JP2736062B2 - Method for producing oxide superconductor thin film - Google Patents

Method for producing oxide superconductor thin film

Info

Publication number
JP2736062B2
JP2736062B2 JP62311717A JP31171787A JP2736062B2 JP 2736062 B2 JP2736062 B2 JP 2736062B2 JP 62311717 A JP62311717 A JP 62311717A JP 31171787 A JP31171787 A JP 31171787A JP 2736062 B2 JP2736062 B2 JP 2736062B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
thin film
superconductor thin
oxide
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62311717A
Other languages
Japanese (ja)
Other versions
JPH01153508A (en
Inventor
久士 芳野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62311717A priority Critical patent/JP2736062B2/en
Publication of JPH01153508A publication Critical patent/JPH01153508A/en
Application granted granted Critical
Publication of JP2736062B2 publication Critical patent/JP2736062B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、各種超電導体装置などに利用される酸化物
超電導体薄膜の製造方法に関する。 (従来の技術) 近年、Ba−La−Cu−O系の層状ペロブスカイト型の酸
化物が高い臨界温度を有する可能性のあることが発表さ
れて以来、名所で酸化物超電導体の研究が行われている
(Z.Phys.B Condensed Matter 64,189−193(198
6))。その中でもY−Ba−Cu−O系で代表される酸素
欠陥を有するLnBa2Cu3O7−δ(δは酸素欠陥を表し通
常1以下、Lnは、Y、La、Sc、Nd、Sm、Eu、Gd、Dy、H
o、Er、Tm、YbおよびLuから選ばれた少なくとも1種の
元素:Baの一部はSrなどで置換可能。)で示される欠陥
ペロブスカイト型の酸化物超電導体は、臨界温度が90K
以上と液体窒素の沸点以上の高い温度を示すため非常に
有望な材料として注目されている。(Phys.Rev.Lett.vo
l.58 No.9,908−910)。 このような酸化物超電導体を各種電子デバイスなどと
して使用するために、酸化物超電導体の薄膜化技術が各
所で研究されている。 酸化物超電導体を薄膜として基板上へ着膜させる方法
としては、従来からの薄膜化技術を応用して、蒸着法や
スパッタ法などを利用した方法や、また酸化物超電導体
粉末をペースト化したものやこの酸化物超電導体を構成
する各元素の熱分解性化合物溶液などの塗布・焼成によ
り膜形成させる方法などが試みられている。 (発明が解決しようとする問題点) しかしながら、上述した各方法のうち、たとえば酸化
物超電導体の焼結体をターゲットや蒸発源として用いた
通常のスパッタ法や真空蒸着法においては、基板温度が
高温になることなどから、形成された膜成分の組成制御
が難しく、すなわち酸化物超電導体膜の再現性が悪いと
いう問題がある。また、膜形成速度が速く、得られる膜
の純度が高いマグネトロンスパッタ法なども試みられて
いるが、得られる酸化物超電導体膜の結晶性が低く、膜
形成後にさらに900℃前後の高温での熱処理を施さない
と充分な超電導特性を示さないという問題がある。 また、酸化物超電導体粉末のペーストや各構成元素の
化合物溶液などを塗布・焼成する方法においては、膜厚
の制御が難しかったり、また均一に結晶化できず、部分
的に異相が形成され、超電導特性が低いなどの問題があ
る。 本発明はこのような問題点を解消すべくなされたもの
で、再現性よく、結晶性に優れた酸化物超電導体薄膜を
製造する方法を提供することを目的とする。 [発明の構成] (問題点を解決するための手段) 本発明の第1の酸化物超電導体薄膜の製造方法は、基
材上に酸化物超電導体薄膜を形成するにあたり、前記酸
化物超電体を構成する各金属元素を加熱蒸発させて生成
した各元素を前記基材上に所定の比率で衝突させると同
時に、酸素イオンを前記酸化物超電導体の化学量論比よ
り過剰にイオンビームとして供給することにより、前記
酸化物超電導体薄膜を形成することを特徴としている。
また、第2の酸化物超電導体薄膜の製造方法は、基材上
に酸化物超電導体薄膜を形成するにあたり、前記酸化物
超電体を構成する各金属元素を加熱蒸発させて生成した
各元素の集団をイオン化し、次いで電界により加速して
前記基材上に所定の比率で衝突させると同時に、酸素イ
オンを前記酸化物超電導体の化学量論比より過剰にイオ
ンビームとして供給することにより、前記酸化物超電導
体薄膜を形成することを特徴としている。 酸化物超電導体としては多数のものが知られている
が、臨界温度の高い希土類元素含有のプロブスカイト型
の酸化物超電導体を用いることが実用上好ましい。ここ
でいう希土類元素を含有しペロブスカイト型構造を有す
る酸化物超電導体は、超電導状態を実現できればよく、
LnBa2Cu3O7−δ(LnはY、La、Sc、Nd、Sm、Eu、Gd、D
y、Ho、Er、Tm、Yb、Luなどの希土類元素から選ばれた
少なくとも1種の元素を、δは酸素欠陥を表し通常1以
下の数;Baの一部はSrなどで置換可能。)などの酸素欠
陥を有する欠陥プロブスカイト型、Sr−La−Cu−O系な
どの層状プロブスカイト型などの広義にペロブスカイト
構造を有する酸化物が例示される。また希土類元素も広
義の定義とし、Sc、YおよびLa系を含むものとする。代
表的な系としてY−Ba−Cu−O系のほかにYをYb、Ho、
Dy、Eu、Er、Tm、Luなどの希土類で置換した系、Sc−Ba
−Cu−O系、Sr−La−Cu−O系などが挙げられる。 本発明の酸化物超電導体薄膜の製造方法についてさら
に詳述すると、まず目的とする酸化物超電導体を構成す
る各金属元素を加熱蒸発させて各元素の集団を作製す
る。この蒸発源としては、各元素の単体金属や酸化物を
用いることができ、特に純度の高い純金属を用いること
により組成の制御がしやすく好ましい。 次いで、この各元素の集団をたとえばプラズマ中を通
過させることによってイオン化し、このイオン化された
各元素の集団を電界によって加速し基材に衝突させる。
この各元素の供給量は、目的とする酸化物超電導体の化
学量論比から多少ずれていても許容可能であるが、より
高純度の酸化物超電導体薄膜を形成するためには、各元
素の供給量を正確に制御することが重要である。 そして、この各金属元素の供給と同時に、酸素イオン
を目的とする酸化物超電導体の化学量論比より過剰に供
給する。この酸素イオンの供給は、たとえばイオン銃に
よってビーム状にして行う。また、この酸素イオンの供
給量としては、たとえばLnBa2Cu3O7−δで示される欠
陥ペロブスカイト型の酸化物超電導体であれば、Ln1原
子に対して0 10原子〜100原子程度が適当である。 このようにして、酸化物超電導体を構成する各金属元
素の集団を着膜させるとともに酸素を過剰に供給するこ
とにより、再現性よく酸化物超電導体薄膜を形成するこ
とが可能となる。 本発明に使用する基材としては、面方向の線膨脹係数
が5×10-6/K〜25×10-6/Kの範囲のものが好ましい。基
材の面方向の線膨脹係数が5×10-6/K〜25×10-6/Kの範
囲外になると酸化物超電導体との線膨脹係数の差が大き
くなりすぎ、薄膜が基材から剥離し易くなる。このよう
な基材の素材としては、たとえば次のようなものがあげ
られる。 (基材) (線膨脹係数) LiNbO3 15.4×10-6/K LiTaO2 16.1×10-6〃 SrTiO3 11.2×10-6〃 ZrO2 8×10-6〃 Al2O3 8×10-6〃 MgO 13×10-6〃 Ag 19.3×10-6〃 Pd 12×10-6〃 なお、この基材の形状としては、基板形状のものに限
らず、たとえば線材化したような基材を使用することも
可能である。 (作 用) 本発明においては、膜を構成する各金属元素を集団と
して飛翔させて成膜する、いわゆるクラスターイオンビ
ーム法により酸化物超電導体薄膜を形成しており、この
ように各元素を集団で基材に衝突させることによって、
この元素の集団が基材上で拡散し、膜生成速度に優れた
ものとなる。また、本発明では酸素を過剰に供給するこ
とによって酸化物超電導体の結晶性を向上させているの
で、基板の温度を従来のスパッタ法などに比べてより低
くしても、たとえば500℃〜700℃程度でも配向した酸化
物超電導体薄膜を再現性よく形成でき、この成膜工程後
に熱処理を行うことなく、超電導特性に優れた酸化物超
