JPH01201008A - Production of thin film of oxide superconductor - Google Patents
Production of thin film of oxide superconductorInfo
- Publication number
- JPH01201008A JPH01201008A JP63025192A JP2519288A JPH01201008A JP H01201008 A JPH01201008 A JP H01201008A JP 63025192 A JP63025192 A JP 63025192A JP 2519288 A JP2519288 A JP 2519288A JP H01201008 A JPH01201008 A JP H01201008A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- base material
- superconducting thin
- heating
- base plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 71
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000002887 superconductor Substances 0.000 title abstract description 12
- 239000000463 material Substances 0.000 claims abstract description 64
- 238000010438 heat treatment Methods 0.000 claims abstract description 33
- 238000001816 cooling Methods 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 abstract description 24
- 239000001301 oxygen Substances 0.000 abstract description 23
- 239000010408 film Substances 0.000 abstract description 22
- 238000000034 method Methods 0.000 abstract description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 16
- 239000013078 crystal Substances 0.000 abstract description 13
- 238000004544 sputter deposition Methods 0.000 abstract description 11
- 230000005611 electricity Effects 0.000 abstract description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 4
- 239000010935 stainless steel Substances 0.000 abstract description 3
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 3
- 229910045601 alloy Inorganic materials 0.000 abstract description 2
- 239000000956 alloy Substances 0.000 abstract description 2
- 229910000856 hastalloy Inorganic materials 0.000 abstract description 2
- 229910052759 nickel Inorganic materials 0.000 abstract description 2
- 229910009203 Y-Ba-Cu-O Inorganic materials 0.000 abstract 1
- 150000002500 ions Chemical class 0.000 description 29
- 239000000758 substrate Substances 0.000 description 18
- -1 'l'm Inorganic materials 0.000 description 8
- 238000007796 conventional method Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000000737 periodic effect Effects 0.000 description 6
- 239000000470 constituent Substances 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910052699 polonium Inorganic materials 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
本発明は、ジョセフソン素子、超電導記憶素子等の超電
導デバイスあるいは超電導導体などとして適用可能な酸
化物超電導薄膜の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a method for producing an oxide superconducting thin film that can be used as a superconducting device such as a Josephson element or a superconducting memory element, or as a superconducting conductor.
「従来の技術」
近年、常電導状態から超電導状態に転位する臨界温度(
Tc)が液体窒素温度を超える高い値を示す酸化物系の
超電導体か発見されている。"Conventional technology" In recent years, the critical temperature at which the normal conducting state transitions to the superconducting state (
An oxide-based superconductor has been discovered that exhibits a high value of Tc) exceeding the temperature of liquid nitrogen.
従来、この種の酸化物超電導体からなる薄膜を製造する
方法として、例えば、真空蒸着法、スパッタリング法、
M I3 E (分子線エビタキー)法、CVD(化学
気相成長)法、IV l) (イオン気相成長)法など
の6種の成膜法が知られている。そして、このような成
膜法は、いずれら1Torr以下の低圧下において行な
われ、しかも、薄膜中に酸素をhtt給することを目的
として、その雰囲気を酸素ガス雰囲気、あるいは、酸素
ガスと不活性ガス雰囲気などの、見合ガス雰囲気として
いる。Conventionally, methods for producing thin films made of this type of oxide superconductor include, for example, vacuum evaporation, sputtering,
Six types of film forming methods are known, including the M I3 E (molecular beam epitaxy) method, the CVD (chemical vapor deposition) method, and the IV l) (ionic vapor deposition) method. These film forming methods are all performed under low pressure of 1 Torr or less, and in order to supply oxygen into the thin film, the atmosphere is an oxygen gas atmosphere or an oxygen gas atmosphere and an inert atmosphere. A gas atmosphere, such as a gas atmosphere, is used.
ところが前述の従来方法においては、雰囲気中の酸素の
分圧が低いことから、基体上に形成される膜体の結晶中
に所望量の酸素が導入されにくく、その結晶組成が化学
量論組成がらずれてしまう問題があり、臨界電流密度な
どの超電導特性が低い膜体が生成される傾向があった。However, in the conventional method described above, since the partial pressure of oxygen in the atmosphere is low, it is difficult to introduce the desired amount of oxygen into the crystal of the film formed on the substrate, and the crystal composition differs from the stoichiometric composition. There was a problem of misalignment, and a film body with low superconducting properties such as critical current density tended to be produced.
そこで従来、成膜時あるいは成膜後において、膜体を酸
素雰囲気中において600〜l OOO’C程度に加熱
する熱処理を施して膜体の結晶構造を整え、酸素濃度を
調節して膜体の超電導特性を向上さ什る処理を行うよう
にしている。Conventionally, during or after film formation, the film body is heated to about 600 to 1 OOO'C in an oxygen atmosphere to adjust the crystal structure of the film body, and the oxygen concentration is adjusted to improve the film body. Treatment is being carried out to improve superconducting properties.
