JPH01308806A - Production of filmy superconductor - Google Patents

Production of filmy superconductor

Info

Publication number
JPH01308806A
JPH01308806A JP13974788A JP13974788A JPH01308806A JP H01308806 A JPH01308806 A JP H01308806A JP 13974788 A JP13974788 A JP 13974788A JP 13974788 A JP13974788 A JP 13974788A JP H01308806 A JPH01308806 A JP H01308806A
Authority
JP
Japan
Prior art keywords
gas
superconductor
fluorine
raw material
ligand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13974788A
Other languages
Japanese (ja)
Inventor
Sadaaki Hagino
萩野 貞明
Hiroto Uchida
寛人 内田
Takeshi Sakurai
健 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP13974788A priority Critical patent/JPH01308806A/en
Publication of JPH01308806A publication Critical patent/JPH01308806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To obtain the title superconductor through CVD process with enhanced film formation rate and improved critical temperature and mechanical strength, by making raw materials into metal complex gases and also mixing a fluorine source gas. CONSTITUTION:A vaporized ligand (e.g. hexafluoroacetylacetone) is put into each of containers 11, 12, 13, while plural kinds of raw materials (e.g. Ba compound, Y compound, Cu compound) are put into respective containers 1, 2, 3. Thence, the ligand in the containers 11, 12, 13 is transferred through a carrier gas (e.g. Ar) to the respective containers 1, 2, 3 followed by heating using respective heaters 8 to convert the raw materials in the containers 1, 2, 3 into metal complex gases, respectively, which are then introduced into a reaction chamber 5. Simultaneously, oxygen 10 and a fluorine source gas 15 are also introduced into said chamber 5 followed by heating the resultant mixed gas using a heater 8 to cause chemical reactions, thus forming the objective filmy superconductor on a substrate 9.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はCVD法による膜状超電導体の製造方法に間す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a film-like superconductor by a CVD method.

[従来の技術] 膜状超電導体を製造する方法としてはスクリーン印刷に
よる方法やスパッタリングによる方法が知られている。
[Prior Art] Screen printing methods and sputtering methods are known as methods for manufacturing film-like superconductors.

しかしながら、粉状原料を用いるスクリーン印刷による
方法にあっては、超電導体が低密度で無配向な多結晶体
となって高い臨界電流密度が期待できず、また、焼結の
ための高温処理が必要なためにIC化に適さないという
欠点があった。一方、スパッタリングによる方法にあっ
ては、超電導体の成膜速度が遅く且つ組成が不安定とな
り易く、また、真空中で成膜することから装置を大型化
することが困難であるという欠点があった。
However, in the screen printing method using powdered raw materials, the superconductor becomes a low-density, non-oriented polycrystalline body, so a high critical current density cannot be expected, and high-temperature treatment for sintering is required. Since it is necessary, it has the disadvantage that it is not suitable for IC implementation. On the other hand, methods using sputtering have the disadvantages that the superconductor film formation rate is slow, the composition tends to be unstable, and it is difficult to increase the size of the equipment because the film is formed in a vacuum. Ta.

ここで、薄膜の製造方法の一つとして組成、結晶の配向
性、母材との付着強度、成膜の制御等に優れたCVD法
があり、膜状超電導体の製造にこのCVD法を用いるこ
とが考えられている。
Here, as one of the methods for manufacturing thin films, there is a CVD method that is excellent in composition, crystal orientation, adhesion strength with the base material, control of film formation, etc., and this CVD method is used to manufacture film-like superconductors. That is what is being considered.

[発明が解決しようとする課題] 膜状超電導体の製造にCVD法を用いる場合には、超電
導体の原料を気化させて反応チャンバ内に導き、気相反
応を生しさせて超電導膜を製造することとなる。
[Problems to be Solved by the Invention] When using the CVD method to produce a film-like superconductor, the superconductor raw material is vaporized and introduced into a reaction chamber to cause a gas phase reaction to produce a superconducting film. I will do it.

このようなCVD法による膜状超電導体の製造を実現す
るためには次のような課題を解決する必要がある。すな
わち、成膜速度を速くするために超電導原料の蒸気圧を
高くするとともに、超電導体の組成に対応させて各原料
(原料ガス)の蒸気圧を制御する必要がある。
In order to realize the production of a film-like superconductor by such a CVD method, it is necessary to solve the following problems. That is, in order to increase the film formation rate, it is necessary to increase the vapor pressure of the superconducting raw material and to control the vapor pressure of each raw material (raw material gas) in accordance with the composition of the superconductor.

また、ある量のフッ素を含有させると、第1表に示すよ
うに超電導体の臨界温度Tcを高め、更には密度ρ及び
抗折力σを高められることが知られている(本願出願人
による特願昭63−19053号(昭和63年1月29
日出願)等参照)。
Furthermore, it is known that when a certain amount of fluorine is contained, the critical temperature Tc of a superconductor can be increased as shown in Table 1, and the density ρ and transverse rupture strength σ can also be increased (according to the applicant) Special Application No. 1983-19053 (January 29, 1988)
(see Japanese application), etc.).

このようなフッ素含有による優れた効果をCVD法によ
っても実現させたいという要求があった。
There has been a demand for realizing such excellent effects due to fluorine content also by CVD method.

本発明は上記従来の事情に鑑みなされたもので、CVD
法による膜状超電導体の製造を実現すると共に超電導体
にフッ素を含有させることを目的とする。
The present invention was made in view of the above-mentioned conventional circumstances, and
The purpose of this study is to realize the production of a film-like superconductor by a method and to incorporate fluorine into the superconductor.

(以下余白) 第1表の1−1 第−表の1−2 第−表の1−3 第−表の1−4 第−表の1−5 第−表の1−6 第−表の2−1 第−表の2−2 第−表の2−3 第−表の2−4 第−表の2−5 第−表の2−6 [課題を解決するための手段及び作用コ上記課題を解決
してCVD法による膜状超電導体の製造を実現する本発
明は、複数種類の超電導原料のいずれかを金属錯体ガス
とする工程と、前記複数種類の超電導原料ガスをフッ素
源ガスと共に反応室に導入して化学反応を発生させて膜
状超電導体を形成する工程とを備えたことを特徴とする
(Leaving space below) 1-1 in Table 1 1-2 in Table 1-3 1-3 in Table 1-4 1-4 in Table 1-5 1-6 in Table 1 2-1 Table 2-2 Table 2-3 Table 2-4 Table 2-5 Table 2-6 [Means and actions for solving the problem above] The present invention, which solves the problems and realizes the production of a film-like superconductor by the CVD method, includes a step of converting one of a plurality of types of superconducting raw materials into a metal complex gas, and a step of using the plurality of types of superconducting raw material gases together with a fluorine source gas. The method is characterized by comprising a step of introducing the method into a reaction chamber and causing a chemical reaction to form a film-like superconductor.

すなわち、超電導原料の金属元素を錯体化することによ
り当該超電導原料を気相化したときの蒸気圧を高め、超
電導体の生成速度を速める。また、この錯体の配位子を
適宜選択することにより、その金属錯体ガスの蒸気圧を
適宜変更して最終生成物たる超電導物質の各構成元素の
組成比に応じた蒸気圧で反応させることができる。そし
て、超電導原料ガスを反応室で反応させるに際し、フッ
素源ガスを供給することにより生成される超電導体にフ
ッ素を含有させる。゛ また、上記課題を解決してCVD法による膜状超電導体
の製造を実現する本発明は、フッ素を含有する配位子を
用いて超電導原料を金属錯体ガスとする工程と、前記複
数種類の超電導原料ガスを反応室に導入して化学反応を
発生させて膜状超電導体を形成する工程とを備えたこと
を特徴とする。
That is, by complexing the metal elements of the superconducting raw material, the vapor pressure when the superconducting raw material is turned into a vapor phase is increased, and the production rate of the superconductor is accelerated. In addition, by appropriately selecting the ligands of this complex, it is possible to change the vapor pressure of the metal complex gas appropriately and cause the reaction to occur at a vapor pressure that corresponds to the composition ratio of each constituent element of the superconducting material that is the final product. can. Then, when reacting the superconducting raw material gas in the reaction chamber, a fluorine source gas is supplied to cause the produced superconductor to contain fluorine.゛Furthermore, the present invention, which solves the above problems and realizes the production of a film-like superconductor by the CVD method, includes a step of converting a superconducting raw material into a metal complex gas using a fluorine-containing ligand, and a step of converting the plurality of types of The method is characterized by comprising a step of introducing a superconducting raw material gas into a reaction chamber to generate a chemical reaction to form a film-like superconductor.

すなわち、超電導原料の金属元素を錯体化す際にこれに
フッ素を含有させ、これら金属錯体ガスの反応室での反
応によりフッ素を含有した超電導体を生成する。なお、
フッ素を含有しない配位子の錯体をフッ素を含有した配
位子の雰囲気中で昇華させたり、或は、フッ素を含有し
ない配位子の錯体ガスをフッ素を含有した配位子ガスと
共に反応室へ搬送することにより、フッ素を含有しない
配位子をフッ素を含有した配位子に置換するようにして
もよい。
That is, when the metal elements of the superconducting raw material are complexed, fluorine is added thereto, and a fluorine-containing superconductor is produced by the reaction of these metal complex gases in a reaction chamber. In addition,
Sublimation of a fluorine-free ligand complex in a fluorine-containing ligand atmosphere, or sublimation of a fluorine-free ligand complex gas together with a fluorine-containing ligand gas in a reaction chamber. A fluorine-free ligand may be replaced with a fluorine-containing ligand by transporting the fluorine-containing ligand to a fluorine-containing ligand.

ここに、配位子(Ligand)は金属錯体の種類に応
じて選択され、フッ素を含有するものとしてはHFA 
(Hexaf 1uoroacetylacetone
)等を用い、フッ素を含有しないものとしてはDPM 
(D i p i va I oymethane)、
THF (Tetrahydrofuran)、DMF
  (Dimethylformamide)、ジオキ
サン、ジエチルエーテル、ジメチルアセトアミド等を用
いる。また、フッ素源ガスとして例えば、F2、CF3
Br等を用いる。
Here, the ligand is selected depending on the type of metal complex, and HFA is selected as a fluorine-containing one.
(Hexaf 1uoroacetylacetone
), etc., and DPM as one that does not contain fluorine.
(D i p i va I oymethane),
THF (Tetrahydrofuran), DMF
(Dimethylformamide), dioxane, diethyl ether, dimethylacetamide, etc. are used. In addition, as a fluorine source gas, for example, F2, CF3
Br etc. are used.

[発明の効果コ 本発明の製造方法によれば、超電導原料を金属錯体ガス
とすることにより、比較的低温の条件下において超電導
原料ガスの蒸気圧を高めることを実現し、膜状超電導体
の生産性を向上することができる。更に、超電導原料ガ
スにフッ素を含有させる、若しくは、フッ素を反応室に
導入することにより、反応室で生成される超電導体にフ
ッ素を含有させることができ、超電導体の臨界温度の向
上、機械的強度の向上を図ることができる。
[Effects of the Invention] According to the production method of the present invention, by using a metal complex gas as the superconducting raw material, it is possible to increase the vapor pressure of the superconducting raw material gas under relatively low temperature conditions, and to improve the production of film-like superconductors. Productivity can be improved. Furthermore, by incorporating fluorine into the superconducting raw material gas or introducing fluorine into the reaction chamber, it is possible to incorporate fluorine into the superconductor produced in the reaction chamber, improving the critical temperature of the superconductor and improving mechanical properties. Strength can be improved.

[実施例コ まず、本発明を実施するための装置の一例を第1図に基
づいて説明する。
[Embodiment] First, an example of an apparatus for carrying out the present invention will be described based on FIG. 1.

同図において、1.2.3はそれぞれ超電導体原料とな
る金属元素若しくは金属錯体を収容した原料容器であり
、これら原料容器1.2.3の上流には蒸気状の配位子
を収容した配位子容器11.12.13が設けられ、こ
れら配位子容器11.12.13は原料容器1.2.3
にそれぞれ接続されている。なお、通常、超電導元素の
化合物に配位子を付加して錯体ガスを作るが、例えば、
Baメタルを直接配位子で錯体化し、金属錯体ガスを得
ることもできる。
In the figure, 1.2.3 are raw material containers containing metal elements or metal complexes, which are the raw materials for superconductors, and vaporized ligands are stored upstream of these raw material containers 1.2.3. Ligand containers 11.12.13 are provided, these ligand containers 11.12.13 being source containers 1.2.3.
are connected to each. Usually, a complex gas is created by adding a ligand to a compound of a superconducting element, for example,
A metal complex gas can also be obtained by directly complexing Ba metal with a ligand.

原料容器1.2.3の下流には反応容器5が設けられ、
原料容器1.2.3はそれぞれ反応容器5に接続されて
いる。そして、反応容器5には酸素供給源10が接続さ
れていると共に、トラップ6を介して真空ポンプ7が接
続されている。また、各原料容器1.2.3、反応容器
5及び原料容器1.2.3から反応容器5への管路には
ヒータ8が配設されている。
A reaction vessel 5 is provided downstream of the raw material vessel 1.2.3,
The raw material vessels 1.2.3 are each connected to a reaction vessel 5. An oxygen supply source 10 is connected to the reaction vessel 5, and a vacuum pump 7 is also connected via a trap 6. Further, a heater 8 is provided in each of the raw material containers 1.2.3, the reaction container 5, and the pipe line from the raw material container 1.2.3 to the reaction container 5.

上記構成のCVD装置において、反応容器5内に超電導
体を膜状に付着させる基板9を設置し、真空ポンプ7に
より反応容器5内を減圧すると共にヒータ8により加熱
して超電導体の生成を開始する。
In the CVD apparatus having the above configuration, a substrate 9 on which a superconductor is deposited in a film form is installed inside the reaction vessel 5, and the inside of the reaction vessel 5 is depressurized by the vacuum pump 7 and heated by the heater 8 to start producing the superconductor. do.

すなわち、フッ素含有配位子による金属錯体ガスを反応
室に導入する場合には、配位子容器11.12.13の
適宜のもの若しくは全てにフッ素を含有する配位子を収
容する。そして、配位子容器11.12.13の上流側
からキャリアガスとしてのアルゴンガスArを供給し、
配位子容器11.12.13内に収容されている配位子
ガスをArガスに乗せて原料容器1.2.3へ供給する
。そして、ヒータ8による加熱条件下で、原料容器1.
2.3内の超電導体原料をフッ素を含有する金属錯体ガ
ス(配位子の付加反応によるアダクツを含む)とし、こ
の金属錯体ガスをArガスに乗せて反応容器5へ供給す
る。なお、原料容器1.2.3から反応容器5への搬送
途中において、ヒータ8による加熱で金属錯体ガスの温
度が保持される。
That is, when a metal complex gas containing a fluorine-containing ligand is introduced into the reaction chamber, the fluorine-containing ligand is accommodated in any or all of the ligand containers 11, 12, and 13. Then, argon gas Ar is supplied as a carrier gas from the upstream side of the ligand container 11.12.13,
The ligand gas contained in the ligand container 11.12.13 is carried on Ar gas and supplied to the raw material container 1.2.3. Then, under heating conditions by the heater 8, the raw material container 1.
The superconductor raw material in step 2.3 is a fluorine-containing metal complex gas (including adducts resulting from the addition reaction of ligands), and this metal complex gas is carried on Ar gas and supplied to the reaction vessel 5. Note that during the transfer from the raw material container 1.2.3 to the reaction container 5, the temperature of the metal complex gas is maintained by heating by the heater 8.

このように、各原料容器1.2.3から金属錯体ガス(
例えば、原料容器1からBa錯体ガス、原料容器2から
Y錯体ガス、原料容器3からCu錯体ガス)を供給する
と共に酸素源から酸素02を供給して、反応容器5内で
化学反応を生じさせ、フッ素を含有した所定の超電導物
質を基板9上に降り積もらせて膜状の超電導体を生成す
る。
In this way, the metal complex gas (
For example, a chemical reaction is caused in the reaction vessel 5 by supplying Ba complex gas from raw material container 1, Y complex gas from raw material container 2, Cu complex gas from raw material container 3, and supplying oxygen 02 from an oxygen source. A predetermined superconducting material containing fluorine is deposited on the substrate 9 to produce a film-like superconductor.

ここで、原料容器に収容した原料がフッ素を含有しない
のものであっても、配位子容器から供給されたフッ素含
有配位子ガスのもとで昇華されたり或はフッ素含有配位
子ガスと混合して反応容器へ搬送したりすると、反応容
器にフッ素含有配位子による金属錯体ガス若しくはフッ
素含有配位子ガスと共存した金属錯体ガスを導入するこ
とができる。
Here, even if the raw material contained in the raw material container does not contain fluorine, it may be sublimated under the fluorine-containing ligand gas supplied from the ligand container or the fluorine-containing ligand gas When mixed with the fluorine-containing ligand and transported to the reaction vessel, a metal complex gas formed by a fluorine-containing ligand or a metal complex gas coexisting with a fluorine-containing ligand gas can be introduced into the reaction vessel.

一方、超電導原料ガスをフッ素源ガスと共に反応室に導
入する場合には、配位子容器11.12.13に収容す
る配位子及び原料容器1.2.3に収容する原料はフッ
素を含有しないものでもよく、反応容器5に接続したフ
ッ素源15から反応容器5内にフッ素源ガスを導入して
フッ素を含有した超電導体生成することができる。。な
お、この場合にあっても、勿論、配位子若しくは原料に
フッ素を含有するものを用いてもよい。
On the other hand, when superconducting raw material gas is introduced into the reaction chamber together with fluorine source gas, the ligand contained in the ligand container 11.12.13 and the raw material contained in the raw material container 1.2.3 contain fluorine. A superconductor containing fluorine can be produced by introducing a fluorine source gas into the reaction container 5 from the fluorine source 15 connected to the reaction container 5. . In this case, of course, a ligand or a raw material containing fluorine may be used.

なお、上記した装置はBa−Y−Cu−0系の超電導体
を生成する例であるが、B1−5r−Ca−Cu−0系
の超電導体を生成する場合には上記した装置に原料容器
受には配位子容器を備えた系を更に1系列増加させれば
良い。
The above-mentioned apparatus is an example of producing a Ba-Y-Cu-0-based superconductor, but when producing a B1-5r-Ca-Cu-0-based superconductor, a raw material container is added to the above-mentioned apparatus. For the receiver, it is sufficient to add one more system equipped with a ligand container.

次いで、上記した装置により膜状超電導体を生成した実
施例を以下に説明する。
Next, an example in which a film-like superconductor was produced using the above-described apparatus will be described below.

〈実施例1〉 本実施例は、Ba−Y−Cu−0系の超電導体を生成す
る例である。
<Example 1> This example is an example of producing a Ba-Y-Cu-0 based superconductor.

超電導原料となる金属錯体ガスとして、Ba(HFA)
2ガス、 Y(HFA)3ガス、 Cu(HFA)2ガ
スを用い、配位子ガスとして、Ba(HFA)2に対し
てHFA、Y (HFA) 3に対してHFAを用いた
。なお、Cu(HFA)2は安定であるのて配位子容器
から原料容器へ供給する配位子は用いなかった。
Ba (HFA) is used as a metal complex gas as a superconducting raw material.
As the ligand gases, HFA was used for Ba(HFA)2, and HFA was used for Y(HFA)3. Note that since Cu(HFA)2 is stable, the ligand supplied from the ligand container to the raw material container was not used.

また、キャリアガスとしてArガスを用いた。Furthermore, Ar gas was used as a carrier gas.

また、それぞれの原料容器において、200℃で蒸気圧
4mmHgのBa(HFA)2ガス、120℃で蒸気圧
2mmHgのY(HFA)3ガス、100℃で蒸気圧6
mmHgのCu(HFA)2ガスを得た。そして、これ
ら金属錯体ガスを02ガスと共に反応容器に導入して、
反応圧力10〜100Torr、反応温度350°Cで
化学反応させた。
In addition, in each raw material container, Ba(HFA) 2 gas with a vapor pressure of 4 mmHg at 200°C, Y(HFA) 3 gas with a vapor pressure of 2 mmHg at 120°C, and 6 vapor pressure at 100°C.
Cu(HFA)2 gas of mmHg was obtained. Then, these metal complex gases are introduced into the reaction vessel together with 02 gas,
A chemical reaction was carried out at a reaction pressure of 10 to 100 Torr and a reaction temperature of 350°C.

そして、反応後の試料を600℃の酸素雰囲気中で10
時間熱処理した結果、臨界温度Tc=95に級、臨界電
流密度J c=5X10’A/cm2のフッ素を含有し
た超電導体(YBa2Cu:+C)r−δ:F)の均一
な膜が生成できた。
After the reaction, the sample was placed in an oxygen atmosphere at 600°C for 10
As a result of heat treatment for several hours, a uniform film of fluorine-containing superconductor (YBa2Cu:+C)r-δ:F) with a critical temperature Tc = 95 and a critical current density Jc = 5X10'A/cm2 was produced. .

なお、上記Y(HFA)3に代えY(DPM)3を用い
たり、或は、Cu(HFA)2に代えてCu(DPM)
2を用いてもよく、この場合にあってもフッ素を含有す
る配位子により超電導体へのフッ素添加量を確保するこ
とができ、上記と同様な超電導体が得られた。また、キ
ャリアガスをArに代えてHeを用いてもよい。
In addition, Y(DPM)3 may be used instead of Y(HFA)3, or Cu(DPM) may be used instead of Cu(HFA)2.
2 may be used, and even in this case, the amount of fluorine added to the superconductor could be ensured by the fluorine-containing ligand, and a superconductor similar to the above was obtained. Furthermore, He may be used as the carrier gas instead of Ar.

〈実施例2〉 本実施例は、B 1−5r−Ca−Cu−0系の超電導
体を生成する例である。
<Example 2> This example is an example of producing a B 1-5r-Ca-Cu-0-based superconductor.

超電導原料となる金属錯体ガスとして、Bi(OC2H
5)3ガス、 5r(HFA)2ガス、Ca(HFA)
2ガス、Cu(HFA)2ガスを用い、配位子ガスとし
て、5r(HFA)2に対してHFA、Ca (HFA
)2に対してHFAを用いた。
Bi(OC2H
5) 3 gases, 5r (HFA) 2 gases, Ca (HFA)
2 gas, Cu (HFA) 2 gas, and HFA, Ca (HFA) for 5r (HFA) 2 as a ligand gas.
) HFA was used for 2.

また、キャリアガスとしてAr(またはHe)ガスを用
いた。
Further, Ar (or He) gas was used as a carrier gas.

また、それぞれの原料容器において、120℃て蒸気圧
lmmHgのB i (OC2H5)3ガス、80°C
で蒸気圧lmmHgの5r(HFA)2ガス、80℃で
蒸気圧lmmHgのCa、(HFA)2ガス、150°
Cで蒸気圧1.5mmHgの Cu(HFA)2ガスを
得た。そして、これら金属錯体ガスを02ガスと共に反
応容器に導入して、反応圧力10〜100Torr、反
応温度350℃で化学反応させた。そして、反応後の試
料を750°Cの大気中で30時間熱処理した結果、臨
界温度Tc=100に級、臨界電流密度Jc=IX10
’A/cm2のフッ素を含有した超電導体(BiCaS
rCu20x: F)の均一な膜が生成できた。
In addition, in each raw material container, B i (OC2H5)3 gas with a vapor pressure of 1 mmHg at 120°C, 80°C
5r(HFA)2 gas with vapor pressure lmmHg at 80°C, (HFA)2 gas with vapor pressure lmmHg at 150°
Cu(HFA)2 gas with a vapor pressure of 1.5 mmHg was obtained at C. Then, these metal complex gases were introduced into a reaction vessel together with 02 gas, and a chemical reaction was carried out at a reaction pressure of 10 to 100 Torr and a reaction temperature of 350°C. After the reaction, the sample was heat-treated in the atmosphere at 750°C for 30 hours, and as a result, the critical temperature Tc = 100, and the critical current density Jc = IX10.
'A/cm2 fluorine-containing superconductor (BiCaS
A uniform film of rCu20x:F) was produced.

〈実施例3〉 本実施例は、Ba−Y−Cu−0系の超電導体を生成す
る例である。
<Example 3> This example is an example of producing a Ba-Y-Cu-0 based superconductor.

超電導原料として、BaはBa(AcAc)2、YはY
(ACAC)3、CuはCu(AcAc)2をそれぞれ
HFAガスのもとで加熱してガス化して用いた。
As superconducting raw materials, Ba is Ba(AcAc)2, Y is Y
(ACAC)3 and Cu were used by heating and gasifying Cu(AcAc)2 under HFA gas.

また、キャリアガスとしてAr(またはHe)ガスを用
いた。
Further, Ar (or He) gas was used as a carrier gas.

また、それぞれの反応容器においてHFAと反応生成し
た 200℃で4mmHgのBa(HFA)2HFAガ
ス、120℃で2mmHgのY(HFA)3−HFAガ
ス、100℃で6mmHgのCu (HFA)2−HF
Aガスを得た。
In addition, Ba(HFA)2HFA gas of 4 mmHg at 200°C, Y(HFA)3-HFA gas of 2 mmHg at 120°C, and Cu(HFA)2-HF of 6 mmHg at 100°C were generated by reaction with HFA in each reaction vessel.
I got A gas.

そして、これらの金属錯体ガスを02ガスと共に反応容
器に導入して、反応圧力10〜100T。
Then, these metal complex gases are introduced into the reaction vessel together with the 02 gas, and the reaction pressure is 10 to 100T.

rr、反応温度350℃で化学反応させた。そして、反
応後の試料を600℃の酸素雰囲気中で10時間熱処理
した結果、フッ素を含有した超電導体(YBa2Cu3
07−δ:F)の均一な膜が生成できた。
rr, chemical reaction was carried out at a reaction temperature of 350°C. After the reaction, the sample was heat-treated in an oxygen atmosphere at 600°C for 10 hours, resulting in a fluorine-containing superconductor (YBa2Cu3
A uniform film of 07-δ:F) was produced.

〈実施例4〉 本実施例は、B 1−5r−Ca−Cu−0系の超電導
体を生成する例である。
<Example 4> This example is an example of producing a B 1-5r-Ca-Cu-0-based superconductor.

超電導原料として、Bi、CuはそれぞれBi(OC2
H5)3ガス、Cu (HFA)2ガスを用い、Sr、
Caはそれぞれの金属アルコキシド5r(OC2H5)
2、Ca (OC2H5)2をHFAガスのもとで加熱
してガス化して用いた。
As superconducting raw materials, Bi and Cu are respectively Bi(OC2
Using H5)3 gas and Cu (HFA)2 gas, Sr,
Ca is the respective metal alkoxide 5r (OC2H5)
2. Ca (OC2H5)2 was heated and gasified under HFA gas.

また、キャリアガスとしてAr(またはHe)ガスを用
いた。
Further, Ar (or He) gas was used as a carrier gas.

また、Bi、Cuに関してはそれぞれの原料容器におい
て120℃で蒸気圧lmmHgのBi(OC2H5)3
ガス、150°Cて蒸気圧1.5mmHgのCu(HF
A)2ガスを、Sr、Caに関してはそれぞれ原料容器
においてHFAと反応生成した80℃で蒸気圧1 mm
 H’ gの5r(HFA)2ガス、80℃で蒸気圧l
mmHgの(、a(HFA)2ガスを得た。
Regarding Bi and Cu, Bi(OC2H5)3 with a vapor pressure of 1 mmHg at 120°C in each raw material container.
Cu(HF) gas, vapor pressure 1.5 mmHg at 150°C
A) Two gases, Sr and Ca, were produced by reaction with HFA in a raw material container at 80°C with a vapor pressure of 1 mm.
H'g of 5r(HFA)2 gas, vapor pressure l at 80℃
mmHg (, a(HFA)2 gas was obtained.

そして、これら金属錯体ガスを02ガスと共に反応容器
に導入して、反応圧力10〜100Torr、反応温度
350℃で化学反応させた。そして、反応後の試料を7
50℃の大気中で30時間熱処理した結果、フッ素を含
有した超電導体(BiCaS r Cu20x: F)
の均一な膜が生成できた。
Then, these metal complex gases were introduced into a reaction vessel together with 02 gas, and a chemical reaction was carried out at a reaction pressure of 10 to 100 Torr and a reaction temperature of 350°C. Then, the sample after reaction was
As a result of heat treatment in the atmosphere at 50°C for 30 hours, a fluorine-containing superconductor (BiCaS r Cu20x: F) was produced.
A uniform film was produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る製造装置の構成図であ
る。 1.2.3は原料容器、 5は反応容器、 7は真空ポンプ、 9は基板、 10は酸素供給源、 11.12.13は配位子容器、 15はフッ素源ガス供給源である。 特許出願人    三菱金属株式会社
FIG. 1 is a configuration diagram of a manufacturing apparatus according to an embodiment of the present invention. 1.2.3 is a raw material container, 5 is a reaction container, 7 is a vacuum pump, 9 is a substrate, 10 is an oxygen supply source, 11.12.13 is a ligand container, and 15 is a fluorine source gas supply source. Patent applicant Mitsubishi Metals Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)複数種類の超電導原料のいずれかを金属錯体ガス
とする工程と、前記複数種類の超電導原料ガスをフッ素
源ガスと共に反応室に導入して化学反応を発生させて膜
状超電導体を形成する工程とを備えたことを特徴とする
膜状超電導体の製造方法。
(1) A step of converting one of multiple types of superconducting raw materials into a metal complex gas, and introducing the multiple types of superconducting raw material gases together with a fluorine source gas into a reaction chamber to generate a chemical reaction to form a film-like superconductor. A method for producing a film-like superconductor, comprising the steps of:
(2)フッ素を含有する配位子を用いて超電導原料を金
属錯体ガスとする工程と、前記複数種類の超電導原料ガ
スを反応室に導入して化学反応を発生させて膜状超電導
体を形成する工程とを備えたことを特徴とする膜状超電
導体の製造方法。
(2) A step of converting the superconducting raw material into a metal complex gas using a fluorine-containing ligand, and introducing the plurality of types of superconducting raw material gases into a reaction chamber to generate a chemical reaction to form a film-like superconductor. A method for producing a film-like superconductor, comprising the steps of:
JP13974788A 1988-06-06 1988-06-06 Production of filmy superconductor Pending JPH01308806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13974788A JPH01308806A (en) 1988-06-06 1988-06-06 Production of filmy superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13974788A JPH01308806A (en) 1988-06-06 1988-06-06 Production of filmy superconductor

Publications (1)

Publication Number Publication Date
JPH01308806A true JPH01308806A (en) 1989-12-13

Family

ID=15252439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13974788A Pending JPH01308806A (en) 1988-06-06 1988-06-06 Production of filmy superconductor

Country Status (1)

Country Link
JP (1) JPH01308806A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310515A (en) * 1987-06-12 1988-12-19 Nippon Telegr & Teleph Corp <Ntt> Manufacture of superconductor membrane
JPH01104774A (en) * 1987-10-14 1989-04-21 Matsushita Electric Ind Co Ltd Production of thin film of oxide superconductor
JPH01148798A (en) * 1987-12-07 1989-06-12 Matsushita Electric Ind Co Ltd Production of superconducting thin film
JPH01257194A (en) * 1988-04-06 1989-10-13 Ube Ind Ltd Production of thin single crystal film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310515A (en) * 1987-06-12 1988-12-19 Nippon Telegr & Teleph Corp <Ntt> Manufacture of superconductor membrane
JPH01104774A (en) * 1987-10-14 1989-04-21 Matsushita Electric Ind Co Ltd Production of thin film of oxide superconductor
JPH01148798A (en) * 1987-12-07 1989-06-12 Matsushita Electric Ind Co Ltd Production of superconducting thin film
JPH01257194A (en) * 1988-04-06 1989-10-13 Ube Ind Ltd Production of thin single crystal film

Similar Documents

Publication Publication Date Title
KR910007382B1 (en) Superconductor material and method of manufacturing super-conductor film
EP0453107B1 (en) Chemical deposition methods using supercritical fluid solutions
JPH02225317A (en) Production of oxide superconductor by chemical gas phase deposition method
JP2786200B2 (en) Raw material mixture for forming oxide superconductor thin film and method for forming oxide superconductor thin film
JPH01308804A (en) Production of filmy superconductor
US5140003A (en) Method for manufacturing layers from an oxide-ceramic superconductor material on a substrate using a cvd-process
JPH01308806A (en) Production of filmy superconductor
JPH01308808A (en) Production of filmy superconductor
JPH01308802A (en) Production of filmy superconductor and device therefor
JPH01308805A (en) Production of filmy superconductor
JPH0285370A (en) Manufacture of thin oxide film
JPH01308807A (en) Production of filmy superconductor
JP2661169B2 (en) Superconductor thin film manufacturing method
JPH04333572A (en) Method for gasifying mo stock for oxide superconductor
JPH01219016A (en) Production of thin superconducting ceramic film containing dispersed oxide
JPH01308809A (en) Production of filmy superconductor
JP2856859B2 (en) Method for producing oxide superconductor by metal organic chemical vapor deposition
JPH0254811A (en) Manufacture of superconductor thin film
JPH09195050A (en) Production of oxide or metal
JPH02255508A (en) Production of superconducting thin film by chemical vapor growth method of organic metallic complex
JP3202045B2 (en) Method of manufacturing oxide superconductor by CVD method
JPH03174304A (en) Production of thin film of oxide superconductor
JPH0255219A (en) Production of superconductor thin film
JPH0337101A (en) Production of oxide superconductor by mocvd method
JPH05147905A (en) Production of oxide superconductor