JPH01308809A - Production of filmy superconductor - Google Patents

Production of filmy superconductor

Info

Publication number
JPH01308809A
JPH01308809A JP63139750A JP13975088A JPH01308809A JP H01308809 A JPH01308809 A JP H01308809A JP 63139750 A JP63139750 A JP 63139750A JP 13975088 A JP13975088 A JP 13975088A JP H01308809 A JPH01308809 A JP H01308809A
Authority
JP
Japan
Prior art keywords
ligand
gas
superconductor
raw material
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63139750A
Other languages
Japanese (ja)
Inventor
Sadaaki Hagino
萩野 貞明
Hiroto Uchida
寛人 内田
Takeshi Sakurai
健 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP63139750A priority Critical patent/JPH01308809A/en
Publication of JPH01308809A publication Critical patent/JPH01308809A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To obtain the title superconductor through CVD process with enhanced film formation rate and reduced reaction temperature, also causing no contamination with the carbon in the ligand, by making raw materials into ligand-contg. metal complex gases respectively and carrying out reactions in the presence of both water vapor and oxygen under ultraviolet irradiation. CONSTITUTION:A vaporized ligand (e.g. hexafluoroacetylacetone) is put into each of containers 11, 12, 13, while plural kinds of raw materials (e.g. Ba compound, Y compound, Cu compound) are put into respective containers 1, 2, 3. Thence, the ligand in the containers 11, 12, 13 is transferred through a carrier gas (e.g. Ar) to the respective containers 1, 2, 3 followed by heating using respective heaters 8 to convert the raw materials into ligand-contg. metal complex gases, respectively, which are then introduced into a reaction chamber 5. Simultaneously, water vapor-contg. oxygen 10 is also introduced into said chamber 5 followed by heating the resultant mixed gas using a heater 8 under ultraviolet irradiation to cause reactions, thus forming the objective filmy superconductor on a substrate 9.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はCVD法による膜状超電導体の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a film-like superconductor by a CVD method.

[従来の技術] 膜状超電導体を製造する方法としてはスクリーン印刷に
よる方法やスパッタリングによる方法が知られている。
[Prior Art] Screen printing methods and sputtering methods are known as methods for manufacturing film-like superconductors.

しかしながら、粉状原料を用いるスクリーン印刷による
方法にあっては、超電導体が低密度で無配向な多結晶体
となって高い臨界電流密度が期待てきず、また、焼結の
ための高温処理が必要なためにIC化に適さないという
欠点があった。一方、スパッタリングによる方法にあっ
ては、超電導体の成膜速度が遅く且つ組成が不安定とな
り易く、また、真空中で成膜することから装置を大型化
することが困難であるという欠点があった。
However, in the screen printing method using powdered raw materials, the superconductor becomes a low-density, non-oriented polycrystalline body, so a high critical current density cannot be expected, and high-temperature treatment for sintering is required. Since it is necessary, it has the disadvantage that it is not suitable for IC implementation. On the other hand, methods using sputtering have the disadvantages that the superconductor film formation rate is slow, the composition tends to be unstable, and it is difficult to increase the size of the equipment because the film is formed in a vacuum. Ta.

ここで、薄膜の製造方法の一つとして組成、結晶の配向
性、母材との付着強度、成膜の制御等に優れたCVD法
があり、膜状超電導体の製造にこのCVD法を用いるこ
とが考えられている。
Here, as one of the methods for manufacturing thin films, there is a CVD method that is excellent in composition, crystal orientation, adhesion strength with the base material, control of film formation, etc., and this CVD method is used to manufacture film-like superconductors. That is what is being considered.

[発明が解決しようとする課題] 膜状超電導体の製造にCVD法を用いる場合には、超電
導体の原料を気化させて反応チャンバ内に導き、気相反
応を生しさせて超電導膜を製造することとなる。
[Problems to be Solved by the Invention] When using the CVD method to produce a film-like superconductor, the superconductor raw material is vaporized and introduced into a reaction chamber to cause a gas phase reaction to produce a superconducting film. I will do it.

このようなCVD法による膜状超電導体の製造を実現す
るためには次のような課題を解決する必要がある。すな
わち、成膜速度を速くするために超電導原料の蒸気圧を
高くするとともに、超電導体の組成に対応させて各原料
(原料ガス)の蒸気圧を制御する必要がある。
In order to realize the production of a film-like superconductor by such a CVD method, it is necessary to solve the following problems. That is, in order to increase the film formation rate, it is necessary to increase the vapor pressure of the superconducting raw material and to control the vapor pressure of each raw material (raw material gas) in accordance with the composition of the superconductor.