前述の加熱処理を行うには、例えば第3図に示すように
、スパッタリングターゲット1に対向して配置された基
板ホルダ2の内部に加熱ヒータ3を設け、基板ホルダ2
に装着した基板4を加熱できるように構成し、この加熱
ヒータ3により基板4を介して膜体を加熱するようにし
ている。To perform the above-mentioned heat treatment, for example, as shown in FIG.
The heater 3 is configured to be able to heat the substrate 4 mounted on the substrate 4, and the film body is heated via the substrate 4 by the heater 3.
また、重連の加熱処理を行う他の方法として、真空チャ
ンバの内部に基板を設置し、この基板上の膜体に対し、
真空チャンバに設けた透明窓を通して真空チャンバの外
部から赤外線を照射して膜体を加熱する方法、あるいは
、真空チャンバの内部に赤外線ランプを設け、この赤外
線ランプにより膜体を加熱する方法などが知られている
。In addition, as another method of performing multiple heat treatment, a substrate is placed inside a vacuum chamber, and the film body on this substrate is
There are methods that heat the film body by irradiating infrared rays from outside the vacuum chamber through a transparent window installed in the vacuum chamber, or methods that heat the film body with an infrared lamp provided inside the vacuum chamber. It is being
[発明が解決しようとする課題」
前記加熱ヒータ3を用いて行う従来方法においては、酸
素の存在ずろ雰囲気で加熱ヒータ3を使用するために加
熱ヒータ3の寿命が短くなる問題がある。また、基板を
十分高温に加熱するためには、熱容単の大きな加熱ヒー
タ3を使用する必要があるが、加熱ヒータ3の熱容爪が
大きい場合、加熱後に超電導薄膜を1冷する際に、通電
を停止したにもかかわらず加熱ヒータ3が余熱を発1牧
させるために、冷却速度を高めることができない問題が
あり、成膜後に超電導特性が劣化する傾向があった。こ
のため従来、超電導薄膜を形成した後に別工程で超電導
薄膜に熱処理を施し、超電導薄膜の結晶構造を整え、酸
素濃度を調整する必要があった。更に加熱ヒータ3を用
いて加熱した場合、加熱ヒータ3の構成材料の一部が加
熱中に蒸発し、基板4上の超電導薄膜に不純物として混
入し、超電導薄膜の超電導特性を劣化さける問題があっ
た。[Problems to be Solved by the Invention] In the conventional method using the heater 3, there is a problem that the life of the heater 3 is shortened because the heater 3 is used in an atmosphere without oxygen. In addition, in order to heat the substrate to a sufficiently high temperature, it is necessary to use a heater 3 with a large heat capacity, but if the heat capacity claw of the heater 3 is large, it will be difficult to cool down the superconducting thin film after heating. There was a problem in that the cooling rate could not be increased because the heater 3 continued to generate residual heat even after the electricity was turned off, and the superconducting properties tended to deteriorate after film formation. For this reason, conventionally, after forming a superconducting thin film, it was necessary to subject the superconducting thin film to heat treatment in a separate process to adjust the crystal structure of the superconducting thin film and adjust the oxygen concentration. Furthermore, when heating is performed using the heater 3, there is a problem that a part of the constituent material of the heater 3 evaporates during heating and mixes into the superconducting thin film on the substrate 4 as an impurity, deteriorating the superconducting properties of the superconducting thin film. Ta.
一方、赤外線を用いて加熱を行う従来方法においては、
真空チャンバに形成した透明窓を介して膜体に赤外線を
照射する関係から、透明窓の寸法によって照射範囲の制
限を受けるために、膜体の温度を十分高温に加熱するこ
とか困難になり、特に、赤外線の照射範囲が狭い場合に
は、均一な加熱ができなくなる問題がある。更に、真空
チャンバに透明窓を形成する関係から真空チャンバの内
部の真空度を上げることができず、場合によっては透明
窓が原因となって真空チャンバの真空度が低下する問題
がある。On the other hand, in the conventional method of heating using infrared rays,
Since the membrane body is irradiated with infrared rays through a transparent window formed in the vacuum chamber, the irradiation range is limited by the dimensions of the transparent window, making it difficult to heat the membrane body to a sufficiently high temperature. In particular, when the irradiation range of infrared rays is narrow, there is a problem that uniform heating cannot be achieved. Furthermore, since a transparent window is formed in the vacuum chamber, it is not possible to increase the degree of vacuum inside the vacuum chamber, and in some cases, the transparent window causes the problem that the degree of vacuum in the vacuum chamber decreases.