電導体薄膜が得られる。 (実施例) 次に、本発明の実施例について説明する。 実施例 まず、純度3NのY、BaおよびCuを蒸発源として用い、
これらを真空容器内に配置された3個のるつぼにそれぞ
れ独立して収容した。 一方、被着基板として10mm×10mm×1mmのMgO基板を用
い、これを真空容器内の所定の位置にセットした。 そして、この真空容器内を1×10-5Torr程度に排気
し、上記各るつぼをヒータで加熱して、それぞれの元素
の集団で蒸発させ、これら各元素の集団をイオン化部を
通過させることによりイオン化し、さらにこのイオン化
された各元素の集団を電界(加速電圧:1kV)によって加
速し、基板上に供給した。この各元素の供給量はY、B
a、Cuが原子比1:2:3となるように調整した。また、この
各元素の供給と同時に、酸素イオンをイオン銃によりイ
オンビームとして、酸素の原子比が10となるように基板
上に供給した。この一連の動作を100分間行い、酸化物
超電導体薄膜を形成した。なお、この動作中の基板温度
は600℃とした。 このようにして得た酸化物超電導体薄膜の結晶相を化
学分析およびX線回析により同定したところ、当伝導体
相であるY1Ba2Cu3O6.8相単相であり、配向性に優れたも
のであった。また、膜厚は1μmであった。 また、この酸化物超電導体薄膜の超電導特性を測定し
たところ、臨界温度85K、臨界電流密度2×104A/cm2
良好な結果が得られた。 一方、本発明との比較として、上記実施例における酸
素の供給量を、原子比で7とする以外は同一条件で成膜
し、この膜の特性測定を行ったが、超電導状態は得られ
なかった。これは、結晶相の同定から酸素量が少ないた
めに、超電導体相となっていないためであることが判明
した。 [発明の効果] 以上の実施例からも明らかなように、本発明の第1の
酸化物超電導体薄膜の製造方法によれば、成膜後に結晶
化のための熱処理を行うことなく、再現性よく超電導特
性に優れた酸化物超電導体薄膜が得られる。また、本発
明の第2の酸化物超電導体薄膜の製造方法によれば、各
構成金属元素のイオンを集団として飛翔させるととも
に、酸素を化学量論比より過剰に供給しているので、成
膜速度に優れるとともに、結晶性も向上しており、成膜
後に結晶化のための熱処理を行うことなく、再現性よく
超電導特性に優れた酸化物超電導体薄膜が得られる。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for producing an oxide superconductor thin film used for various superconductor devices and the like. (Prior Art) In recent years, since it was announced that Ba-La-Cu-O-based layered perovskite-type oxides may have a high critical temperature, research on oxide superconductors has been performed at a famous place. (Z.Phys.B Condensed Matter 64,189-193 (198
6)). Among them, LnBa 2 Cu 3 O 7-δ having an oxygen deficiency represented by a Y—Ba—Cu—O system (δ represents an oxygen vacancy, usually 1 or less, and Ln is Y, La, Sc, Nd, Sm, Eu, Gd, Dy, H
At least one element selected from o, Er, Tm, Yb and Lu: part of Ba can be replaced by Sr or the like. The critical temperature of the defective perovskite-type oxide superconductor indicated by) is 90K.
Because of the above and high temperature higher than the boiling point of liquid nitrogen, it is attracting attention as a very promising material. (Phys. Rev. Lett.vo
l.58 No.9,908-910). In order to use such an oxide superconductor as various electronic devices, thinning techniques of the oxide superconductor have been studied in various places. As a method of depositing an oxide superconductor as a thin film on a substrate, a method using a conventional thinning technique, a method using a vapor deposition method, a sputtering method, or the like, or a method using an oxide superconductor powder as a paste. Attempts have been made to form a film by applying and baking a solution or a solution of a thermally decomposable compound of each element constituting the oxide superconductor. (Problems to be Solved by the Invention) Among the above-mentioned methods, however, for example, in a normal sputtering method or a vacuum evaporation method using a sintered body of an oxide superconductor as a target or an evaporation source, the substrate temperature is low. Due to the high temperature, there is a problem that it is difficult to control the composition of the formed film components, that is, the reproducibility of the oxide superconductor film is poor. In addition, a magnetron sputtering method with a high film formation rate and high purity of the obtained film has been attempted, but the crystallinity of the obtained oxide superconductor film is low, and after forming the film, the film is further subjected to a high temperature of about 900 ° C. Unless heat treatment is performed, there is a problem that sufficient superconductivity is not exhibited. In addition, in the method of applying and baking a paste of oxide superconductor powder or a compound solution of each constituent element, it is difficult to control the film thickness, or it cannot be uniformly crystallized, and a partially different phase is formed, There are problems such as low superconductivity. The present invention has been made to solve such a problem, and an object of the present invention is to provide a method for producing an oxide superconductor thin film having excellent reproducibility and excellent crystallinity. [Constitution of the Invention] (Means for Solving the Problems) In the first method for producing an oxide superconductor thin film of the present invention, when forming an oxide superconductor thin film on a base material, At the same time each element produced by heating and evaporating each metal element constituting the body is caused to collide with the base material at a predetermined ratio, and at the same time, oxygen ions are formed as an ion beam in excess of the stoichiometric ratio of the oxide superconductor. By supplying, the oxide superconductor thin film is formed.
Further, in the second method for producing an oxide superconductor thin film, in forming an oxide superconductor thin film on a substrate, each element produced by heating and evaporating each metal element constituting the oxide superconductor is described. Ionization, and then accelerated by an electric field to collide with the substrate at a predetermined ratio, while simultaneously supplying oxygen ions as an ion beam in excess of the stoichiometric ratio of the oxide superconductor, The method is characterized in that the oxide superconductor thin film is formed. Although many oxide superconductors are known, it is practically preferable to use a rare-earth-element-containing provskite-type oxide superconductor having a high critical temperature. The oxide superconductor containing a rare earth element and having a perovskite structure here may be a superconducting state,
LnBa 2 Cu 3 O 7-δ (Ln is Y, La, Sc, Nd, Sm, Eu, Gd, D
At least one element selected from rare earth elements such as y, Ho, Er, Tm, Yb, and Lu is represented by δ, which is an oxygen deficiency, usually 1 or less; and part of Ba can be replaced with Sr. ) And oxides having a perovskite structure in a broad sense such as a layered ovskite type having an oxygen deficiency and a layered ovskite type such as an Sr—La—Cu—O system. Rare earth elements are also defined in a broad sense and include Sc, Y and La-based elements. As a typical system, in addition to Y-Ba-Cu-O system, Y is Yb, Ho,
Sc-Ba substituted with rare earths such as Dy, Eu, Er, Tm, and Lu
-Cu-O-based, Sr-La-Cu-O-based and the like. The method for producing the oxide superconductor thin film of the present invention will be described in more detail. First, each metal element constituting the target oxide superconductor is heated and evaporated to produce a group of each element. As the evaporation source, a single metal or oxide of each element can be used. Particularly, the use of a pure metal having high purity is preferable because the composition can be easily controlled. Next, the group of each element is ionized by, for example, passing through a plasma, and the group of ionized elements is accelerated by an electric field to collide with a substrate.
The supply amount of each element is acceptable even if it slightly deviates from the stoichiometric ratio of the target oxide superconductor, but in order to form a higher-purity oxide superconductor thin film, It is important to control the supply amount of the gas accurately. At the same time as the supply of each metal element, oxygen ions are supplied in excess of the stoichiometric ratio of the target oxide superconductor. The supply of the oxygen ions is performed, for example, in the form of a beam using an ion gun. The supply amount of the oxygen ions is, for example, about 0 to 100 atoms to 1 atom of Ln in the case of a defect perovskite-type oxide superconductor represented by LnBa 2 Cu 3 O 7-δ. is there. In this way, by depositing a group of metal elements constituting the oxide superconductor and supplying an excessive amount of oxygen, an oxide superconductor thin film can be formed with good reproducibility. As the substrate used in the present invention, the linear expansion coefficient in the plane direction is preferably in the range of 5 × 10 -6 / K~25 × 10 -6 / K. If the coefficient of linear expansion in the surface direction of the substrate is out of the range of 5 × 10 −6 / K to 25 × 10 −6 / K, the difference in coefficient of linear expansion with the oxide superconductor becomes too large, and It is easy to peel off from Examples of such a base material include the following. (Base material) (linear expansion coefficient) LiNbO 3 15.4 × 10 -6 / K LiTaO 2 16.1 × 10 -6 〃 SrTiO 3 11.2 × 10 -6 〃 ZrO 2 8 × 10 -6 〃 Al 2 O 3 8 × 10 - 6 〃 MgO 13 × 10 -6 〃 Ag 19.3 × 10 -6 〃 Pd 12 × 10 -6 〃 The shape of the substrate is not limited to the substrate shape. It is also possible to use. (Operation) In the present invention, the oxide superconductor thin film is formed by a so-called cluster ion beam method in which each metal element constituting the film is made to fly as a group, thereby forming a film. By hitting the substrate with
This group of elements diffuses on the base material, resulting in an excellent film formation rate. Further, in the present invention, since the crystallinity of the oxide superconductor is improved by supplying an excessive amount of oxygen, even if the temperature of the substrate is lower than that of a conventional sputtering method, for example, 500 ° C. to 700 ° C. An oriented oxide superconductor thin film can be formed with good reproducibility even at about ° C, and an oxide superconductor thin film having excellent superconducting properties can be obtained without performing heat treatment after this film formation step. (Example) Next, an example of the present invention is described. Example First, using 3N purity Y, Ba and Cu as evaporation sources,
These were housed independently in three crucibles arranged in a vacuum vessel. On the other hand, a 10 mm × 10 mm × 1 mm MgO substrate was used as a substrate to be attached, and this was set at a predetermined position in a vacuum vessel. Then, the inside of the vacuum vessel is evacuated to about 1 × 10 −5 Torr, and each of the above-mentioned crucibles is heated by a heater to evaporate a group of each element, and the group of each element is passed through an ionization section. The ionized elements were further accelerated by an electric field (acceleration voltage: 1 kV) and supplied to the substrate. The supply amounts of these elements are Y, B
a, Cu were adjusted so that the atomic ratio was 1: 2: 3. Simultaneously with the supply of each element, oxygen ions were supplied as an ion beam by an ion gun onto the substrate such that the atomic ratio of oxygen was 10. This series of operations was performed for 100 minutes to form an oxide superconductor thin film. The substrate temperature during this operation was set to 600 ° C. When the crystal phase of the oxide superconductor thin film thus obtained was identified by chemical analysis and X-ray diffraction, it was a single phase of Y 1 Ba 2 Cu 3 O 6.8 phase, which is the conductor phase. It was excellent. The thickness was 1 μm. When the superconducting properties of this oxide superconductor thin film were measured, good results were obtained with a critical temperature of 85 K and a critical current density of 2 × 10 4 A / cm 2 . On the other hand, as a comparison with the present invention, a film was formed under the same conditions except that the supply amount of oxygen in the above example was set to 7 in atomic ratio, and the characteristics of the film were measured. However, a superconducting state was not obtained. Was. From the identification of the crystal phase, it was found that the amount of oxygen was small, so that the phase was not a superconductor phase. [Effects of the Invention] As is clear from the above examples, according to the first method for producing an oxide superconductor thin film of the present invention, reproducibility can be achieved without performing heat treatment for crystallization after film formation. An oxide superconductor thin film excellent in superconductivity can be obtained. According to the second method for producing an oxide superconductor thin film of the present invention, ions of each constituent metal element are caused to fly as a group, and oxygen is supplied in excess of the stoichiometric ratio. An oxide superconductor thin film having excellent reproducibility and excellent superconducting properties can be obtained without being subjected to a heat treatment for crystallization after film formation, as well as being excellent in speed and crystallinity.

Claims (1)

(57)【特許請求の範囲】 1.基材上に酸化物超電導体薄膜を形成するにあたり、 前記酸化物超電体を構成する各金属元素を加熱蒸発させ
て生成した各元素を前記基材上に所定の比率で衝突させ
ると同時に、酸素イオンを前記酸化物超電導体の化学量
論比より過剰にイオンビームとして供給することによ
り、前記酸化物超電導体薄膜を形成することを特徴とす
る酸化物超電導体薄膜の製造方法。 2.基材上に酸化物超電導体薄膜を形成するにあたり、 前記酸化物超電体を構成する各金属元素を加熱蒸発させ
て生成した各元素の集団をイオン化し、次いで電界によ
り加速して前記基材上に所定の比率で衝突させると同時
に、酸素イオンを前記酸化物超電導体の化学量論比より
過剰にイオンビームとして供給することにより、前記酸
化物超電導体薄膜を形成することを特徴とする酸化物超
電導体薄膜の製造方法。 3.前記酸化物超電導体は、希土類元素を含有するペロ
ブスカイト型の酸化物超電導体であることを特徴とする
特許請求の範囲第1項または第2項記載の酸化物超電導
体薄膜の製造方法。 4.前記酸化物超電導体は、希土類元素、BaおよびCuを
原子比で実質的に1:2:3の割合いで含有することを特徴
とする特許請求の範囲第1項または第2項記載の酸化物
超電体薄膜の製造方法。 5.前記酸化物超電導体は、LnBa2Cu3O7−δ(Lnは希
土類元素から選ばれた少なくとも1種の元素を、δは酸
素欠陥を表す。)で示される酸素欠陥型ペロブスカイト
構造を有する酸化物超電導体であることを特徴とする特
許請求の範囲第1項または第2項記載の酸化物超電体薄
膜の製造方法。
(57) [Claims] In forming the oxide superconductor thin film on the base material, simultaneously colliding each element generated by heating and evaporating each metal element constituting the oxide superconductor on the base material at a predetermined ratio, A method for manufacturing an oxide superconductor thin film, comprising forming the oxide superconductor thin film by supplying oxygen ions as an ion beam in excess of the stoichiometric ratio of the oxide superconductor. 2. In forming the oxide superconductor thin film on the base material, a group of each element generated by heating and evaporating each metal element constituting the oxide superconductor is ionized, and then accelerated by an electric field to accelerate the base material. Forming an oxide superconductor thin film by supplying oxygen ions as an ion beam in excess of the stoichiometric ratio of the oxide superconductor at the same time as bombarding the oxide superconductor at a predetermined ratio. Of manufacturing superconductor thin film. 3. 3. The method according to claim 1, wherein the oxide superconductor is a perovskite-type oxide superconductor containing a rare earth element. 4. The oxide according to claim 1 or 2, wherein the oxide superconductor contains a rare earth element, Ba and Cu in an atomic ratio of substantially 1: 2: 3. Manufacturing method of superconductor thin film. 5. The oxide superconductor has an oxygen-defective perovskite structure represented by LnBa 2 Cu 3 O 7-δ (Ln represents at least one element selected from rare earth elements, and δ represents an oxygen defect). 3. The method for producing an oxide superconductor thin film according to claim 1 or 2, wherein the method is a superconductor.
JP62311717A 1987-12-09 1987-12-09 Method for producing oxide superconductor thin film Expired - Lifetime JP2736062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62311717A JP2736062B2 (en) 1987-12-09 1987-12-09 Method for producing oxide superconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62311717A JP2736062B2 (en) 1987-12-09 1987-12-09 Method for producing oxide superconductor thin film

Publications (2)

Publication Number Publication Date
JPH01153508A JPH01153508A (en) 1989-06-15
JP2736062B2 true JP2736062B2 (en) 1998-04-02

Family

ID=18020624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62311717A Expired - Lifetime JP2736062B2 (en) 1987-12-09 1987-12-09 Method for producing oxide superconductor thin film

Country Status (1)

Country Link
JP (1) JP2736062B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138130A (en) * 1987-11-25 1989-05-31 Matsushita Electric Ind Co Ltd Production of superconductor thin film

Also Published As

Publication number Publication date
JPH01153508A (en) 1989-06-15

Similar Documents

Publication Publication Date Title
US5212148A (en) Method for manufacturing oxide superconducting films by laser evaporation
US7718574B2 (en) Biaxially-textured film deposition for superconductor coated tapes
CA1330548C (en) Method and apparatus for producing thin film of compound having large area
US4925829A (en) Method for preparing thin film of compound oxide superconductor by ion beam techniques
JP2740260B2 (en) Josephson element
JPH0284782A (en) Manufacture of josephson element
JP2736062B2 (en) Method for producing oxide superconductor thin film
JP2611332B2 (en) Manufacturing method of thin film superconductor
JP2564598B2 (en) Oxide superconductor and manufacturing method thereof
JPH02173258A (en) Method and device for forming thin film
JPH0778000B2 (en) Method for manufacturing oxide superconducting thin film
EP0333513B1 (en) Oxide superconductor
JP2523785B2 (en) Method for manufacturing superconductor thin film
JPH05170448A (en) Production of thin ceramic film
JP2742418B2 (en) Method for producing oxide superconducting thin film
JPH0517147A (en) Production of thin compound oxide film containing lead
JP3001273B2 (en) Superconducting laminated thin film
JPH06287100A (en) Formation of thin oxide superconducting film containing rare earth element
JPH01201008A (en) Production of thin film of oxide superconductor
JPH01160828A (en) Preparation of oxide superconducting thin film
JPH0818913B2 (en) Method of manufacturing thin film superconductor
JPH01161628A (en) Formation of oxide superconducting thin film
JPH0244786A (en) Manufacture of josephson element
JPH07100609B2 (en) Method of manufacturing thin film superconductor
JPH03271119A (en) Production of high-temperature superconducting thin film of ybco-based oxide