超電導原料の蒸気圧を高めるには、超電導体原料の金属
元素を配位子と結合した金属錯体ととすることが有利で
ある。しかしながら、このような金属錯体を原料として
用いる場合には、配位子に含まれる炭素が生成した超電
導体膜に混入してしまい、超電導性に悪影響をおよぼし
てしまうという新たな問題が生じてしまう。
In order to increase the vapor pressure of the superconducting raw material, it is advantageous to form the metal element of the superconducting raw material into a metal complex bonded to a ligand. However, when such metal complexes are used as raw materials, a new problem arises: the carbon contained in the ligands gets mixed into the produced superconductor film, adversely affecting superconductivity. .

また、上記問題の他に、膜状超電導体のICへの応用を
実現するためには、プロファイルやAI配線の維持を図
るために、反応温度をできるだけ低温化したいという要
求がある。
In addition to the above-mentioned problems, in order to realize the application of film superconductors to ICs, there is a need to lower the reaction temperature as much as possible in order to maintain the profile and AI wiring.

本発明は上記従来の事情に鑑みなされたもので、金属錯
体を原料として用いる場合にあっても炭素の混入を防止
して、比較的低温でのCVD法による膜状超電導体の製
造を実現する製造方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional circumstances, and aims to prevent the contamination of carbon even when metal complexes are used as raw materials, and to realize the production of film-like superconductors by the CVD method at relatively low temperatures. The purpose is to provide a manufacturing method.

[課題を解決するための手段及び作用コ上記課題を解決
してCVD法による膜状超電導体の製造を実現する本発
明は、複数種類の超電導原料のいずれかを配位子を含む
金属錯体ガスとする工程と、前記複数種類の超電導原料
ガスを水蒸気及び発生機酸素の原料ガスと共に反応室に
導入して紫外線照射下で化学反応を発生させて膜状超電
導体を形成する工程とを備えたことを特徴とする。
[Means and effects for solving the problems] The present invention, which solves the above problems and realizes the production of a film-like superconductor by the CVD method, uses any of a plurality of types of superconducting raw materials as a metal complex gas containing a ligand. and a step of introducing the plurality of types of superconducting raw material gases together with water vapor and generator oxygen raw material gas into a reaction chamber to generate a chemical reaction under ultraviolet irradiation to form a film-like superconductor. It is characterized by

すなわち、超電導原料の金属元素を錯体化することによ
り当該超電導原料を気相化したときの蒸気圧を高め、超
電導体の生成速度を速める。そして、この錯体の配位子
を適宜選択することにより、その金属錯体ガスの蒸気圧
を適宜変更して最終生成物たる超電導物質の各構成元素
の組成比に応じた蒸気圧で反応させることができる。こ
こに、配位子(Ligand)としては金属錯体の種類
に応じてHFA (Hexaf 1uoroacety
lacetone)、DPM(Dipival。
That is, by complexing the metal elements of the superconducting raw material, the vapor pressure when the superconducting raw material is turned into a vapor phase is increased, and the production rate of the superconductor is accelerated. By appropriately selecting the ligands of this complex, it is possible to change the vapor pressure of the metal complex gas appropriately and cause the reaction to occur at a vapor pressure that corresponds to the composition ratio of each constituent element of the superconducting material that is the final product. can. Here, as a ligand, HFA (Hexaf 1 uoroacety) is used depending on the type of metal complex.
lacetone), DPM (Dipival.

ymethane)、THF (Te t r ahy
drofuran)、DMF (D ime t hy
 l formamide)、ジオキサン、ジエチルエ
ーテル、ジメチルアセトアミド等を用いる。
ymethane), THF (Te tr ahy
drofuran), DMF (Dime thy
dioxane, diethyl ether, dimethylacetamide, etc.

そして、金属錯体ガスを反応室で反応させて超電導体を
生成するに際し、反応室に導入した水蒸気と金属錯体の
配位子との反応により配位子を金属元素から切り離し、
生成される超電導体に配位子の炭素が導入するのを防止
する。
When the metal complex gas is reacted in the reaction chamber to produce a superconductor, the ligand of the metal complex is separated from the metal element by the reaction between the water vapor introduced into the reaction chamber and the ligand of the metal complex.
This prevents the introduction of carbon as a ligand into the superconductor produced.

例えば、Ba(HFA)2錯体については下記の反応に
よりBaから配位子を切り離し、この切り離した配位子
を反応室から排出することにより、超電導体の生成に関
与する原料を炭素を含まない状態とする。
For example, for Ba(HFA)2 complex, the ligand is separated from Ba by the following reaction, and the separated ligand is discharged from the reaction chamber, thereby converting the raw material involved in the production of superconductor into a carbon-free material. state.

(以下余白) B a  (HFA)2+2820 CF3  0H →Ba  (OH)2+2  0=C−C=C−CF3
更にまた、紫外線照射下で化学反応を発生させて膜状超
電導体を形成するため、紫外線により発生機酸素の原料
ガス(N20.03等)から活性な発生機酸素を発生さ
せて反応を促進し、化学反応に要する加熱の温度を低く
抑えることができる。
(Left below) B a (HFA)2+2820 CF3 0H →Ba (OH)2+2 0=C-C=C-CF3
Furthermore, in order to form a film-like superconductor by generating a chemical reaction under ultraviolet irradiation, active generator oxygen is generated from the generator oxygen raw material gas (N20.03, etc.) using ultraviolet rays to accelerate the reaction. , the heating temperature required for chemical reactions can be kept low.

[発明の効果コ 本発明の製造方法によれば、超電導原料を金属錯体ガス
とすることにより、超電導原料ガスの蒸気圧を高めるこ
とを実現し、膜状超電導体の生産性を向上することがで
きる。そして、超電導原料ガスを水蒸気及び酸素と共に
反応室に導入して化学反応を生じさせることにより、水
と配位子との反応により超電導体原料の金属元素から配
位子を切り離すようにしたため、配位子に含まれる炭素
が生成された超電導体に混入するのを防止することがで
き、臨界温度、臨界電流密度等の超電導性に優れた膜状
超電導体を製造することができる。
[Effects of the Invention] According to the manufacturing method of the present invention, by using a metal complex gas as the superconducting raw material, it is possible to increase the vapor pressure of the superconducting raw material gas and improve the productivity of the film-like superconductor. can. By introducing superconducting raw material gas into the reaction chamber together with water vapor and oxygen to cause a chemical reaction, the ligands are separated from the metal element of the superconducting raw material by the reaction between water and the ligands. It is possible to prevent carbon contained in the ions from being mixed into the produced superconductor, and it is possible to produce a film-like superconductor with excellent superconductivity such as critical temperature and critical current density.

更に、超電導原料ガスを反応室で反応させる際に紫外線
を照射することにより、発生機の酸素を発生させて超電
導原料の化学反応を促進することができ、この反応室で
の反応に必要とされる加熱温度を低く抑えることを実現
して、膜状超電導体のICへの適用を支障なく達成する
ことができる。
Furthermore, by irradiating ultraviolet rays when reacting the superconducting raw material gas in the reaction chamber, it is possible to generate oxygen in the generator and promote the chemical reaction of the superconducting raw material, which is necessary for the reaction in the reaction chamber. By suppressing the heating temperature at a low level, the film superconductor can be applied to ICs without any problems.

[実施例コ まず、本発明を実施するための装置の一例を第1図に基
づいて説明する。
[Embodiment] First, an example of an apparatus for carrying out the present invention will be described based on FIG. 1.

同図において、1.2.3はそれぞれ超電導体原料とな
る金属元素若しくは金属錯体を収容した原料容器であり
、これら原料容器1.2.3の上流には蒸気状の配位子
を収容した配位子容器11.12.13が設けられ、こ
れら配位子容器11.12.13は原料容器1.2.3
にそれぞれ接続されている。なお、通常、超電導元素の
化合物に配位子を付加して錯体ガスを作るが、例えば、
Baメタルを直接配位子で錯体化し、金属錯体ガスを得
ることもてきる。
In the figure, 1.2.3 are raw material containers containing metal elements or metal complexes, which are the raw materials for superconductors, and vaporized ligands are stored upstream of these raw material containers 1.2.3. Ligand containers 11.12.13 are provided, these ligand containers 11.12.13 being source containers 1.2.3.
are connected to each. Usually, a complex gas is created by adding a ligand to a compound of a superconducting element, for example,
A metal complex gas can also be obtained by directly complexing Ba metal with a ligand.

原料容器1.2.3の下流には反応容器5が設けられ、
原料容器1.2.3はそれぞれ反応容器5に接続されて
いる。そして、反応容器5には酸素供給源10が接続さ
れていると共に、トラップ6を介して真空ポンプ7が接
続され、更には、紫外線照射装置15が設けられている
。この酸素供給源10には所定量の水蒸気を含んだ発生
機酸素の原料ガス(N20.03.02等)でおり、反
応容器5には発生機酸素原料ガスと共に所定量の水蒸気
が供給される。また、各原料容器1.2.3、反応容器
5及び原料容器1.2.3から反応容器5への管路には
ヒータ8が配設されている。
A reaction vessel 5 is provided downstream of the raw material vessel 1.2.3,
The raw material vessels 1.2.3 are each connected to a reaction vessel 5. An oxygen supply source 10 is connected to the reaction vessel 5, a vacuum pump 7 is connected via a trap 6, and an ultraviolet irradiation device 15 is further provided. This oxygen supply source 10 contains a generator oxygen source gas (N20.03.02, etc.) containing a predetermined amount of water vapor, and a predetermined amount of water vapor is supplied to the reaction vessel 5 along with the generator oxygen source gas. . Further, a heater 8 is provided in each of the raw material containers 1.2.3, the reaction container 5, and the pipe line from the raw material container 1.2.3 to the reaction container 5.

上記構成のCVD装置において、反応容器5内に超電導
体を膜状に付着させる基板9を設置し、真空ポンプ7に
より反応容器5内を減圧すると共にヒータ8により加熱
して超電導体の生成を開始する。
In the CVD apparatus having the above configuration, a substrate 9 on which a superconductor is deposited in a film form is installed inside the reaction vessel 5, and the inside of the reaction vessel 5 is depressurized by the vacuum pump 7 and heated by the heater 8 to start producing the superconductor. do.

すなわち、配位子容器lL12.13の上、流側からキ
ャリアガスとしてのアルゴンガスArを供給し、配位子
容器11.12.13内に収容されている配位子ガスを
Arガスに乗せて原料容器1.2.3へ供給する。そし
て、ヒータ8による加熱条件下で、原料容器1.2.3
内の超電導体原料を金属錯体ガス(配位子の付加反応に
よるアダクツを含む)とし、この金属錯体ガスをArガ
スに乗せて反応容器5へ供給する。なお、原料容器1.
2.3から反応容器5への搬送途中において、ヒータ8
による加熱で金属錯体ガスの温度が保持される。
That is, argon gas Ar is supplied as a carrier gas from the flow side above the ligand container 1L12.13, and the ligand gas contained in the ligand container 11.12.13 is placed on the Ar gas. and feed it to the raw material container 1.2.3. Then, under heating conditions by the heater 8, the raw material container 1.2.3
The superconductor raw material inside is converted into a metal complex gas (including adducts resulting from the addition reaction of ligands), and this metal complex gas is carried on Ar gas and supplied to the reaction vessel 5. In addition, raw material container 1.
During the transfer from 2.3 to the reaction vessel 5, the heater 8
The temperature of the metal complex gas is maintained by heating.

このように、各原料容器1.2.3から金属錯体ガスく
例えば、原料容器1からBa錯体ガス、原料容器2から
Y錯体ガス、原料容器3からCu錯体ガス)を供給する
と共に酸素源10から水蒸気H20を含んだ発生機酸素
原料ガスを供給して、反応容器5内で紫外線照射装置1
5からの紫外線照射下で化学反応を生じさせ、所定の超
電導物質を基板9上に降り積もらせて膜状の超電導体を
生成する。すなわち、紫外線によるエネルギーアシスト
及び発生機酸素0の発生により化学反応が促進され、超
電導体の生成を比較的低い加熱温度(反応温度)で達成
することができる。
In this way, metal complex gas (for example, Ba complex gas from raw material container 1, Y complex gas from raw material container 2, Cu complex gas from raw material container 3) is supplied from each raw material container 1.2.3, and the oxygen source 10 The generator oxygen raw material gas containing water vapor H20 is supplied from
A chemical reaction is caused under ultraviolet ray irradiation from 5, and a predetermined superconducting substance is deposited on the substrate 9 to form a film-like superconductor. That is, the chemical reaction is promoted by the energy assist by ultraviolet rays and the generation of zero generator oxygen, and the production of superconductors can be achieved at a relatively low heating temperature (reaction temperature).

上記反応容器5の反応において、水蒸気により金属錯体
の配位結合が切れ、切り離された配位子は分解すること
なく反応容器5からトラップ6へ排出される。従って、
生成された超電導体には配位子すなわちそれに含まれる
炭素が混入することはなく、超電導性に優れた超電導体
が得られる。
In the reaction in the reaction vessel 5, the coordination bonds of the metal complex are broken by the water vapor, and the separated ligands are discharged from the reaction vessel 5 to the trap 6 without being decomposed. Therefore,
The generated superconductor does not contain any ligands, that is, the carbon contained therein, and a superconductor with excellent superconductivity can be obtained.

なお、配位子と結合したままの金属元素が残存したり、
或は、超電導性に悪影響を及ぼすこととなる水分が残存
してしまうのを防止するため、金属錯体と等量する水蒸
気を反応室に供給するのが好ましい。
In addition, if the metal element remains bonded to the ligand,
Alternatively, in order to prevent residual moisture that would adversely affect superconductivity, it is preferable to supply water vapor in an amount equal to that of the metal complex to the reaction chamber.

なお、配位子容器から原料容器へ金属錯体の化学量論的
組成を超えて配位子ガスを供給して金属錯体ガスを過剰
な配位子ガスと共に反応容器へ搬送したり、或″は、原
料容器から反応容器への搬送途中において更なる配位子
ガスを金属錯体ガスに混入させると、搬送途中における
金属錯体の分解を防止して原料の消失を防止することが
できる。
In addition, it is possible to supply the ligand gas from the ligand container to the raw material container in excess of the stoichiometric composition of the metal complex and transport the metal complex gas together with the excess ligand gas to the reaction container, or If additional ligand gas is mixed into the metal complex gas during transportation from the raw material container to the reaction container, it is possible to prevent decomposition of the metal complex during transportation and prevent disappearance of the raw material.

上記した装置はBa−Y−Cu−0系の超電導体を生成
する例であるが、B1−5r−Ca−Cu−〇系の超電
導体を生成する場合には上記した装置に原料容器更には
配位子容器を備えた系を更に1系列増加させれば良い。
The above-mentioned apparatus is an example of producing a Ba-Y-Cu-0-based superconductor, but when producing a B1-5r-Ca-Cu-○-based superconductor, the above-mentioned apparatus is equipped with a raw material container and a It is sufficient to add one more system equipped with a ligand container.

次いで、上記した装置により膜状超電導体を生成した実
施例を以下に説明する。
Next, an example in which a film-like superconductor was produced using the above-described apparatus will be described below.

〈実施例1〉 本実施例は、Ba−Y−Cu−0系の超電導体を生成す
る例である。
<Example 1> This example is an example of producing a Ba-Y-Cu-0 based superconductor.

超電導原料となる金属錯体ガスとして、Ba(HFA)
2ガス、Y(DPM)3ガス、Cu(DPM)2ガスを
用い、配位子ガスとして、Ba(HFA)2に対してT
HFS Y (DPM)3に対してDPMを用いた。な
お、Cu(DPM)2は安定であるので配位子容器から
原料容器へ供給する配位子は用いなかった。
Ba (HFA) is used as a metal complex gas as a superconducting raw material.
2 gas, Y(DPM) 3 gas, and Cu(DPM) 2 gas, and T as a ligand gas for Ba(HFA) 2.
DPM was used for HFS Y (DPM)3. Note that, since Cu(DPM)2 is stable, the ligand supplied from the ligand container to the raw material container was not used.

また、キャリアガスとしてArガスを用いた。Furthermore, Ar gas was used as a carrier gas.

また、それぞれの原料容器において、200℃で蒸気圧
4mmHgのBa(HFA)2ガス、180℃で蒸気圧
2mmHgのY(DPM)3ガス、100℃で蒸気圧6
mmHgのCu(DPM)2ガスを得た。そして、これ
ら金属錯体ガスをそれに等量する水蒸気H20を含んだ
N 20ガスと共に反応容器に導入して、加熱と共に紫
外線(波長175nm〜195nm)照射下で、反応圧
力10〜100Torrで化学反応させた。そして、反
応後の試料を600℃の酸素雰囲気中で10時間熱処理
した結果、反応温度350℃以下で、臨界温度Tc=9
0に級、臨界電流密度Jc=3X105A/cTn2の
、炭素を含まない超電導体(YB a2c u307−
δ)の均一な膜が生成できた。これに対し、紫外線照射
を行わずに上記と同様な条件で超電導体を生成したとこ
ろ、反応時の加熱温度は350℃以上必要であった・ なお、上記Y(DPM)3に代えて、  Y (HFA
)3を用いるとともに配位子としてDPMに代えてHF
Aを用いたり、或は、Cu(DPM)2に代えてCI(
HFA)2を用いたり、或は、キャリアガスをArに代
えてHeを用いたりしても上記と同様な超電導体が得ら
れた。
In addition, in each raw material container, Ba(HFA) 2 gas with a vapor pressure of 4 mmHg at 200°C, Y(DPM) 3 gas with a vapor pressure of 2 mmHg at 180°C, and 6 vapor pressure at 100°C.
Cu(DPM)2 gas of mmHg was obtained. Then, these metal complex gases were introduced into a reaction vessel together with N20 gas containing water vapor H20 in an equal amount, and a chemical reaction was carried out at a reaction pressure of 10 to 100 Torr under heating and irradiation with ultraviolet light (wavelength 175 nm to 195 nm). . As a result of heat-treating the sample after the reaction in an oxygen atmosphere at 600°C for 10 hours, the reaction temperature was 350°C or less, and the critical temperature Tc = 9.
Carbon-free superconductor (YB a2c u307-
A uniform film of δ) was produced. On the other hand, when a superconductor was produced under the same conditions as above without UV irradiation, the heating temperature during the reaction was required to be 350°C or higher. (HFA
)3 and HF instead of DPM as a ligand.
A or CI(DPM) instead of Cu(DPM)2
A superconductor similar to the above was obtained even when HFA)2 was used or when He was used instead of Ar as the carrier gas.

〈実施例2〉 本実施例は、B1−9r−Ca−Cu−0系の超電導体
を生成する例である。
<Example 2> This example is an example of producing a B1-9r-Ca-Cu-0-based superconductor.

超電導原料となる金属錯体ガスとして、Bi(OC2H
5)3ガス、5r(HFA)2ガス、Ca(HFA)2
ガス、Cu(HFA)2ガスを用い、配位子ガスとして
、5r(HFA)2に対してT HF、Ca(HFA)
2に対してTHFを用いた。
Bi(OC2H
5) 3 gas, 5r(HFA)2 gas, Ca(HFA)2
gas, Cu(HFA)2 gas, and as a ligand gas, THF, Ca(HFA) for 5r(HFA)2.
THF was used for 2.

また、キャリアガスとしてArガスを用いた。Furthermore, Ar gas was used as a carrier gas.

また、それぞれの原料容器において、120℃で蒸気圧
lmmHgのB i (OC2H5)3ガス、80°C
で蒸気圧lmmHgの5r(HFA)2ガス、80℃で
蒸気圧lmmHgのCa (HFA)2ガス、150℃
で蒸気圧1.5mmHgの Cu (HFA)2ガスを
得た。そして、これら金属錯体ガスをそれに等量する水
蒸気H20を含んだN 20ガスと共に反応容器に導入
して、加熱と共に紫外線(波長175nrn〜195n
m)照射下で、反応圧力10〜100Torrて化学反
応させた。そして、反応後の試料を750°Cの大気中
で30時間熱処理した結果、反応温度350℃以下で、
臨界温度Tc=100に級、臨界電流密度Jc=2X1
0’ A / am 2の、炭素を含まない超電導体(
BiCaS r Cu 20X)の均一な膜が生成でき
た。
In addition, in each raw material container, B i (OC2H5)3 gas with a vapor pressure of 1 mmHg at 120°C, 80°C
5r(HFA)2 gas with vapor pressure lmmHg at 80℃, Ca(HFA)2 gas with vapor pressure lmmHg at 150℃
Cu (HFA)2 gas with a vapor pressure of 1.5 mmHg was obtained. Then, these metal complex gases are introduced into a reaction vessel together with N20 gas containing water vapor H20 in an equal amount to the metal complex gases, and heated and ultraviolet rays (wavelengths 175nrn to 195nrn) are introduced into the reaction vessel.
m) A chemical reaction was carried out under irradiation at a reaction pressure of 10 to 100 Torr. After the reaction, the sample was heat-treated in the atmosphere at 750°C for 30 hours. At a reaction temperature of 350°C or less,
Critical temperature Tc = 100, critical current density Jc = 2X1
0' A/am2 of carbon-free superconductors (
A uniform film of BiCaS r Cu 20X) was produced.

〈実施例3〉 超電導体にある量のフッ素を添加することにより超電導
体の臨界温度Tc及び機械的強度の向上を図ることがで
きることに着目しく特願昭63−19053号、昭和6
3年1月29日出願参照)、本実施例は、フッ素を添加
したBa−Y−Cu−0系の超電導体を生成する例であ
る。
<Example 3> Japanese Patent Application No. 1983-19053 and 1982 focused on the fact that the critical temperature Tc and mechanical strength of a superconductor can be improved by adding a certain amount of fluorine to the superconductor.
This example is an example of producing a fluorine-doped Ba-Y-Cu-0 superconductor.

超電導原料となる金属錯体ガスとして、Ba(HFA)
2ガス、Y(HFA)3ガス、Cu(HFA)2ガスを
用い、配位子ガスとして、Ba(HFA)2に対してH
FA、Y (HFA、) 3に対してHFAを用いた。
Ba (HFA) is used as a metal complex gas as a superconducting raw material.
2 gas, Y(HFA) 3 gas, and Cu(HFA) 2 gas, and H as the ligand gas for Ba(HFA) 2.
FA, Y (HFA,) HFA was used for 3.

なお、CLI(HFA)2は安定であるのて配位子容器
から原料容器へ供給する配位子は用いなかった。
Note that since CLI(HFA)2 is stable, no ligand was used that was supplied from the ligand container to the raw material container.

また、キャリアガスとしてArガスを用いた。Furthermore, Ar gas was used as a carrier gas.

また、それぞれの原料容器において、200°Cで蒸気
圧4mmHgのBa(HFA)2ガス、120℃で蒸気
圧2mmHgのY (HFA)3ガス、100℃で蒸気
圧6mmHgのCLJ(HFA)2ガスを得た。そして
、これら金属錯体ガスをそれに等量する水蒸気H20を
含んだN20ガスと共に反応容器に導入して、加熱と共
に紫外線(波長175nm〜195nm)照射下におい
て反応圧力10〜100To r rで化学反応させた
。そして、反応後の試料を600℃の酸素雰囲気中で1
0時間熱処理した結果、反応時の加熱温度が350°C
以下でフッ素を含有した超電導体(YBa2Cu307
−δ)の均一な膜が生成できた。
In addition, in each raw material container, Ba (HFA) 2 gas with a vapor pressure of 4 mmHg at 200°C, Y (HFA) 3 gas with a vapor pressure of 2 mmHg at 120°C, and CLJ (HFA) 2 gas with a vapor pressure of 6 mmHg at 100°C. I got it. Then, these metal complex gases were introduced into a reaction vessel together with N20 gas containing water vapor H20 in an equivalent amount, and a chemical reaction was carried out at a reaction pressure of 10 to 100 Torr under heating and irradiation with ultraviolet light (wavelength 175 nm to 195 nm). . After the reaction, the sample was placed in an oxygen atmosphere at 600°C for 1
As a result of heat treatment for 0 hours, the heating temperature during the reaction was 350°C.
Below, a fluorine-containing superconductor (YBa2Cu307
-δ) was able to produce a uniform film.

なお、上記Y(HFA)3に代え¥(DPM)3を用い
たり、或は、CLJ(HFA)2に代えてCu(DPM
)2を用いてもよく、この場合にあってもフッ素を含有
する配位子(HFA)若しくはフッ素源ガスを反応容器
に導入することにより超電導体へのフッ素添加量を確保
することができ、上記と同様な超電導体が得られた。
In addition, ¥(DPM)3 may be used instead of Y(HFA)3, or Cu(DPM) may be used instead of CLJ(HFA)2.
)2 may be used, and even in this case, the amount of fluorine added to the superconductor can be ensured by introducing a fluorine-containing ligand (HFA) or a fluorine source gas into the reaction vessel, A superconductor similar to that described above was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る製造装置の構成図であ
る。 1.2.3は原料容器、 5は反応容器、 7は真空ポンプ、 9は基板、 lOは酸素供給源、 11.12.13は配位子容器、 15は紫外線照射装置である。 特許出願人    三菱金属株式会社
FIG. 1 is a configuration diagram of a manufacturing apparatus according to an embodiment of the present invention. 1.2.3 is a raw material container, 5 is a reaction container, 7 is a vacuum pump, 9 is a substrate, 1O is an oxygen supply source, 11.12.13 is a ligand container, and 15 is an ultraviolet irradiation device. Patent applicant Mitsubishi Metals Corporation

Claims (1)

【特許請求の範囲】[Claims]  複数種類の超電導原料のいずれかを配位子を含む金属
錯体ガスとする工程と、前記複数種類の超電導原料ガス
を水蒸気及び発生機酸素の原料ガスと共に反応室に導入
して紫外線照射下で化学反応を発生させて膜状超電導体
を形成する工程とを備えたことを特徴とする膜状超電導
体の製造方法。
A process of converting one of multiple types of superconducting raw materials into a metal complex gas containing a ligand, and introducing the multiple types of superconducting raw material gases into a reaction chamber together with water vapor and a raw material gas of generator oxygen to perform chemical treatment under ultraviolet irradiation. 1. A method for producing a film-like superconductor, comprising a step of generating a reaction to form a film-like superconductor.
JP63139750A 1988-06-06 1988-06-06 Production of filmy superconductor Pending JPH01308809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63139750A JPH01308809A (en) 1988-06-06 1988-06-06 Production of filmy superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63139750A JPH01308809A (en) 1988-06-06 1988-06-06 Production of filmy superconductor

Publications (1)

Publication Number Publication Date
JPH01308809A true JPH01308809A (en) 1989-12-13

Family

ID=15252515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63139750A Pending JPH01308809A (en) 1988-06-06 1988-06-06 Production of filmy superconductor

Country Status (1)

Country Link
JP (1) JPH01308809A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193405A (en) * 1987-06-16 1989-04-12 Kawasaki Steel Corp Complex compound for forming oxide superconductor thin film and method for forming said thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193405A (en) * 1987-06-16 1989-04-12 Kawasaki Steel Corp Complex compound for forming oxide superconductor thin film and method for forming said thin film

Similar Documents

Publication Publication Date Title
KR910007382B1 (en) Superconductor material and method of manufacturing super-conductor film
EP0453107B1 (en) Chemical deposition methods using supercritical fluid solutions
JP2786200B2 (en) Raw material mixture for forming oxide superconductor thin film and method for forming oxide superconductor thin film
JPH01308809A (en) Production of filmy superconductor
JPH02225317A (en) Production of oxide superconductor by chemical gas phase deposition method
JP7146287B2 (en) Ammonia production method and apparatus for ammonia production
JPH01308807A (en) Production of filmy superconductor
JPH01308804A (en) Production of filmy superconductor
JPH01308808A (en) Production of filmy superconductor
JPH01308802A (en) Production of filmy superconductor and device therefor
JP2661169B2 (en) Superconductor thin film manufacturing method
JPH01308805A (en) Production of filmy superconductor
JPH0285370A (en) Manufacture of thin oxide film
JPH01308806A (en) Production of filmy superconductor
JP2856859B2 (en) Method for producing oxide superconductor by metal organic chemical vapor deposition
JPH0255219A (en) Production of superconductor thin film
Zhao et al. Deposition of high-Tc superconducting Y-Ba-Cu-O thin films at low temperatures using a plasma-enhanced organometallic chemical vapor deposition approach
JPH0375207A (en) Production of thin film of oxide superconductor
JPH01219016A (en) Production of thin superconducting ceramic film containing dispersed oxide
JPH04224112A (en) Production of thin film of oxide superconductor
JPH02194176A (en) Formation of thin oxide superconducting film
JPH0254811A (en) Manufacture of superconductor thin film
JPH01240664A (en) Method for synthesizing superconducting thin film in vapor phase
JPH03174304A (en) Production of thin film of oxide superconductor
JP3285897B2 (en) Method and apparatus for vaporizing CVD raw material for producing oxide superconductor