基体11への密着性が最適で
あることを本発明者らは確認した。この場合も単結晶と
同様に、基体の表面さえこの種の磁器で構されていると
よい。
The present inventors have confirmed that so-called sintered porcelain is more effective as a substrate than a single crystal when processing this type of superconductor into an arbitrary shape, such as a cylinder, and have also found the most suitable porcelain material. I found it. In other words, the present inventors have found that alumina, maglucium oxide, derconium oxide, steatite, forsterite, beryllia, spinel, etc. are used as the porcelain substrate to provide optimal adhesion of the superconducting coating 12 to the substrate 11 during processing of the substrate. confirmed. In this case as well, it is preferable that even the surface of the substrate is made of this type of porcelain, as in the case of single crystals.

薄膜超電導体め形成には、まずA−B−Cu−0の複合
化合物被膜をスパッタリング蒸着あるいは熱蒸着例えば
電子ビーム蒸着、レーザビーム蒸着等の物理的気相成長
法で基体上に付着させる。
To form a thin film superconductor, first, a composite compound film of AB-Cu-0 is deposited on a substrate by physical vapor deposition such as sputtering deposition or thermal evaporation, such as electron beam evaporation or laser beam evaporation.

この場合、超電導体A−B−Cu−0は結晶構造や組成
式がまだ明確には決定されていないが、酸素欠損ペロブ
スカイト(A、B)acuao+aともいわれている。
In this case, the superconductor A-B-Cu-0 is also said to be an oxygen-deficient perovskite (A, B) acuao+a, although its crystal structure and composition formula have not yet been clearly determined.

本発明者等は、作製された被膜において元素比率が の範囲にあれば、臨界温度に多少の差があっても超電導
現象が見出されることを確認した。この複圧あるいは減
圧化学的気相成長法、プラズマ化学的気相成長法、光化
学的気相成長法も、成分A。
The present inventors have confirmed that if the element ratio in the produced film is within the range of , superconductivity can be observed even if there is a slight difference in critical temperature. Component A is also used in this double pressure or reduced pressure chemical vapor deposition method, plasma chemical vapor deposition method, and photochemical vapor deposition method.

B、Cuの比を合致させれば、有効であることを本発明
者らは確認した。
The present inventors have confirmed that it is effective if the ratios of B and Cu match.

本発明者らは複合化合物被膜を基体11の表面13に付
着させる場合、基体の最適の温度範囲が存在することを
本発明者らは確認した。すなわち基体最適温度範囲は1
00〜1000℃である。
The present inventors have confirmed that when a composite compound coating is applied to the surface 13 of the substrate 11, there is an optimum temperature range for the substrate. In other words, the optimum temperature range for the substrate is 1
00-1000°C.

なお、100℃以下では、基体表面への複合酸化物被膜
の付着性が悪(なる。また、1000℃以上では複合酸
化物被膜中の成分A、BおよびCuの構造比からのずれ
が大きくなる。
At temperatures below 100°C, the adhesion of the composite oxide film to the substrate surface becomes poor. At temperatures above 1000°C, the deviation from the structural ratio of components A, B, and Cu in the composite oxide film increases. .

さらに、複合化合物被膜を付着させる時の基体の温度は
とりわけ500〜900℃の範囲がこの種の蒸着装置の
機能、複合酸化物被膜の特性の再現性から見て最適であ
ることを本発明者らは確認した。この場合、形成された
複合化合物被膜は、アモルファスあるいは、微結晶から
構成されている。
Furthermore, the present inventors have found that a temperature range of 500 to 900° C. for the substrate when depositing the composite compound film is optimal in terms of the functionality of this type of vapor deposition equipment and the reproducibility of the properties of the composite oxide film. confirmed. In this case, the formed composite compound film is amorphous or composed of microcrystals.

しかしながら意外にもこの種の被膜は半導体的な特性を
示し、超電導は液体He温度(4°K)でも見られない
。又空気中に放電しておくと高抵抗となり非常に不安定
で信頼性のない被膜であることを確認した。
However, surprisingly, this type of coating exhibits semiconducting properties, and no superconductivity is observed even at liquid He temperatures (4°K). It was also confirmed that if discharged in the air, the film would have high resistance, making it extremely unstable and unreliable.

本発明者らはこの種の複合化合物被膜をさらに少なくと
も酸素を含むガスの放電により生成される酸素イオンに
より処理することにより、超電導が発生し、長期的安定
性も大きく向上することを発見した。この場合基体を加
熱することにより超電導特性が改善されることを見い出
した。最適の熱処理温度は400〜800℃であった。
The present inventors have discovered that by further treating this type of composite compound film with oxygen ions generated by discharging a gas containing at least oxygen, superconductivity occurs and long-term stability is greatly improved. In this case, it has been found that superconducting properties can be improved by heating the substrate. The optimum heat treatment temperature was 400-800°C.

これ以上温度になると抵抗率が高くなるとともに、被膜
の特性が不安定になり、急峻な超電導を示さない。
If the temperature is higher than this, the resistivity will increase and the properties of the film will become unstable, and it will not exhibit steep superconductivity.

(具体実施例) サファイア単結晶R面を基体11として用い高周波ブレ
ナーマグネトロンスパッタにより、焼結したYgBaa
cueotaターゲットをArと02の混合ガス雰囲気
でスパッタリング蒸着して、上記基体上に結晶性のY 
z B a 4 Cu e 014被膜として付着させ
層状構造を形成した。
(Specific Example) YgBaa sintered by high-frequency Brenner magnetron sputtering using a sapphire single crystal R-plane as the base 11
A cueota target was sputter-deposited in a mixed gas atmosphere of Ar and 02, and crystalline Y was deposited on the above substrate.
It was deposited as a z B a 4 Cu e 014 coating to form a layered structure.

この場合、ガス圧力は0.5Pa、スパッタリング電力
150W、スパッタリング時間1時間、被膜の膜厚0.
5μ糟、基体温度700℃であった。形成された被膜を
さらに500℃に加熱して酸素イオン処理を行った。5
X10−’Torrの真空槽内で処理時間10分であっ
た。
In this case, the gas pressure was 0.5 Pa, the sputtering power was 150 W, the sputtering time was 1 hour, and the film thickness was 0.5 Pa.
The temperature of the substrate was 700°C. The formed film was further heated to 500° C. and subjected to oxygen ion treatment. 5
The processing time was 10 minutes in a vacuum chamber of X10-'Torr.

第2図は、サファイアR面を基体11に用い、スパッタ
リング蒸着法で主成分がY 2 B a 4 Cu e
014の3元化合物被膜12を付着させた時の実施例に
おける3元化合物被膜12のX線回折スペクトルを示す
。第2図において、スペクトルaは被膜12から得たも
のであり、スペクトルbは超電導を示す構造から得たも
のを示す。同図が示すごと(、被膜スペクトルaはスペ
クトルbと類似し超電導が発生した。
In FIG. 2, a sapphire R-face is used as the substrate 11, and the main component is Y 2 B a 4 Cu e by sputtering vapor deposition.
2 shows an X-ray diffraction spectrum of the ternary compound coating 12 in an example when the ternary compound coating 12 of No. 014 was attached. In FIG. 2, spectrum a is obtained from coating 12, and spectrum b is obtained from a structure exhibiting superconductivity. As shown in the figure (the coating spectrum a is similar to spectrum b, superconductivity occurred).

被膜の超電導転移温度90°にであった。The superconducting transition temperature of the coating was 90°.

この実施例では被膜12の膜厚は0.5μ惰であるが、
膜厚は0.1μmかそれ以下の薄い場合、10μ回以上
の厚い場合も超電導が発生することを確認した。
In this example, the film thickness of the coating 12 is 0.5μ,
It was confirmed that superconductivity occurs when the film thickness is as thin as 0.1 μm or less, and when it is as thick as 10 μm or more.

本発明者らは、サファイア以外の結晶性基体についての
有効性を詳細に実験的に調べた。酸化マグネシウム、ス
ピネル単結晶基体上に、Y2Ba4Cu a O+ a
構造の被膜を、サファイア単結晶の場合と同様にスパッ
タリング蒸着法で付着させ、これらの被膜を本発明の酸
素イオン処理を行うことによりいずれも超電導を示すこ
とが確認された。
The present inventors experimentally investigated in detail the effectiveness of crystalline substrates other than sapphire. Magnesium oxide, Y2Ba4Cu a O+ a on spinel single crystal substrate
It was confirmed that by depositing structural films by the sputtering deposition method as in the case of sapphire single crystals and subjecting these films to the oxygen ion treatment of the present invention, they all exhibit superconductivity.

また、チタン酸ストロンチウム、シリコン、ガリウム砒
素単結晶についても同様の結果が得られた。
Similar results were also obtained for strontium titanate, silicon, and gallium arsenide single crystals.

本発明の超電導体は結晶構造が複雑でまだ良(分かって
いない。単結晶基体に基体温度をエピタキシャル温度以
上にあげて、単結晶性を高めると正方晶ペロブスカイト
構造が生成し易く、再現性よく超電導体が得られない場
合が多い。したがって、本発明の実施例に述べたごと(
、基体温度はむしろ低い範囲に選びペロブスカイトない
しは微結晶構造を含む複合化合物被膜を形成した後熱処
理により結晶化し酸素イオン処理する方が再現性よ(超
電導体が得られることを本発明者らは実験的に確認した
The superconductor of the present invention has a complex crystal structure and is not yet well understood.If the substrate temperature is raised to above the epitaxial temperature in a single crystal substrate to increase the single crystallinity, a tetragonal perovskite structure is easily formed, with good reproducibility. In many cases, superconductors cannot be obtained. Therefore, as described in the embodiments of the present invention (
However, it is more reproducible to select a substrate temperature in a low range, form a composite compound film containing perovskite or microcrystalline structure, crystallize it by heat treatment, and then treat it with oxygen ions (the inventors have experimentally demonstrated that a superconductor can be obtained). I confirmed it.

この場合、単結晶構造の基体は熱処理を行うと被膜の固
相エピタキシャル成長を助は有効である。特に基体上に
アモルファス状態の被膜をあらかじめ形成し、これを熱
処理すると結晶性基体表面により効果的に結晶性の被膜
が固相エピタキシャルし、その後被膜形成装置の真空を
やふることな(引き続き本発明の酸素イオン処理を行う
ことが超電導特性の優れた薄膜の形成に有効であること
を本発明者らは確認した。なお、超電導被膜の結晶性が
特に要求されない場合(急峻な超電導転位が不要の時)
は、多結晶の磁器基体が有効である。
In this case, it is effective to heat-treat the single-crystal structure substrate to facilitate solid-phase epitaxial growth of the film. In particular, by forming an amorphous film on a substrate in advance and heat-treating it, the crystalline film is effectively solid-phase epitaxially formed on the surface of the crystalline substrate. The present inventors have confirmed that oxygen ion treatment of Time)
A polycrystalline porcelain substrate is effective.

この種の酸化物被膜のスパッタリング蒸着では例えばA
rと02との混合ガスをスパッタリングガスに用いる。
In sputtering deposition of this type of oxide film, for example, A
A mixed gas of r and 02 is used as the sputtering gas.

また実験的に、Ar、Xe、Ne、Krのような不活性
ガスあるいはこれらの不活性ガスの混合ガスがスパッタ
リングガスとして有効であることを本発明者らは確認し
た。
Additionally, the present inventors have experimentally confirmed that inert gases such as Ar, Xe, Ne, and Kr, or mixed gases of these inert gases, are effective as sputtering gases.

スパッタリング蒸着方式も、高周波二極スパッタ、直流
二極スパッタ、マグネトロンスパッタいずれも有効であ
ることを本発明者らは確認した。
The present inventors have confirmed that all sputtering vapor deposition methods, such as high-frequency bipolar sputtering, direct current bipolar sputtering, and magnetron sputtering, are effective.

特に直流スパッタの場合、スパッタリングターゲットの
抵抗率を10−3Ωcm+以下に低(する事が必要で、
これ以上の抵抗率では、充分なスパッタリング放電が発
生しない。なお、ターゲットの抵抗率の調整は通常ター
ゲットの焼結条件によって行う。
Especially in the case of DC sputtering, it is necessary to lower the resistivity of the sputtering target to below 10-3 Ωcm+.
If the resistivity is higher than this, sufficient sputtering discharge will not occur. Note that the resistivity of the target is usually adjusted by adjusting the sintering conditions of the target.

特にこの種の装置では、直流スパッタがスパッタ電力等
の精密制御に有効であり、また直流マグネトロンスパッ
タ、あるいは直流マグネトロンスパッタガンなどが特に
有効であることを本発明者らは確認した。
Particularly in this type of apparatus, the present inventors have confirmed that DC sputtering is effective for precise control of sputtering power, etc., and that DC magnetron sputtering or a DC magnetron sputter gun is particularly effective.

上述のような作成方法により得られた複合化合物被膜に
対して酸素処理を第3図、第4図、第5図の構成の装置
を用いて行った。
Oxygen treatment was performed on the composite compound film obtained by the above-described method using an apparatus having the configuration shown in FIGS. 3, 4, and 5.

まず第3図のイオン源31に酸素ガスあるいは酸素を含
む混合ガスを導入し、このガスをはさんで対向した電極
32.33に高周波信号を印加してプラズマを発生させ
る。このプラズマ中に磁場を形成するたの磁場発生源3
4を配置し、効率よく発生させた酸素イオンを、複合化
合物被膜を形成した基板35を配置した基板台36と上
記イオン源のプラズマの間に電圧を印加することにより
、酸素イオンをイオン源より引き出し、基板台36の基
板11上の複合化合物被膜12に照射する。この時基板
はヒータ37により400℃〜800℃に加熱すること
により酸素イオン処理時間が短縮され被膜の超電導特性
が向上することを発明者らは見出した。又、プラズマと
特性試料台の間に印加する電圧が10KV以下の場合に
は被膜12の表面はスパッタリングされるが、被膜内部
に対して効果的に酸素イオン処理が行えることを確認し
た。
First, oxygen gas or a mixed gas containing oxygen is introduced into the ion source 31 shown in FIG. 3, and a high frequency signal is applied to electrodes 32 and 33 facing each other with this gas in between to generate plasma. Magnetic field generation source 3 for forming a magnetic field in this plasma
By applying a voltage between the substrate table 36 on which the substrate 35 on which the composite compound film is formed and the plasma of the ion source are placed, oxygen ions are generated efficiently from the ion source. The composite compound coating 12 on the substrate 11 on the substrate stand 36 is irradiated. At this time, the inventors have discovered that by heating the substrate to 400° C. to 800° C. with the heater 37, the oxygen ion treatment time can be shortened and the superconducting properties of the film can be improved. Furthermore, it has been confirmed that when the voltage applied between the plasma and the characteristic sample stage is 10 KV or less, the surface of the coating 12 is sputtered, but the interior of the coating can be effectively treated with oxygen ions.

第4図は真空槽41内に酸素ガスあるいは酸素を含む混
合ガスを導入し、このガスにマイクロ波を照射して放電
させプラズマを発生させ、プラズマに磁場42を印加し
て、酸素イオンのイオン化効率を上げたものをイオン源
として用いたものである。この場合通常マイクロ波源4
3には2.45GHzのマイクロ波を使用し磁場強度を
875ガウス程度にすると電子のサイクロトロン共鳴が
生じるので酸素イオン化の効率が上がる。このイオン源
より引き出された酸素イオンを試料台36上に配置され
た複合化合物被膜に照射する構造となっている。この場
合マイクロ波により効率よくイオン化された高エネルギ
ーの酸素イオンが複合化合物被膜の効率的に酸化し超電
導特性を向上させることを見い出した。
FIG. 4 shows that oxygen gas or a mixed gas containing oxygen is introduced into a vacuum chamber 41, this gas is irradiated with microwaves to generate a discharge, and a magnetic field 42 is applied to the plasma to ionize oxygen ions. An ion source with increased efficiency is used as an ion source. In this case, usually the microwave source 4
In 3, when microwaves of 2.45 GHz are used and the magnetic field strength is set to about 875 Gauss, electron cyclotron resonance occurs, which increases the efficiency of oxygen ionization. The structure is such that oxygen ions extracted from this ion source are irradiated onto the composite compound coating placed on the sample stage 36. In this case, we discovered that high-energy oxygen ions efficiently ionized by microwaves efficiently oxidize the composite compound film, improving its superconducting properties.

これ以外にも真空槽内に酸素ガスあるいは酸素を含む混
合ガスを導入し、このガスに高周波を平行電極に印加し
て放電させ、この放電プラズマ中に複合化合物被膜を配
置して、酸素処理することも出来る。この方法により発
明者らは被膜の超電導特性の向上することを確認した。
In addition to this, oxygen gas or a mixed gas containing oxygen is introduced into the vacuum chamber, high frequency waves are applied to the parallel electrodes to cause a discharge in this gas, and a composite compound film is placed in this discharge plasma for oxygen treatment. You can also do that. The inventors confirmed that this method improves the superconducting properties of the coating.

しかしこの方法では被膜にイオン以外が照射され表面状
態を変化させるので上述の酸素処理方法がより好ましい
。この理由で数10KV以上の加速電圧を用いる通常の
イオン注入技術による酸素処理等も十分効果のあること
を確認した。
However, in this method, the coating is irradiated with a substance other than ions, changing the surface condition, so the above-mentioned oxygen treatment method is more preferable. For this reason, it has been confirmed that oxygen treatment using ordinary ion implantation technology using an accelerating voltage of several tens of kilovolts or higher is sufficiently effective.

この種の被膜の結晶構造など詳細な特性は、基体上に被
膜が拘束されているため、被膜内には通常の焼結体では
存在しない様な大きな歪とか欠陥が存在する。このため
、焼結体の製造方法から被膜の製造方法を類推できるも
のでない。なお、被膜の熱処理の物理的な意味の詳細は
明らかではないが、おおよそつぎにように考えられる。
The detailed characteristics of this type of coating, such as its crystal structure, are such that because the coating is constrained on the substrate, there are large strains and defects within the coating that do not exist in ordinary sintered bodies. For this reason, it is not possible to infer the method of manufacturing the coating from the method of manufacturing the sintered body. Although the details of the physical meaning of the heat treatment of the film are not clear, it can be roughly considered as follows.

すなわち、スパッタリング蒸着等で基体上に付着させた
複合化合物被膜では、(A、B)acu60zという化
合物を形成していない。この場合、例えばBCubs正
方晶のペロブスカイト構造のネットワーク中にA元素の
酸化物が分散した複合酸化物を形成している。超電導を
示す構造の発生は被膜の酸化処理に関連する。 この場
合本発明の被膜では、50KV以上の注入電圧が損傷の
少ない処理を可能にすることが判った。
That is, the compound (A, B) acu60z is not formed in the composite compound film deposited on the substrate by sputtering vapor deposition or the like. In this case, for example, a complex oxide is formed in which the oxide of element A is dispersed in a BCubs tetragonal perovskite structure network. The generation of structures exhibiting superconductivity is related to the oxidation treatment of the coating. In this case, it has been found that for the coatings of the invention, injection voltages of 50 KV or higher allow for less damaging processing.

以上のような、酸素処理方法において複合化合物被膜に
酸素イオンを照射すると同時に500nm以下の短波長
の光線を照射することにより、酸素処理の効率を向上さ
せることが可能であることを見い出した。特に、紫外線
照射によるとその効果が大なることを確認した。さらに
この酸素処理に先たち水素イオンを同様の方法で発生さ
せて複合化合物被膜に照射すると酸素処理の効果がより
向上することを見い出した。この場合被膜を300〜6
00℃に加熱すると水素イオンの効果が太き(なること
も確認した。つまりこれら酸素イオン及び水素イオンの
処理により複合化合物被膜の超電導特性が改善され、信
頼性、長期安定性も著しく改善された。
It has been found that in the above oxygen treatment method, the efficiency of oxygen treatment can be improved by irradiating the composite compound film with oxygen ions and simultaneously irradiating it with a light beam with a short wavelength of 500 nm or less. In particular, it was confirmed that the effect of ultraviolet irradiation was greater. Furthermore, we have discovered that the effect of oxygen treatment can be further improved if hydrogen ions are generated in a similar manner and irradiated onto the composite compound film prior to this oxygen treatment. In this case, the coating is 300~6
It was also confirmed that the effect of hydrogen ions becomes stronger when heated to 00°C. In other words, treatment with these oxygen ions and hydrogen ions improves the superconducting properties of the composite compound film, and also significantly improves reliability and long-term stability. .

この種の3元化合物超電導体(A、B)acue01番
の構成元素AおよびBの変化による超電導特性の変化の
詳細は明らかではない。ただAは、3価、Bは2価を示
しているのは事実ではある。A元素としてYについて例
をあげて説明したが、SCやLa、さらにランタン系列
の元素(原子番号57〜71)でも、超電導転移温度が
変化する程度で本質的な発明の特性を変えるものではな
い。
The details of changes in superconducting properties due to changes in constituent elements A and B of this type of ternary compound superconductor (A, B) acue01 are not clear. However, it is true that A indicates trivalence and B indicates divalence. The explanation has been given using an example of Y as element A, but SC, La, and even lanthanum series elements (atomic numbers 57 to 71) change the superconducting transition temperature, but do not change the essential characteristics of the invention. .

また、B元素においても、Sr、Ca、Ba等IIa族
元素の変化は超電導転移温度を10°に程度変化させる
が、本質的に本発明の特性を変えるものではない。
Also, in the B element, changes in Group IIa elements such as Sr, Ca, and Ba change the superconducting transition temperature by about 10°, but this does not essentially change the characteristics of the present invention.

発明の効果 とりわけ1本発明にかかる超電導体は、超電導体を薄膜
化して酸素イオン処理している所に大きな特色がある。
Effects of the Invention Particularly, the superconductor according to the present invention has a major feature in that the superconductor is made into a thin film and treated with oxygen ions.

すなわち、薄膜化は超電導体の素材を原子状態という極
微粒子に分解してから、基体上に堆積させるから、形成
された超電導体の組成は本質的に、従来の焼結体に比べ
て均質である。さらに通常行われている熱によるアニー
ルに比べて本発明による酸素イオン処理は制御性が良好
で短時間処理が可能である。したがって、非常に高精度
の超電導体が本発明で実現される。
In other words, in thin film formation, the superconductor material is decomposed into ultrafine particles in the atomic state and then deposited on the substrate, so the composition of the formed superconductor is essentially more homogeneous than that of conventional sintered bodies. be. Furthermore, compared to the commonly used thermal annealing, the oxygen ion treatment according to the present invention has better controllability and can be performed in a shorter time. Therefore, a superconductor with very high precision is realized with the present invention.

以上の説明のごとく本発明の薄膜超電導体の製造方法に
よると、例えば結晶性基体上に薄膜状で形成されるので
焼結体より本質的により精度が高い上SiあるいはGa
Asなどのデバイスとの集積化が可能であるとともに、
ジョセフソン素子など各種の超電導デバイスの製造に実
用される。特にこの種の化合物超電導体の転移温度が室
温になる可能性もあり、従来の実用の範囲は広(、本発
明の工業的価値は高い。
As explained above, according to the method for producing a thin film superconductor of the present invention, it is formed in the form of a thin film on a crystalline substrate, so it is essentially more accurate than a sintered body, and is made of Si or Ga.
It is possible to integrate devices such as As, and
It is used in the production of various superconducting devices such as Josephson elements. In particular, the transition temperature of this type of compound superconductor may be room temperature, so the range of conventional practical use is wide (and the industrial value of the present invention is high).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の薄膜超電導体の製造方法で
形成した薄膜超電導体の基本構成図、第2図は本発明の
薄膜超電導体の基本特性図、第3図、第4図は本発明に
用いるイオン処理装置の概略構成図である。 11・・・基体、12・・・3元化合物被膜、31・・
・イオン源。 代理人の氏名 弁理士 中尾敏男 ほか1名第!図
FIG. 1 is a basic configuration diagram of a thin film superconductor formed by a method for producing a thin film superconductor according to an embodiment of the present invention, FIG. 2 is a basic characteristic diagram of the thin film superconductor of the present invention, FIGS. 3 and 4 1 is a schematic configuration diagram of an ion processing apparatus used in the present invention. 11... Substrate, 12... Ternary compound coating, 31...
・Ion source. Name of agent: Patent attorney Toshio Nakao and 1 other person! figure

Claims (16)

【特許請求の範囲】[Claims] (1)A元素、B元素およびCuを含む酸化物で、元素
のモル比率が 0.5≦(A+B)/Cu≦2.5 で構成される複合化合物被膜に対し、酸素イオンを照射
して前記被膜中の金属主成分を酸化することを特徴とす
る薄膜超電導体の製造方法。 ここに、AはSc、Yおよびランタン系列元素(原子番
号57〜71)のうち少なくとも一種、BはIIa族元素
のうちの少なくとも一種の元素を示す。
(1) Oxygen ions are irradiated onto a composite compound film consisting of an oxide containing element A, element B, and Cu, with a molar ratio of elements of 0.5≦(A+B)/Cu≦2.5. A method for producing a thin film superconductor, comprising oxidizing the main metal component in the coating. Here, A represents at least one element among Sc, Y, and lanthanum series elements (atomic numbers 57 to 71), and B represents at least one element among group IIa elements.
(2)酸素イオン照射時の複合化合物被膜を加熱するこ
とを特徴とする特許請求の範囲第1項記載の薄膜超電導
体の製造方法。
(2) The method for producing a thin film superconductor according to claim 1, which comprises heating the composite compound film during oxygen ion irradiation.
(3)酸素イオン源として、少なくとも酸素を含むガス
の真空槽内での放電により生成したプラズマを用いるこ
とを特徴とする特許請求の範囲第1項記載の薄膜超電導
体の製造方法。
(3) The method for manufacturing a thin film superconductor according to claim 1, wherein plasma generated by discharging a gas containing at least oxygen in a vacuum chamber is used as the oxygen ion source.
(4)酸素イオン源装置として、マイクロ波を用いたプ
ラズマ分解によるプラズマ処理装置を用いることを特徴
とする特許請求の範囲第3項記載の薄膜超電導体の製造
方法。
(4) The method for manufacturing a thin film superconductor according to claim 3, characterized in that a plasma processing device using plasma decomposition using microwaves is used as the oxygen ion source device.
(5)電子サイクロトロン共鳴を用いることを特徴とす
る特許請求の範囲第4項記載の薄膜超電導体の製造方法
(5) The method for manufacturing a thin film superconductor according to claim 4, characterized in that electron cyclotron resonance is used.
(6)真空槽内での放電により生成した酸素イオンをこ
の真空槽内のプラズマと複合化合物被膜を設置した試料
台との間に電圧を印加して加速し照射することを特徴と
する特許請求の範囲第3項記載の薄膜超電導体の製造方
法。
(6) A patent claim characterized in that oxygen ions generated by electric discharge in a vacuum chamber are accelerated and irradiated by applying a voltage between the plasma in the vacuum chamber and a sample stage on which a composite compound coating is installed. A method for producing a thin film superconductor according to item 3.
(7)酸素イオン照射時の複合化合物被膜を400℃か
ら800℃以下に加熱することを特徴とする特許請求の
範囲第2項記載の薄膜超電導体の製造方法。
(7) The method for manufacturing a thin film superconductor according to claim 2, characterized in that the composite compound film during oxygen ion irradiation is heated from 400°C to 800°C or less.
(8)酸素ガスに高周波電圧を印加して生成したプラズ
マと試料台の間に所定の電位に設置した電極を設置して
酸素イオンを照射することを特徴とする特許請求の範囲
第6項記載の薄膜超電導体の製造方法。
(8) An electrode set at a predetermined potential is installed between the plasma generated by applying a high frequency voltage to oxygen gas and the sample stage, and irradiation with oxygen ions is described in claim 6. A method for producing thin film superconductors.
(9)プラズマと試料台との間に10KV以下の直流電
圧を印加することを特徴とする特許請求の範囲第6項記
載の薄膜超電導体の製造方法。
(9) The method for manufacturing a thin film superconductor according to claim 6, characterized in that a DC voltage of 10 KV or less is applied between the plasma and the sample stage.
(10)酸素ガスに高周波電圧を印加して生成したプラ
ズマ中に複合化合物被膜を設置したことを特徴とする特
許請求の範囲第6項記載の薄膜超電導体の製造方法。
(10) A method for manufacturing a thin film superconductor according to claim 6, characterized in that the composite compound coating is placed in plasma generated by applying a high frequency voltage to oxygen gas.
(11)酸素イオンの照射と同時に光線を照射すること
を特徴とする特許請求の範囲第3項記載の薄膜超電導体
の製造方法。
(11) The method for producing a thin film superconductor according to claim 3, characterized in that the light beam is irradiated at the same time as the oxygen ion irradiation.
(12)酸素イオンの照射と同時に紫外線を照射するこ
とを特徴とする特許請求の範囲第11項記載の薄膜超電
導体の製造方法。
(12) The method for manufacturing a thin film superconductor according to claim 11, characterized in that ultraviolet rays are irradiated simultaneously with irradiation of oxygen ions.
(13)複合化合物被膜を形成した後同一の装置により
引き続き酸素イオン照射を行うことを特徴とする特許請
求の範囲第1項記載の薄膜超電導体の製造方法。
(13) The method for producing a thin film superconductor according to claim 1, wherein oxygen ion irradiation is performed successively using the same device after forming the composite compound film.
(14)酸素イオン源と試料台の間に50KV以上の電
圧を印加することを特徴とする特許請求の範囲第6項記
載の薄膜超電導体の製造方法。
(14) The method for manufacturing a thin film superconductor according to claim 6, characterized in that a voltage of 50 KV or more is applied between the oxygen ion source and the sample stage.
(15)水素を含んだガスを放電させ水素イオンを複合
化合物被膜に照射することを特徴とする特許請求の範囲
第1項記載の薄膜超電導体の製造方法。
(15) A method for producing a thin film superconductor according to claim 1, which comprises discharging a hydrogen-containing gas and irradiating the composite compound coating with hydrogen ions.
(16)複合化合物被膜の温度を400℃〜600℃と
したことを特徴とする特許請求の範囲第15項記載の薄
膜超電導体の製造方法。
(16) The method for producing a thin film superconductor according to claim 15, characterized in that the temperature of the composite compound coating is 400°C to 600°C.
JP62132507A 1987-05-28 1987-05-28 Method of manufacturing thin film superconductor Expired - Fee Related JPH0818912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62132507A JPH0818912B2 (en) 1987-05-28 1987-05-28 Method of manufacturing thin film superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62132507A JPH0818912B2 (en) 1987-05-28 1987-05-28 Method of manufacturing thin film superconductor

Publications (2)

Publication Number Publication Date
JPS63298920A true JPS63298920A (en) 1988-12-06
JPH0818912B2 JPH0818912B2 (en) 1996-02-28

Family

ID=15082971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62132507A Expired - Fee Related JPH0818912B2 (en) 1987-05-28 1987-05-28 Method of manufacturing thin film superconductor

Country Status (1)

Country Link
JP (1) JPH0818912B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63245829A (en) * 1987-03-31 1988-10-12 Sumitomo Electric Ind Ltd Manufacture of oxide superconductive thin film
JPS63261626A (en) * 1987-04-20 1988-10-28 Nissin Electric Co Ltd Manufacture of superconductive thin film
JPS63261770A (en) * 1987-04-18 1988-10-28 Semiconductor Energy Lab Co Ltd Manufacture of superconducting device
JPS63268087A (en) * 1987-04-27 1988-11-04 Hitachi Ltd Memory medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63245829A (en) * 1987-03-31 1988-10-12 Sumitomo Electric Ind Ltd Manufacture of oxide superconductive thin film
JPS63261770A (en) * 1987-04-18 1988-10-28 Semiconductor Energy Lab Co Ltd Manufacture of superconducting device
JPS63261626A (en) * 1987-04-20 1988-10-28 Nissin Electric Co Ltd Manufacture of superconductive thin film
JPS63268087A (en) * 1987-04-27 1988-11-04 Hitachi Ltd Memory medium

Also Published As

Publication number Publication date
JPH0818912B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
JP2923372B2 (en) Manufacturing method of oxide superconductor film
US4874741A (en) Non-enhanced laser evaporation of oxide superconductors
JPS63224116A (en) Manufacture of thin film superconductor
JPS63239742A (en) Manufacture for film superconductor
JPH01208327A (en) Production of thin film of superconductor
JPH0825742B2 (en) How to make superconducting material
JPS63298920A (en) Manufacture of membranous superconductor
JPS63299019A (en) Manufacture of thin film superconductive material
JPH06291375A (en) Manufacture of thin film superconductor and its manufacture
JP2702711B2 (en) Manufacturing method of thin film superconductor
JPH01246142A (en) Production of thin film superconductor
JPH01286914A (en) Production of superconductor of thin film
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
JP2533233B2 (en) Manufacturing method of oxide superconducting thin film
JPH01246132A (en) Production of thin film superconductor
JPH01298005A (en) Production of oxide-based superconductor
JPS63292524A (en) Manufacture of superconductive film
JPH01112614A (en) Manufacture of super conductive film
JPH01275406A (en) Production of superconductor structure
JPH05194097A (en) Production of thin-film electric conductor
JPH05194095A (en) Production of thin-film electric conductor
JPH01239004A (en) Oxide high-temperature superconductor and thin film superconductor therefrom and sputtering target therefor
JPH06280018A (en) Method and device for production of thin film superconductor
JPH05319820A (en) Production of thin film oxide electric conducting body
JPH01298006A (en) Production of oxide-based superconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees