JPS63310515A - Manufacture of superconductor membrane - Google Patents

Manufacture of superconductor membrane

Info

Publication number
JPS63310515A
JPS63310515A JP62146355A JP14635587A JPS63310515A JP S63310515 A JPS63310515 A JP S63310515A JP 62146355 A JP62146355 A JP 62146355A JP 14635587 A JP14635587 A JP 14635587A JP S63310515 A JPS63310515 A JP S63310515A
Authority
JP
Japan
Prior art keywords
thin film
superconductor
membrane
heat
solid substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62146355A
Other languages
Japanese (ja)
Inventor
Michiya Fujiki
道也 藤木
Hiroaki Hiratsuka
平塚 廣明
Shiro Matsumoto
松元 史朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62146355A priority Critical patent/JPS63310515A/en
Publication of JPS63310515A publication Critical patent/JPS63310515A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To manufacture a superconductor membrane at a relatively low temperature by heating and evaporating with a complex substance of specific diketone derivatives as an evaporation source, piling as a membrane on a solid substrate in heating and the like under the depressurized ambiance including oxygen, and heat-treating. CONSTITUTION:In the manufacture of a superconductor membrane shown as a general formula (M1)x(M2)y(M3)zOw, a complex substance of diketone derivatives of M1, M2, and M3 is used as an evaporation source to heat and evaporate. Furthermore, the membrane on a solid substrate heated and/or radiated by ultraviolet rays under the depressurized ambiance including oxygen is heat-treated. In this case, M1 is one or more selected from a group of (B, Al, Ga, In, Tl, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Cd, Tb, Dy, Ho, Er, Tm, Yb, Lu), M2 is one or more selected from a group of (Be, Mg, Ca, Sr, Ba, Ra, Sn, Pb), and M3 is (Cu), while x, y, z, and w are a desired molar fraction respectively.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超伝導体薄膜の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a superconductor thin film.

(従来の技術) 近年、銅酸化物系の材料を中心にこれらが高温超伝導体
になることが見いだされたが、銅酸化物系を中心とした
、これらの超伝導体薄膜の製造法は未だ完成された技術
は知られていない。
(Prior art) In recent years, it has been discovered that copper oxide-based materials can become high-temperature superconductors. No perfect technology is known yet.

これまで比較的高い超伝導転移点Tcを有していたBa
PbB1Osに対応する超伝導体をターゲットにして高
周波スパッタにより真空中に置かれた固体基板上に沈着
する方法が知られている。しかしながら、これらの製造
方法は例えばNb*Geは、酸素により超伝導を示さな
いNb酸化物の生成を防ぐために非常に高価な高真空チ
ャンバー装置を必要とする。またBaPbB1Osは、
高真空容器と共に酸素濃度や蒸着物組成の制御に高度な
技術を要するなどの欠点を有していた。
Ba has until now had a relatively high superconducting transition point Tc.
A method is known in which a superconductor corresponding to PbB1Os is deposited on a solid substrate placed in a vacuum by high-frequency sputtering. However, these manufacturing methods, for example Nb*Ge, require very expensive high vacuum chamber equipment to prevent the formation of Nb oxide, which does not exhibit superconductivity, due to oxygen. Also, BaPbB1Os is
Along with high-vacuum containers, these had drawbacks such as requiring advanced technology to control oxygen concentration and deposit composition.

金属酸化物の薄膜製造においては、一般にスパッタ法が
主に用いられてきた。しかし、スパッタ法での金属酸化
膜作成には以下のような欠点がある。
In general, sputtering has been mainly used in the production of thin films of metal oxides. However, forming a metal oxide film by sputtering has the following drawbacks.

■金属酸化物等を焼結したターゲットをあらかじめ作製
する必要があり、ターゲットのわずかな作製条件の違い
で得られる薄膜の組成、物性が異なり再現性が悪い。■
ターゲットの組成と作製した薄膜の組成は一般に異なり
、所望の組成の薄膜を得るには、多くのターゲットの作
製と薄膜形成の試行錯誤が必要である。■スパッタ法で
の薄膜形成では一般に膜形成の初期に、用いた基板の表
面性状の影響を受けるため、初期に堆積した部分とその
後に堆積した部分とでは一般に膜の組成が異なり、膜厚
方向で均質な組成の膜が得にくい。■上記■と同様な理
由で、組成、物性の異なる金属酸化膜の積層や中間に絶
縁層をふくむ積層膜においても、均質な膜組成を持つも
のは作製が困難である。■スパッタ法は、比較的厚い薄
膜を得るには適しているが、厚み数100A〜数100
0A程度の均質な超薄膜を得るには9作製が難しい。
■It is necessary to prepare a target made of sintered metal oxide, etc. in advance, and the composition and physical properties of the thin film obtained will vary due to slight differences in target preparation conditions, resulting in poor reproducibility. ■
The composition of the target and the composition of the produced thin film are generally different, and in order to obtain a thin film with a desired composition, it is necessary to produce many targets and undergo trial and error in thin film formation. ■Thin film formation using the sputtering method is generally affected by the surface properties of the substrate used at the initial stage of film formation, so the composition of the film is generally different between the initially deposited part and the later deposited part, and the thickness direction It is difficult to obtain a film with a homogeneous composition. (2) For the same reason as (2) above, it is difficult to produce a layered film having a homogeneous film composition, even in a stacked film of metal oxide films having different compositions and physical properties, or a stacked film including an insulating layer in the middle. ■The sputtering method is suitable for obtaining relatively thick thin films, but the thickness is several 100A to several 100A.
It is difficult to produce a homogeneous ultra-thin film of about 0A.

従って、対応する金属酸化物あるいは金属炭酸塩を乳鉢
で粉砕、焼結する方法でターゲットを作製し、真空中基
板上にスパッタする方法を採用した場合においても、上
記の欠点は解決できない、このため、スパッタ法でバル
ク体と同様な超伝導物性を得た例はなく、上記のごとき
スパッタ法の持つ欠点から、バルク体と同様な超伝導物
性を有する薄膜は、膜厚が涌い場合や、異種材料を積層
する場合は、特に困難であった。
Therefore, even if a target is prepared by crushing and sintering the corresponding metal oxide or metal carbonate in a mortar and then sputtered onto a substrate in vacuum, the above disadvantages cannot be solved. However, there is no example of obtaining superconducting properties similar to those of a bulk material by sputtering, and due to the above-mentioned drawbacks of the sputtering method, thin films with superconducting properties similar to those of bulk materials are difficult to obtain if the film thickness is large or if the material is of a different material. This was particularly difficult when laminating materials.

(発明の解決しようとする問題点) 本発明はこのような点を改良するために、均質な組成を
有する混合焼結された酸化銅系超伝導体薄膜の作製方法
であり、高価な高真空装置や高度な技術を必要としない
方法を与えるものである。
(Problems to be Solved by the Invention) In order to improve these points, the present invention provides a method for producing a mixed sintered copper oxide-based superconductor thin film having a homogeneous composition. It provides a method that does not require equipment or advanced technology.

(問題点を解決するための手段) 本発明は、所望の金属酸化物組成を持つ超伝導体薄膜を
得るために、所望の金属イオンに対応するジケトン誘導
体の錯体を蒸発源として加熱薫発させ、酸素を含む減圧
下において、加熱および/または紫外線を照射された固
体基板上に薄膜として分解堆積する工程と、該固体基板
上の薄膜を酸素雰囲気下あるいは無酸素雰囲気下で加熱
処理する工程からなることを特徴とする製造方法である
。このとき、分解効率をあげるため、または反応を十分
に進行させることを目的にジケトンとして代表的なアセ
チルアセトン(AAと略する)を選択できる。より好適
な結果を得るには、第三級ブチル基あるいはまたフルオ
ロアルキル基を含むジケトン誘導体として、ジピバロイ
ルメタン(DPMと略)、ヘプタフルオロプタノイルピ
バロイルメタン(FODと略)、ピバロイルトリフルオ
ロアセトン(PTAと略)を用いることが望ましい。
(Means for Solving the Problems) In order to obtain a superconductor thin film having a desired metal oxide composition, the present invention heats and smokes a complex of a diketone derivative corresponding to a desired metal ion as an evaporation source. , a step of decomposing and depositing a thin film on a solid substrate that has been heated and/or irradiated with ultraviolet rays under reduced pressure containing oxygen, and a step of heat-treating the thin film on the solid substrate in an oxygen atmosphere or an oxygen-free atmosphere. This is a manufacturing method characterized by the following. At this time, acetylacetone (abbreviated as AA), which is a typical diketone, can be selected in order to increase the decomposition efficiency or to allow the reaction to proceed sufficiently. To obtain more favorable results, dipivaloylmethane (abbreviated as DPM), heptafluoroptanoylpivaloylmethane (abbreviated as FOD), It is preferable to use pivaloyltrifluoroacetone (abbreviated as PTA).

(実施例1) Y (FOD)s、Ba (DPM)!、Cu (P’
TA)zを蒸発源とし、それぞれを蒸着ボートにいれて
100〜250℃に加熱した。YSZ(イツトリアサス
ティントジルコニア:イツトリウム酸化物を30%含有
するジルコニア単結晶)基板の001面上に、5xlO
−”mmHgの酸素雰囲気で、基板にエキシマレーザ−
を照射しながら薄膜を堆積させた。この基板を400〜
600°Cで10時間熱処理した。徐冷した薄膜試料(
膜厚2〜5μm)を4端子交流法により導電率の温度変
化を求めた。絶対温度90にで完全に超伝導に至り、転
移幅は2.8にであった。
(Example 1) Y (FOD)s, Ba (DPM)! ,Cu(P'
Using TA)z as an evaporation source, each was placed in a deposition boat and heated to 100 to 250°C. 5xlO on the 001 plane of a YSZ (yttrium assisted zirconia: zirconia single crystal containing 30% yttrium oxide) substrate.
-Excimer laser is applied to the substrate in an oxygen atmosphere of "mmHg."
The thin film was deposited while being irradiated with . This board is 400~
Heat treatment was performed at 600°C for 10 hours. Slowly cooled thin film sample (
Temperature changes in electrical conductivity were determined using a four-terminal alternating current method. It reached complete superconductivity at an absolute temperature of 90, and the transition width was 2.8.

(実施例2) Y (FOD)s、Ba (DPM)t、Cu (PT
A)zを蒸発源とし、それぞれを蒸着ボートにいれて1
00〜250″Cに加熱した。YSZ基板(001面)
上に、1xlo−” mmHgの酸素雰囲気で、100
°Cに加熱しながら100W低圧水銀灯を照射した基板
に薄膜を堆積させた。この基板を400〜600℃で1
0時間熱処理した。徐冷した薄膜試料(膜厚1〜2μm
)を4端子交流法により導電率の温度変化を求めた。絶
対温度86にで完全に超伝導に至り、転移幅は4.8に
であった。
(Example 2) Y (FOD)s, Ba (DPM)t, Cu (PT
A) Use z as the evaporation source, put each in the evaporation boat and 1
Heated to 00~250″C. YSZ substrate (001 side)
above, in an oxygen atmosphere of 1×lo-” mmHg,
The thin film was deposited on a substrate that was irradiated with a 100 W low-pressure mercury lamp while heating to °C. This substrate was heated at 400 to 600℃ for 1
Heat treatment was performed for 0 hours. Slowly cooled thin film sample (film thickness 1-2 μm)
) was determined by the four-terminal alternating current method to determine the temperature change in conductivity. It reached complete superconductivity at an absolute temperature of 86, and the transition width was 4.8.

(実施例3) Eu (FOD)s、Ba (DPM)z、Cu(AA
)zを蒸発源とし、それぞれを蒸着ボートにいれて10
0〜250℃に加熱した。YSZ基板(001面)上に
、1xlO−冨mmHgの酸素雰囲気で、100℃に加
熱しながら100W低圧水銀灯を照射した基板に薄膜を
堆積させた。この基板を400〜600°Cで10時間
熱処理した。徐冷した薄膜試料(膜厚1〜2μm)を4
端子交流法により導電率の温度変化を求めた。絶対温度
85にで完全に超伝導に至り、転移幅は4.8にであっ
た。
(Example 3) Eu (FOD)s, Ba (DPM)z, Cu(AA
) with z as the evaporation source, and put each in a evaporation boat for 10
Heated to 0-250°C. A thin film was deposited on a YSZ substrate (001 plane) on which a 100 W low-pressure mercury lamp was irradiated while heating the substrate to 100° C. in an oxygen atmosphere of 1×lO-rich mmHg. This substrate was heat treated at 400-600°C for 10 hours. A slowly cooled thin film sample (film thickness 1 to 2 μm) was
Temperature changes in conductivity were determined using the terminal AC method. It reached complete superconductivity at an absolute temperature of 85, and the transition width was 4.8.

(実施例4) Gd (AA)!、Ba (DPM)t、Cu (A 
A ) zを蒸発源とし、それぞれを蒸着ボートにいれ
て100〜250°Cに加熱した。5rTi0s基板上
に、1xlO−”  mmHgの酸素雰囲気で、100
°Cに加熱しながら100W低圧水銀灯を照射した基板
に薄膜を堆積させた、この基板を400〜600℃で1
0時間熱処理した。徐冷した薄膜試料(膜厚1〜2μm
)を4端子交流法により導電率の温度変化を求めた。絶
対温度82にで完全に超伝導に至り、転移幅は5.2に
であった。
(Example 4) Gd (AA)! , Ba (DPM)t, Cu (A
A) Z was used as an evaporation source, and each was placed in a deposition boat and heated to 100 to 250°C. On a 5rTi0s substrate, 100
A thin film was deposited on a substrate that was irradiated with a 100 W low-pressure mercury lamp while being heated to 400-600°C.
Heat treatment was performed for 0 hours. Slowly cooled thin film sample (film thickness 1-2 μm)
) was determined by the four-terminal alternating current method to determine the temperature change in conductivity. It reached complete superconductivity at an absolute temperature of 82, and the transition width was 5.2.

以下同様にして、所定の組成に仕込んだY。In the same manner, Y was prepared to a predetermined composition.

Scおよびランタニド系元素あるいはAI、In、Ga
、TIの■属元素、Baを初めとするアルカリ土類系元
素、そして銅のジケトン錯体を原料にして、超伝導薄膜
を得た。結果を表1にまとめる。
Sc and lanthanide elements or AI, In, Ga
A superconducting thin film was obtained using a diketone complex of copper, a group II element of TI, an alkaline earth element such as Ba, and a copper diketone complex as raw materials. The results are summarized in Table 1.

(以下余白) 表1.蒸着原料と得られる膜の転移温度Tc(発明の効
果) 以上説明したように、本発明によれば、超伝導体薄膜を
比較的低温で形成でき、かつ高価な高真空容器や高度な
技術を必要としないで超伝導体薄膜の製造が可能になる
と言う点で掻めて大きな利点を有する。
(Left below) Table 1. Transition temperature Tc of vapor deposition raw material and resulting film (effects of the invention) As explained above, according to the present invention, a superconductor thin film can be formed at a relatively low temperature, and it does not require an expensive high-vacuum container or advanced technology. It has a significant advantage in that it enables the production of superconductor thin films without the need for this method.

本発明の方法により得られる超伝導体薄膜は転移幅のシ
ャープな特性の良い超伝導体薄膜であり、従来の金属系
の薄膜と比較して高い超伝導転移温度を有する。絶対温
度77にの液体窒素温度以上で超伝導に至る薄膜は、ジ
ョセフソン素子、電力輸送、高磁場発生磁石等の幅広い
工業的応用が期待される。
The superconductor thin film obtained by the method of the present invention has good characteristics with a sharp transition width, and has a higher superconducting transition temperature than conventional metal-based thin films. Thin films that reach superconductivity above the liquid nitrogen temperature of 77 degrees absolute are expected to have a wide range of industrial applications, such as Josephson devices, power transport, and magnets that generate high magnetic fields.

Claims (3)

【特許請求の範囲】[Claims] (1)一般組成式(M1)x(M2)y(M3)zOw
(ここでM1は(B、Al、Ga、In、Ti、Sc、
Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd
、Tb、Dy、Ho、Er、Tm、Yb、Lu)からな
る群から選ばれた一または二以上の元素、M2は(Be
、Mg、Ca、Sr、Ba、Ra、Sn、Pb)からな
る群からえらばれた一または二以上の元素、M3は(C
u)、x、y、z、wは任意の原子モル分率)で表され
る超伝導体薄膜の製造方法において、M1、M2、M3
のジケトン誘導体の錯体を蒸発源として加熱蒸発させ、
酸素を含む減圧下において、加熱および/または紫外線
を照射された固体基板上に薄膜として分解堆積する工程
と、該固体基板上の薄膜を加熱処理する工程からなるこ
とを特徴とする超伝導体薄膜の製造方法。
(1) General compositional formula (M1)x(M2)y(M3)zOw
(Here, M1 is (B, Al, Ga, In, Ti, Sc,
Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd
, Tb, Dy, Ho, Er, Tm, Yb, Lu), M2 is (Be
, Mg, Ca, Sr, Ba, Ra, Sn, Pb), M3 is (C
u), x, y, z, w are arbitrary atomic mole fractions), M1, M2, M3
A complex of diketone derivatives is heated and evaporated as an evaporation source,
A superconductor thin film characterized by comprising a step of decomposing and depositing a thin film on a solid substrate that has been heated and/or irradiated with ultraviolet rays under reduced pressure containing oxygen, and a step of heat-treating the thin film on the solid substrate. manufacturing method.
(2)ジケトン誘導体がアセチルアセトン、ヘプタフル
オロプタノイルピバロイルメタン、ピバロイルトリフル
オロアセトンの中から選ばれることを特徴とする特許請
求の範囲第1項記載の超伝導体薄膜の製造方法。
(2) The method for producing a superconductor thin film according to claim 1, wherein the diketone derivative is selected from acetylacetone, heptafluoroptanoylpivaloylmethane, and pivaloyltrifluoroacetone.
(3)M2に対するジケトン誘導体が、ヘプタフルオロ
プタノイルピバロイルメタン、ピバロイルトリフルオロ
アセトンのいずれかであることを特徴とする特許請求の
範囲第1項または第2項記載の超伝導体薄膜の製造方法
(3) The superconductor thin film according to claim 1 or 2, wherein the diketone derivative for M2 is either heptafluoroptanoylpivaloylmethane or pivaloyltrifluoroacetone. manufacturing method.
JP62146355A 1987-06-12 1987-06-12 Manufacture of superconductor membrane Pending JPS63310515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62146355A JPS63310515A (en) 1987-06-12 1987-06-12 Manufacture of superconductor membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62146355A JPS63310515A (en) 1987-06-12 1987-06-12 Manufacture of superconductor membrane

Publications (1)

Publication Number Publication Date
JPS63310515A true JPS63310515A (en) 1988-12-19

Family

ID=15405841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62146355A Pending JPS63310515A (en) 1987-06-12 1987-06-12 Manufacture of superconductor membrane

Country Status (1)

Country Link
JP (1) JPS63310515A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200519A (en) * 1988-02-04 1989-08-11 Fujikura Ltd Manufacture of oxide superconducting wire material
JPH01208323A (en) * 1988-02-17 1989-08-22 Riken Corp Production of thin film
JPH01308806A (en) * 1988-06-06 1989-12-13 Mitsubishi Metal Corp Production of filmy superconductor
JPH01308802A (en) * 1988-06-06 1989-12-13 Mitsubishi Metal Corp Production of filmy superconductor and device therefor
JPH01308805A (en) * 1988-06-06 1989-12-13 Mitsubishi Metal Corp Production of filmy superconductor
JPH01308804A (en) * 1988-06-06 1989-12-13 Mitsubishi Metal Corp Production of filmy superconductor
JPH01308807A (en) * 1988-06-06 1989-12-13 Mitsubishi Metal Corp Production of filmy superconductor
JPH0254769A (en) * 1988-08-18 1990-02-23 Mitsubishi Metal Corp Manufacture of thin superconductor film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200519A (en) * 1988-02-04 1989-08-11 Fujikura Ltd Manufacture of oxide superconducting wire material
JPH01208323A (en) * 1988-02-17 1989-08-22 Riken Corp Production of thin film
JPH01308806A (en) * 1988-06-06 1989-12-13 Mitsubishi Metal Corp Production of filmy superconductor
JPH01308802A (en) * 1988-06-06 1989-12-13 Mitsubishi Metal Corp Production of filmy superconductor and device therefor
JPH01308805A (en) * 1988-06-06 1989-12-13 Mitsubishi Metal Corp Production of filmy superconductor
JPH01308804A (en) * 1988-06-06 1989-12-13 Mitsubishi Metal Corp Production of filmy superconductor
JPH01308807A (en) * 1988-06-06 1989-12-13 Mitsubishi Metal Corp Production of filmy superconductor
JPH0254769A (en) * 1988-08-18 1990-02-23 Mitsubishi Metal Corp Manufacture of thin superconductor film

Similar Documents

Publication Publication Date Title
US4925829A (en) Method for preparing thin film of compound oxide superconductor by ion beam techniques
JPS63310515A (en) Manufacture of superconductor membrane
JPS63224116A (en) Manufacture of thin film superconductor
US5361720A (en) Epitaxial deposition
JPH02145761A (en) Manufacture of thin superconductor film
EP0372808B1 (en) Process for preparing a perovskite type superconductor film
JPH0286014A (en) Composite oxide superconducting thin film and film forming method
JPH0825742B2 (en) How to make superconducting material
JP2713343B2 (en) Superconducting circuit fabrication method
JPH02175613A (en) Production of oxide superconducting thin film
JP2502344B2 (en) Method for producing complex oxide superconductor thin film
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
EP0333513B1 (en) Oxide superconductor
JPH01125878A (en) Thin film multilayer superconductor
JP2611332B2 (en) Manufacturing method of thin film superconductor
JP3025891B2 (en) Thin film superconductor and method of manufacturing the same
JP2525852B2 (en) Preparation method of superconducting thin film
GB2217943A (en) Manufacture of semiconductor or superconductor devices
JPH02141568A (en) Production of thin superconducting film of multiple oxide
JPH07100609B2 (en) Method of manufacturing thin film superconductor
JP2778119B2 (en) Composite oxide superconducting thin film and method for forming the same
JP2501616B2 (en) Preparation method of superconducting thin film
JPS63307112A (en) Superconductor
JPH0465306A (en) Oxide superconductor thin film
JPS63310519A (en) Manufacture of membrane consisting of oxide superconductor material