なお、真空チャンバの内部に赤外線ランプを設けて加熱
する場合、真空チャンバの内部スペースに限度があるた
めに設置可能な赤外線ランプの大きさに限界を生じ、こ
れが原因となって加熱できる最高温度に限界を生じ、所
望の温度に加熱できない問題がある。Note that when heating an infrared lamp inside a vacuum chamber, there is a limit to the size of the infrared lamp that can be installed due to the limited space inside the vacuum chamber, which causes the maximum temperature that can be heated to be reached. There is a problem in that there is a limit and heating cannot be done to the desired temperature.
本発明は、前記課題を解決するためになされたもので、
結晶の形を整えて超電導特性の向上が可能な程度の高温
度に加熱することができ、温度制御も容易で急冷処理ら
可能であって、不純物の混入などを生じることらない酸
化物超電導薄膜の製造方法の提供を目的とする。The present invention has been made to solve the above problems,
Oxide superconducting thin films that can be heated to a high enough temperature to adjust the crystal shape and improve superconducting properties, are easy to control temperature, can be rapidly cooled, and do not contain impurities. The purpose is to provide a manufacturing method.
[課題を解決するだめの手段」
第1の発明は前記課題を解決するために、少なくとら一
部が通電により発熱する導IX材料からなる基材を用い
、この基材に通電して基材を加熱した状態で基材上に酸
化物超電導薄膜を形成し、酸化物超電導薄膜の形成後に
基材への通電を停止して基材を冷却するものである。[Means for solving the problem] In order to solve the problem, the first invention uses a base material, at least a part of which is made of a conductive IX material that generates heat when energized, and the base material is heated by energizing the base material. An oxide superconducting thin film is formed on a base material in a heated state, and after the formation of the oxide superconducting thin film, electricity to the base material is stopped and the base material is cooled.
第2の発明は前記課題を解決するために、少なくとも一
部か通電により発熱する導電材料からなる基材を用い、
この基材上に酸化物超電導薄膜を形成するとともに、こ
の後に基材に通電して基材を発熱させて酸化物超電導薄
膜を加熱し、所要時間加熱した後に基材に対する通電を
停止して基材を冷却するものである。In order to solve the above problem, the second invention uses a base material at least partially made of a conductive material that generates heat when energized,
An oxide superconducting thin film is formed on this base material, and then electricity is applied to the base material to cause the base material to generate heat to heat the oxide superconducting thin film, and after heating for a required time, the current supply to the base material is stopped and the base material is heated. It cools the material.
「作用 」
jIl、材をa71!加熱することにより超電導薄膜の
加熱処理を行い、超電導薄膜の結晶構造を整え、超電導
薄膜中の酸素mを調節する。また、基材自身を発熱させ
るために、基材の近傍に熱容量の大きな加熱ヒータを設
ける必要がなくなり、加熱後に超電導薄膜を急冷するこ
とが可能になる。更に、基材の近傍に加熱ヒータを設け
る必要がなくなるために超電導薄膜に対する不純物の混
入もなくなる。"Action" jIl, material a71! The superconducting thin film is heated by heating to adjust the crystal structure of the superconducting thin film and adjust the oxygen m in the superconducting thin film. Furthermore, there is no need to provide a heater with a large heat capacity near the base material in order to generate heat in the base material itself, and it becomes possible to rapidly cool the superconducting thin film after heating. Furthermore, since there is no need to provide a heater near the base material, there is no need for impurities to be mixed into the superconducting thin film.
以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.
第1図は、イオン源を用いたスパッタリング法を適用し
て本発明を実施し、酸化物超電導薄膜を形成する場合に
用いられる装置の一例を示すもので、図中11は酸化物
超電導薄膜が形成される板状の基材を示している。FIG. 1 shows an example of an apparatus used when forming an oxide superconducting thin film by applying the sputtering method using an ion source to form an oxide superconducting thin film. A plate-shaped base material to be formed is shown.
この基材11は、第2図に示すように、ステンレス、ハ
ステロイ、スーパーアロイ等のニッケル基合金などの金
属材料からなる板状の本体部12とこの本体部12の上
面に形成されたMgO,ZrO、B aT io 3な
どからなる被覆層13とから構成されている二なお、被
覆層13の構成材料は、後述するように基材l上に形成
される酸化物超電導薄膜の構成元素と反応性か低く、化
学的に安定な材料が選択され、被覆層13は、筒周波マ
グネトロンスパッタリング法などの成膜法により本体部
12の上面に形成されている。また、前記本体部12と
被覆層13の少なくとも一方は、通電可能であって、し
から通電により発熱ずろ材料から構成されている。なお
、基材11の形状は板状に限るものではなく、線状、テ
ープ状、筒状など任意の形状を用いることができる。As shown in FIG. 2, this base material 11 includes a plate-shaped main body 12 made of a metal material such as stainless steel, a nickel-based alloy such as Hastelloy, and superalloy, and an MgO layer formed on the upper surface of this main body 12. It is composed of a coating layer 13 made of ZrO, B aT io 3, etc. Note that the constituent material of the coating layer 13 reacts with the constituent elements of the oxide superconducting thin film formed on the base material l, as will be described later. A chemically stable material with low resistance is selected, and the coating layer 13 is formed on the upper surface of the main body portion 12 by a film forming method such as a cylindrical frequency magnetron sputtering method. Further, at least one of the main body portion 12 and the covering layer 13 is made of a material that can be energized and generates heat when energized. Note that the shape of the base material 11 is not limited to a plate shape, and any shape such as a linear shape, a tape shape, or a cylindrical shape can be used.
一方、前記基材11上に形成されろ酸化物超電導薄膜は
、具体的にはA −B −C−D (ただしAは、S
c、Y 、L a、Ce、P r、Nd、P m、S
m、E u、G d、’l” b。On the other hand, the oxide superconducting thin film formed on the base material 11 is specifically A-B-C-D (where A is S
c, Y, L a, Ce, P r, Nd, P m, S
m, E u, G d, 'l'' b.
Dy、Ho、Er、’l’m、Yb、Lu等の周期律表
111a族元素のうち、1種以上を示し、BはSr、B
a、Ca、f3e。Represents one or more elements of group 111a of the periodic table such as Dy, Ho, Er, 'l'm, Yb, Lu, etc., and B represents Sr, B
a, Ca, f3e.
Mg、Raなどの周期律表11a族元素のうち、1種以
上を示し、CはCu、Ag、Auなどの周期律表1b1
人元素とNbのうち、CuあるいはCuを含む2種以上
の元素を示し、Dは、O,S、Se、Te、Poなどの
周期律表v+b族元素およびF、I3r、I、Atなど
の周期律表■b族元素のうち、0あるいはOを含む2種
以上の元素を示す。)系のものが用いられる。Indicates one or more elements from group 11a of the periodic table, such as Mg and Ra, and C represents elements of group 1b1 of the periodic table, such as Cu, Ag, and Au.
Of the human element and Nb, D represents Cu or two or more elements including Cu, and D represents elements of group V+b of the periodic table such as O, S, Se, Te, and Po, and elements of group V+b of the periodic table such as F, I3r, I, and At. Indicates two or more elements containing 0 or O among the elements of group IIb of the periodic table. ) series are used.
そして、この酸化物系超電導体の各構成元素の組成比は
、例えばY −B a−Cu−0系超電導体の場合、Y
:Ba:Cu:0 = l :(2〜3 ):(3〜
4 )+(7−δ)が好ましく、δは0〜5の範囲が好
ましい。The composition ratio of each constituent element of this oxide-based superconductor is, for example, in the case of a Y-Ba-Cu-0-based superconductor, Y
:Ba:Cu:0=l:(2~3):(3~
4)+(7-δ) is preferable, and δ is preferably in the range of 0 to 5.
なお、前記基板11に超電導薄膜を形成する手段として
は、真空蒸着法、スパッタリング法、MBE(分子線エ
ピタキシー)法、CVD(化学気相成長)法、IVD(
イオン気相成長)法、クラスタイオンビーム法などの種
々の成膜法を適用することができるが、この例において
はイオン源を用いたスパッタリング法を行う。Note that methods for forming the superconducting thin film on the substrate 11 include vacuum evaporation, sputtering, MBE (molecular beam epitaxy), CVD (chemical vapor deposition), and IVD (
Although various film forming methods such as ion vapor phase epitaxy (ion vapor phase epitaxy) and cluster ion beam method can be applied, in this example, a sputtering method using an ion source is used.
第1図に示す装置は、真空容器の内部に、基材11とタ
ーゲット15が対向状態で配置され、基材IIの側方に
ターゲット15に対向するように第1イオン源16が設
けられ、ターゲット15の側方に基材11に対向するよ
うに第2イオン譚17が設けられ、更に、基材Ifに電
源18が接続され、基材11に通電できるように構成さ
れている。In the apparatus shown in FIG. 1, a base material 11 and a target 15 are arranged facing each other inside a vacuum container, and a first ion source 16 is provided on the side of the base material II so as to face the target 15. A second ion tube 17 is provided on the side of the target 15 so as to face the base material 11, and a power source 18 is further connected to the base material If, so that the base material 11 can be energized.
前記ターゲラ)15は、前述の酸化物超電導体を構成す
る元素を含む材料が用いられる。従ってA −I3−C
−D系の各元素を含む混合粉末を仮焼し、焼結して製造
されるA −I3−C−D系の超電導体からなるターゲ
ット、あるいは、へ元素とB元素とC元素とD元素を所
定の比率で含有さけた酸化物ターゲットなどを用いるこ
とができる。The target layer 15 is made of a material containing the elements constituting the oxide superconductor described above. Therefore A -I3-C
A target made of a superconductor of the A-I3-C-D system, which is produced by calcining and sintering a mixed powder containing each element of the -D system, or a he element, a B element, a C element, and a D element. It is possible to use an oxide target containing a predetermined ratio of .
前記第1イオン源16は、ターゲット15に対して加速
されたイオンを照射してターゲット15の構成原子を叩
き出し、基材l!上に成膜さU゛るための装置である。The first ion source 16 irradiates the target 15 with accelerated ions to knock out the constituent atoms of the target 15, and the base material l! This is an apparatus for depositing a film on top of the film.
また、第2イオン源17は、酸素をイオン、原子状、分
子状などにして基材llに照射する装置である。なお、
これらのイオンill 6.+ 7はイオン発生機とイ
オンの引出電極を具備して構成され、イオン発生機で発
生させたイオンを引出電極で加速して照射できろように
構成されている。The second ion source 17 is a device that irradiates the base material 11 with oxygen in the form of ions, atoms, molecules, etc. In addition,
These ions ill 6. +7 is configured to include an ion generator and an ion extraction electrode, and is configured so that the ions generated by the ion generator can be accelerated by the extraction electrode and irradiated.
次に第1図に示す装置を用いて酸化物超電導薄膜を製造
する場合について説明する。Next, a case in which an oxide superconducting thin film is manufactured using the apparatus shown in FIG. 1 will be described.
第1図に示す装置を用いて酸化物超電導薄膜を製造する
には、まず、基材11とターゲット15を真空容器の内
部の所定位置にセットし、真空容器の内部を真空引きし
て所定の圧力にした後に、イオン源16.17を作動さ
けろ。また、電源18から基材Itに通電して基材11
の温度を600〜1000℃程度に加熱する。To manufacture an oxide superconducting thin film using the apparatus shown in FIG. Do not turn on the ion source 16.17 after bringing it to pressure. Further, the base material It is energized from the power source 18 to
to a temperature of about 600 to 1000°C.
以上の操作によってイオン源16はターゲットI5にイ
オンを照射してスパッタリングを行い、基(イ!1上に
A −+3−C−D系の酸化物超電導体からなる膜体を
生成させる。また、前記スパッタリングと同時にイオン
源17を作動させて基材11に酸素イオンを照射する。Through the above operations, the ion source 16 irradiates the target I5 with ions and performs sputtering to generate a film made of an A-+3-C-D system oxide superconductor on the base (I!1). Simultaneously with the sputtering, the ion source 17 is operated to irradiate the base material 11 with oxygen ions.
この酸素イオン照射によって前記超電導薄膜に十分な飛
の酸素を供給することができ、酸化物超電導薄膜を生成
させろことかできる。By this oxygen ion irradiation, sufficient free oxygen can be supplied to the superconducting thin film, and an oxide superconducting thin film can be generated.
基材If上に所定の厚さの薄膜が生成されたならば、イ
オン源16.、+7によるイオン照射を停止するととも
に、成膜直後、あるいは、所定時間経過後に基材11に
対する通電加熱を停止して基材11を冷却する。Once a thin film of a predetermined thickness is formed on the substrate If, the ion source 16. , +7 is stopped, and immediately after film formation or after a predetermined period of time has elapsed, electrical heating of the base material 11 is stopped to cool the base material 11.
なお、酸素イオン源I7からの酸素イオンの照射を行わ
ない場合、生成された薄膜の結晶の内部に酸素が不足し
て目的の化学m論組成からずれた薄膜が生成されるおそ
れがある。このように酸素が不足した薄膜は超電導特性
に劣る欠点がある。Note that if the oxygen ion irradiation from the oxygen ion source I7 is not performed, there is a risk that oxygen will be insufficient inside the crystals of the produced thin film, resulting in a thin film that deviates from the desired chemical composition. A thin film lacking oxygen in this manner has the disadvantage of poor superconducting properties.
この点においてイオン源17から酸素イオンを供給する
ならば、化学量論組成に合致した目的の組成の特性の優
れた薄膜を得ることができる。In this respect, if oxygen ions are supplied from the ion source 17, a thin film with excellent properties and a desired composition matching the stoichiometric composition can be obtained.
また、基材11に対する通電加熱を行いつつ酸化物超電
導薄膜を形成するために、超電導薄膜を十分高温に加熱
できろ効果がある。更に、通電加熱後に超電導薄膜を冷
却する場合、熱容量の大きな加熱ヒータで加熱していた
従来方法に比較して、基材11の近傍に熱容量の大きな
部材がないために、基材11を容易に急冷することがで
きろ。従って、形成した超電導薄膜の結晶構造を整えろ
ことができるとともに結晶中の酸素の割合を所望の値に
することができるので臨界温度の高い特性の優れた酸化
物超電導薄膜を製造できる効果がある。Further, in order to form the oxide superconducting thin film while heating the base material 11 with electricity, it is effective to be able to heat the superconducting thin film to a sufficiently high temperature. Furthermore, when cooling the superconducting thin film after electrical heating, compared to the conventional method in which heating is performed using a heater with a large heat capacity, since there is no member with a large heat capacity in the vicinity of the base material 11, the base material 11 can be easily cooled. It can be rapidly cooled. Therefore, the crystal structure of the formed superconducting thin film can be adjusted, and the proportion of oxygen in the crystal can be set to a desired value, which has the effect of producing an oxide superconducting thin film with excellent characteristics such as a high critical temperature. .
更にまた、従来方法で用いられていた加熱ヒータを用い
る必要がないために、超電導薄膜に不純物が、昆人する
こともなくなる。なお、超電導薄膜の加熱のために赤外
線を用いる必要がないために真空容器の外壁に赤外線透
過用の透明窓を設ける必要がなくなり真空容器の真空度
が低下することらない。Furthermore, since there is no need to use the heater used in the conventional method, there is no need to introduce impurities into the superconducting thin film. Note that since there is no need to use infrared rays to heat the superconducting thin film, there is no need to provide a transparent window for transmitting infrared rays on the outer wall of the vacuum container, and the vacuum degree of the vacuum container does not decrease.
一方、第2の発明では、超電導薄膜■1を形成した後に
、通電加熱によってJk材11を加熱して目的を達成4
゛る。On the other hand, in the second invention, after forming the superconducting thin film 1, the Jk material 11 is heated by electrical heating to achieve the purpose 4.
It's true.
即し、通電加熱を停止した状態において、赤外線ランプ
などの加熱装置で基材11を所要の温度に加熱した状態
で超電導薄膜l(を形成し、超電導薄膜11を形成し、
超電導薄膜1−1の形成後に赤外線ランプなどによる加
熱を停止し、次いで、基材11を所要の温度に通電加熱
して超電導薄膜Hの結晶構造を整え、酸素含有mを調節
することができる。That is, in a state where electrical heating is stopped, a superconducting thin film 1 is formed by heating the base material 11 to a required temperature with a heating device such as an infrared lamp, and forming a superconducting thin film 11.
After forming the superconducting thin film 1-1, heating with an infrared lamp or the like is stopped, and then the base material 11 is electrically heated to a required temperature to adjust the crystal structure of the superconducting thin film H and adjust the oxygen content m.
なお、前述の例において、真空容器に超電導薄膜の予熱
用の赤外線ランプなどを設けることは自由であり、真空
容器の内部全体の温度を調節する温度制御装置などを設
けてし良いのは勿論である。In the above example, the vacuum container may be provided with an infrared lamp for preheating the superconducting thin film, and it is of course also possible to provide a temperature control device to adjust the overall temperature inside the vacuum container. be.
「実施例」
第1図に示す構成の装置を用い、ステンレス製の幅10
+nn+、厚さ0.5a+mのテープ状の本体部に、厚
さ1μmの被覆層を形成してなるテープ状の基材を用意
するとともに、この基材上に、イオン源を用いたスパッ
タリング法によりY −B a−Cu−0で示されろ酸
化物超電導体を構成する元素をスパッタリングし、同時
に酸素イオンを照射するととらに、基板に25Vの電圧
を印加して基板を700℃に加熱し、超電導薄膜を形成
した。この際、イオン源のイオン加速電圧を100OV
、イオン電流を100亀A1雰囲気の真空度を5XIO
−’I’aとした。"Example" Using a device with the configuration shown in Figure 1, a stainless steel
+nn+, a tape-shaped base material formed by forming a 1 μm-thick coating layer on a tape-shaped body part with a thickness of 0.5 a + m is prepared, and on this base material, a sputtering method using an ion source is applied. The elements constituting the oxide superconductor represented by Y-B a-Cu-0 are sputtered, and at the same time oxygen ions are irradiated, a voltage of 25 V is applied to the substrate and the substrate is heated to 700 ° C. A superconducting thin film was formed. At this time, the ion acceleration voltage of the ion source was set to 100OV.
, the ion current is 100, and the vacuum degree of A1 atmosphere is 5XIO.
-'I'a.
前述の条件でスパッタリングを4時間行ったならば、ス
パッタリングと通電を停止し、基板を冷却して超電導薄
膜を得た。この場合、基板温度を700℃から100℃
まで下降さけるために必要な時間と、形成された超電導
薄膜の臨界温度(T c)を測定し、後記する第1表に
示した。After sputtering was performed for 4 hours under the above conditions, sputtering and current supply were stopped, and the substrate was cooled to obtain a superconducting thin film. In this case, the substrate temperature should be increased from 700℃ to 100℃.
The time required to prevent the temperature from dropping to 0.1 and the critical temperature (Tc) of the formed superconducting thin film were measured and shown in Table 1 below.
また、第3図に示す構成の従来装置にイオン源を付加し
て構成した装置を用い、Y −B a−Cu−0系のス
パッタリングターゲットを使用するとともに基板を加熱
ヒータによって700℃に加熱し、先の例と同等の条件
でイオンスパッタリングと酸素イオン照射を同時に行っ
て酸化物超電導薄膜を形成し、成膜後に加熱ヒータへの
通電を停止して基板を冷却して酸化物超電導薄膜を得た
。In addition, using a device configured by adding an ion source to the conventional device shown in Fig. 3, a Y-B a-Cu-0 sputtering target was used, and the substrate was heated to 700°C with a heater. , ion sputtering and oxygen ion irradiation were performed simultaneously under the same conditions as in the previous example to form an oxide superconducting thin film, and after the film was formed, power to the heater was stopped and the substrate was cooled to obtain an oxide superconducting thin film. Ta.
この場合、基板の温度を700°Cから100℃まで低
下させるために必要な時間と、形成された酸化物超電導
薄膜の臨界温度を測定し、第1表に示した。In this case, the time required to lower the temperature of the substrate from 700°C to 100°C and the critical temperature of the formed oxide superconducting thin film were measured and are shown in Table 1.
第1表
第1表から明らかなように、基板に通電加熱を行って加
熱した場合は、加熱ヒータを用いて加熱した場合に比較
して冷却時間を大幅に短縮でき、急冷処理が可能である
ことか判明した。なお、冷却時間を大幅に短縮できるた
めに、超電導薄膜の製造効率が向」ニすることら明らか
になった。また、通電加熱によって加熱した後に急冷し
て製造された酸化物超電導薄膜は臨界温度が高いことが
判明した。Table 1 As is clear from Table 1, when the substrate is heated by electrical heating, the cooling time can be significantly shortened compared to when it is heated using a heater, and rapid cooling processing is possible. It turned out that. It has also been found that the production efficiency of superconducting thin films is improved because the cooling time can be significantly shortened. It has also been found that oxide superconducting thin films produced by heating by electrical heating and then rapidly cooling have a high critical temperature.
「発明の効果」
以」二説明したように本発明は、基材に対する通電加熱
によって酸化物超電導薄膜を加熱するために、超電導薄
膜を十分高温に加熱することができるととらに、加熱後
に冷却する場合、熱容量の大きな加熱ヒータで加熱して
いた従来方法に比較して、基材の近傍に熱容量の大きな
部材がないために、基材を急冷することができる。従っ
て、酸化物超電導薄膜の結晶の形を整え、結晶中の酸素
量を調節することができるので臨界温度の高い特性の優
れた酸化物超電導薄膜を製造できる効果がある。また、
加熱ヒータを用いる必要がないために、超電導薄膜に雰
囲気中から不純物元素が混入することもな(なる。更に
、超電導薄膜の加熱のために赤外線を用いる必要がない
ために、真空容器の外壁に透明窓を設ける必要がなくな
り、真空容器の真空度が低下することもなく、所要の圧
力で成膜できる効果がある。``Effects of the Invention'' As explained hereinafter, the present invention is capable of heating the superconducting thin film to a sufficiently high temperature in order to heat the oxide superconducting thin film by electrically heating the base material. In this case, compared to the conventional method in which heating is performed using a heater with a large heat capacity, the base material can be rapidly cooled because there is no member with a large heat capacity in the vicinity of the base material. Therefore, the shape of the crystal of the oxide superconducting thin film can be adjusted and the amount of oxygen in the crystal can be adjusted, so that an oxide superconducting thin film with excellent characteristics such as a high critical temperature can be manufactured. Also,
Since there is no need to use a heater, there is no need for impurity elements to enter the superconducting thin film from the atmosphere.Furthermore, since there is no need to use infrared rays to heat the superconducting thin film, there is no need to There is no need to provide a transparent window, the degree of vacuum in the vacuum container does not decrease, and a film can be formed at the required pressure.
第1図は、本発明方法を実施するために用いる装置の一
例を示す構成図、第2図は本発明方法の実施に用いる堰
板の一例を示す断面図、第3図は、従来方法を説明する
ための構成図である。
11 ・基材、12・・・本体部、13・・・被覆層、
15・・・ターゲット、 16・・・第1イオン源、
17・・第2イオン源、18・・・電源、1■ ・超電
導薄膜。FIG. 1 is a block diagram showing an example of an apparatus used to carry out the method of the present invention, FIG. 2 is a sectional view showing an example of a weir plate used to carry out the method of the present invention, and FIG. FIG. 2 is a configuration diagram for explanation. 11 - Base material, 12... Main body part, 13... Covering layer,
15... Target, 16... First ion source,
17...Second ion source, 18...Power source, 1■ - Superconducting thin film.
Claims (2)
ら形成された基材を用い、この基材に通電して基材を加
熱した状態で基材上に酸化物超電導薄膜を形成し、酸化
物超電導薄膜の形成後に基材への通電を停止して基材を
冷却することを特徴とする酸化物超電導薄膜の製造方法
。(1) Using a base material at least partially made of a conductive material that generates heat when energized, an oxide superconducting thin film is formed on the base material while heating the base material by supplying current to the base material, and A method for producing an oxide superconducting thin film, which comprises cooling the base material by stopping current supply to the base material after forming the superconducting thin film.
ら形成された基材を用い、この基材上に酸化物超電導薄
膜を形成するとともに、この後に基材に通電して基材を
発熱させて酸化物超電導薄膜を加熱し、所要時間加熱し
た後に基材に対する通電を停止して基材を冷却すること
を特徴とする酸化物超電導薄膜の製造方法。(2) Using a base material at least partially made of a conductive material that generates heat when energized, forming an oxide superconducting thin film on this base material, and then energizing the base material to cause the base material to generate heat. A method for producing an oxide superconducting thin film, which comprises heating the oxide superconducting thin film, heating it for a required period of time, and then stopping current supply to the base material to cool the base material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63025192A JP2583552B2 (en) | 1988-02-05 | 1988-02-05 | Method for producing oxide superconducting thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63025192A JP2583552B2 (en) | 1988-02-05 | 1988-02-05 | Method for producing oxide superconducting thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01201008A true JPH01201008A (en) | 1989-08-14 |
JP2583552B2 JP2583552B2 (en) | 1997-02-19 |
Family
ID=12159101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63025192A Expired - Fee Related JP2583552B2 (en) | 1988-02-05 | 1988-02-05 | Method for producing oxide superconducting thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2583552B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0244012A (en) * | 1988-08-03 | 1990-02-14 | Dowa Mining Co Ltd | Method for forming superconducting thin film |
FR2684371A1 (en) * | 1991-11-29 | 1993-06-04 | Alsthom Cge Alcatel | PROCESS FOR THE TREATMENT OF A SUPERCONDUCTIVE CERAMIC PART OF TYPE (LN) 1BA2CU307-DELTA. |
CN116102951A (en) * | 2022-12-26 | 2023-05-12 | 苏州微介面材料科技有限公司 | Antistatic nonflammable water-based epoxy coating |
-
1988
- 1988-02-05 JP JP63025192A patent/JP2583552B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0244012A (en) * | 1988-08-03 | 1990-02-14 | Dowa Mining Co Ltd | Method for forming superconducting thin film |
FR2684371A1 (en) * | 1991-11-29 | 1993-06-04 | Alsthom Cge Alcatel | PROCESS FOR THE TREATMENT OF A SUPERCONDUCTIVE CERAMIC PART OF TYPE (LN) 1BA2CU307-DELTA. |
US5556831A (en) * | 1991-11-29 | 1996-09-17 | Alactel Alsthom Compagnie Generale D'electricite | Method of treating a part made of a superconductive ceramic of the (Ln).sub. Ba2 Cu3 O7-δ type |
CN116102951A (en) * | 2022-12-26 | 2023-05-12 | 苏州微介面材料科技有限公司 | Antistatic nonflammable water-based epoxy coating |
Also Published As
Publication number | Publication date |
---|---|
JP2583552B2 (en) | 1997-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4950642A (en) | Method for fabricating superconducting oxide thin films by activated reactive evaporation | |
US4925829A (en) | Method for preparing thin film of compound oxide superconductor by ion beam techniques | |
JPH01201008A (en) | Production of thin film of oxide superconductor | |
KR920007799B1 (en) | Method for manufacturing super conducting oxide ceramics materials and deposition apparatus for its | |
JPH0825742B2 (en) | How to make superconducting material | |
JPS63310515A (en) | Manufacture of superconductor membrane | |
JP2742418B2 (en) | Method for producing oxide superconducting thin film | |
JPH01261204A (en) | Production of oxide based superconductor | |
JP2611332B2 (en) | Manufacturing method of thin film superconductor | |
JPH0238310A (en) | Production of oxide high temperature superconductive thin film | |
JPH01259582A (en) | Manufacture of oxide superconductive thin film | |
JP2502344B2 (en) | Method for producing complex oxide superconductor thin film | |
JP2736062B2 (en) | Method for producing oxide superconductor thin film | |
JPS63299019A (en) | Manufacture of thin film superconductive material | |
JPH06140675A (en) | Ultrathin film of bi oxide high-temperature superconductor and manufacture thereof | |
JPH01100827A (en) | High temperature superconducting material | |
JPH0196015A (en) | Formation of superconducting thin film | |
JPH01124919A (en) | Manufacture of oxide superconductor | |
JP2639510B2 (en) | Preparation method of superconducting thin film | |
JP2525852B2 (en) | Preparation method of superconducting thin film | |
JPH0778000B2 (en) | Method for manufacturing oxide superconducting thin film | |
JPH03197306A (en) | Equipment for producing oxide superconducting thin film and method therefor | |
JP2707470B2 (en) | Molecular beam epitaxy growth method | |
JPH0337104A (en) | Production of oxide superconducting thin film and apparatus therefor | |
JPH01183176A (en) | Manufacture of thin superconducting film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |