JPH03174304A - Production of thin film of oxide superconductor - Google Patents

Production of thin film of oxide superconductor

Info

Publication number
JPH03174304A
JPH03174304A JP1310672A JP31067289A JPH03174304A JP H03174304 A JPH03174304 A JP H03174304A JP 1310672 A JP1310672 A JP 1310672A JP 31067289 A JP31067289 A JP 31067289A JP H03174304 A JPH03174304 A JP H03174304A
Authority
JP
Japan
Prior art keywords
oxygen
thin film
oxide superconductor
compd
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1310672A
Other languages
Japanese (ja)
Inventor
Koji Sato
弘次 佐藤
Shungo Sugawara
菅原 駿吾
Takeshi Sukegawa
助川 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1310672A priority Critical patent/JPH03174304A/en
Publication of JPH03174304A publication Critical patent/JPH03174304A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Chemical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a thin film of an oxide superconductor having superior quality by CVD method even at a low temp. of a substrate by using a specified compd. as an oxygen-contg. compd. CONSTITUTION:When many kinds of organometallic compds. and an oxygen- contg. compd. are introduced into a reactor in a vapor phase and thermally decomposed to produce a thin film of an oxide superconductor on a substrate set in the reactor, at least one kind of compd. selected among hydrogen perox ide, ether compds. and alcohol compds. is used as the oxygen-contg. compd. The oxide superconductor may be La-Ba-Cu-O, La-Sr-Cu-O, Y-Ba-Cu-O, Bi-Sr-Ca- Cu-O or Tl-Ba-Ca-Cu-O.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物超伝導体薄膜の製造方法に係り、特に気
相で高品質な酸化物超伝導体薄膜を製造する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing an oxide superconductor thin film, and particularly to a method for producing a high quality oxide superconductor thin film in a gas phase.

【従来の技術〕[Conventional technology]

近年、高い臨界温度Tcを有する酸化物超伝導体が発見
され、液体窒素温度での利用を0指して精力的な研究が
展開されている。材料的に分類すると、1)ランタン系
超伝導体といわれ、Tcが40に前後のもの((L a
 、−xB a x)t Cu 0ne(La、。S 
rx)、Cu O4)、2)イツトリウム系超伝導体と
いわれTcが90に前後のもの[Y B a、Cu、0
e−x]、3)ビスマス系超伝導体といわれTcがll
oK前後のもの(Bi、Sr。
In recent years, oxide superconductors having a high critical temperature Tc have been discovered, and intensive research is being conducted with the aim of utilizing them at liquid nitrogen temperatures. Classified in terms of materials, 1) Lanthanum-based superconductors with a Tc of around 40 ((La
, -xB a x)t Cu 0ne(La,.S
rx), Cu O4), 2) Yttrium-based superconductors with a Tc of around 90 [Y B a, Cu, 0
e-x], 3) It is said to be a bismuth-based superconductor and Tc is ll
Those around OK (Bi, Sr.

Ca、Cu、O,]、4)タリウム系超伝導体といわれ
Tcが125に前後のもの[T + s B a * 
Ca mCu、O,]等が知られている。今後の応用、
例えば配線やセンサーへの応用を考えた場合単結晶と同
等の特性を持つ薄膜を作製する必要がある。−膜の作製
方法としてはスパッタ法、蒸着法、CVD法、などが知
られておりそれぞれ長所/失所があるが、CVD法は、
l)大面積、均質な6膜が得られる、2)成長速度が速
い、3)組成昆御が容易である、等の利点が得られる可
能性がまり、最近多くの研究がなされている。
Ca, Cu, O, ], 4) Thallium-based superconductors with Tc around 125 [T + s B a *
Ca mCu, O, ], etc. are known. Future applications,
For example, when considering applications in wiring and sensors, it is necessary to produce thin films with properties equivalent to those of single crystals. - Sputtering, vapor deposition, CVD, etc. are known methods for producing films, and each has its strengths and weaknesses, but CVD has
Many studies have been conducted recently because of the possibility of obtaining advantages such as 1) large area and homogeneous 6 membranes, 2) high growth rate, and 3) easy composition control.

〔発明が解決しようとする課題J しかしながら従来の方法では酸素を導入するσに酸素ガ
スやオゾン等の形で導入していたので。
[Problem to be solved by the invention J] However, in the conventional method, oxygen was introduced into σ in the form of oxygen gas, ozone, etc.

成長温度を800℃程度まで上げないと酸素欠間が生じ
たりして品質のよい薄膜が得られず、またこのように温
度を上げると、薄膜の平坦性が低1したり、基板と薄膜
の界面で相互拡散が起こるなどの問題を有していた。
Unless the growth temperature is raised to about 800°C, oxygen vacancies may occur, making it impossible to obtain a high-quality thin film.If the temperature is raised this way, the flatness of the thin film may become poor, or the bond between the substrate and the thin film may deteriorate. There were problems such as mutual diffusion occurring at the interface.

本!@明の目的は従来技術の問題点を解決し、CVD法
により優れた品質の酸化物超伝導体薄膜を得ることにあ
る。
Book! The purpose of @Ming is to solve the problems of the prior art and to obtain an oxide superconductor thin film of excellent quality using the CVD method.

[!!IjI!を解決するための手段〕上記目的を達成
するために5本発明の酸化物超伝導体薄膜の製造方法は
、反応容器内に、多種類の有機金属化合物と、酸素を含
む化合物とを気相で導入し、これらを熱分解して上記反
応容器内に設置した基板上に酸化物超伝導体薄膜を製造
する方法において、上記酸素を含む化合物として、過酸
化水素、エーテル化合物、アルコール化合物の中から選
択された少なくとも1つの化合物を使用することを特徴
とする。より具体的に述べると、その(1)は酸化物超
伝導体がランタン元素、バリウム元素またはストロンチ
ウム元素、銅元素および酸素元素からなることを特徴と
し、その(2)は酸化物超伝導体がイツトリウム元素、
バリウム元素、銅元素および酸素元素からなることを特
徴とし、その(3)は酸化物超伝導体がビスマス元素、
ストロンチウム元素、カルシウム元素、銅元素、および
酸素元素からなることを特徴とし、その(4)は酸化物
超伝導体がタリウム元素、バリウム元素、カルシウム元
素、銅元素、および酸素元素からなることを特徴とする
酸化物超伝導体薄膜の製造方法である。また(1)から
(4)以外の酸化物超伝導体に対しても適用できるもの
である。
[! ! IjI! [Means for Solving the Problems] In order to achieve the above object, the method for producing an oxide superconductor thin film of the present invention includes a reaction vessel in which various organometallic compounds and an oxygen-containing compound are placed in a gas phase. In the method of producing an oxide superconductor thin film on a substrate placed in the reaction vessel by thermally decomposing them, the oxygen-containing compounds include hydrogen peroxide, ether compounds, and alcohol compounds. It is characterized by using at least one compound selected from: To be more specific, (1) is characterized in that the oxide superconductor is composed of lanthanum element, barium element, or strontium element, copper element, and oxygen element, and (2) is characterized in that the oxide superconductor is yztrium element,
The oxide superconductor is characterized by consisting of barium element, copper element and oxygen element.
The oxide superconductor is characterized by being composed of strontium element, calcium element, copper element, and oxygen element, and (4) is characterized in that the oxide superconductor is composed of thallium element, barium element, calcium element, copper element, and oxygen element. This is a method for producing an oxide superconductor thin film. Moreover, it can also be applied to oxide superconductors other than (1) to (4).

〔作用〕[Effect]

本発明は酸素を含む化合物としてこうした化合物を使用
すると、低い基板温度においても基板上での熱分解性が
良く、酸素欠陥が少ない薄膜が得られることを見いだし
たことにより完成に到ったものである。
The present invention was completed based on the discovery that when such a compound is used as an oxygen-containing compound, a thin film with good thermal decomposition properties on the substrate and few oxygen defects can be obtained even at low substrate temperatures. be.

表1.2に化合物の具体名を記すが、本発明はこれらに
限定されるものではない。
Although specific names of the compounds are listed in Table 1.2, the present invention is not limited thereto.

以下余白。Margin below.

表 エーテル系酸素含有化合物(1) 表 1 エーテル系酸素含有化合物(2) 表 エーテル系酸素含有化合物(3) 表 エーテル系酸素含有化合物(4) 表 エーテル系酸素含有化合物(5)(環状エーテ/14の
表 2 アルコール系酸素含有化合物(1) 表 アルコール系酸素含有化合物(2) 表 エーテル系酸素含有化合物(3) 表 エーテル系酸素含有化合物(4) (実施例] 以下実施例に従って詳しく説明する。
Table Ether oxygen-containing compounds (1) Table 1 Ether oxygen-containing compounds (2) Table Ether oxygen-containing compounds (3) Table Ether oxygen-containing compounds (4) Table Ether oxygen-containing compounds (5) (cyclic ether/ 14 Table 2 Alcohol-based oxygen-containing compounds (1) Table: Alcohol-based oxygen-containing compounds (2) Table: Ether-based oxygen-containing compounds (3) Table: Ether-based oxygen-containing compounds (4) (Example) A detailed explanation will be given below according to the examples. .

実施例 l 第1図は、本発明をイツトリウム系超伝導体薄膜の製造
に適用した場合の装置の構成を示す系統図である。同図
において、イツトリウム元素を含む原料である固体のY
 (d pm)、 (ビスジピバロイルメタナートイツ
トリウム)が封入されているバブラー容器6内に、ガス
流量コントローラー11により流量調節されたアルゴン
ガス16をバブリングさせることにより、Y(dpm)
、を所要量含むアルゴンガスを形成し、同様にしてバリ
ウム元素を含む原料であるBa (dpm)、(ビスジ
ピバロイルメタナートバリウム)のTHF錯体を含む容
器7、および銅元素を含む原料であるCu(dpm)、
(ビスジピバロイルメタナート銅)を含む容器内8に流
量制御されたアルゴンガスを導入する。他方過酸化水素
を含む容器9内を通過させた所定流量のアルゴンガスを
導入する。この他に圧力調整のため、流量コントローラ
ーl0114を介して所要量のアルゴンガスを供給する
Embodiment l FIG. 1 is a system diagram showing the configuration of an apparatus when the present invention is applied to the production of a yttrium-based superconductor thin film. In the same figure, solid Y, which is a raw material containing yttrium element, is
(d pm), by bubbling argon gas 16 whose flow rate is adjusted by a gas flow controller 11 into a bubbler container 6 in which (yttrium bisdipivaloyl methanate) is sealed.
, a container 7 containing a THF complex of Ba (dpm), (barium bisdipivaloyl methanate), which is a raw material containing barium element, and a raw material containing copper element. Cu (dpm),
Argon gas with a controlled flow rate is introduced into the container 8 containing (copper bisdipivaloyl methanate). On the other hand, a predetermined flow rate of argon gas that has passed through the container 9 containing hydrogen peroxide is introduced. In addition, a required amount of argon gas is supplied via a flow controller 10114 to adjust the pressure.

反応容器内にはチタン酸ストロンチウム(100)基板
3が基板ホルダ2の上に配置されていて、高周波加熱コ
イル5により所定の温度に加熱され、化学気相反応によ
りイツトリム系酸化物超伝導体薄膜が基板上に形成され
る。基板としては酸化マグネシウム基板等も使用できる
Inside the reaction vessel, a strontium titanate (100) substrate 3 is placed on a substrate holder 2, heated to a predetermined temperature by a high-frequency heating coil 5, and formed into an yttrium-based oxide superconductor thin film by a chemical vapor phase reaction. is formed on the substrate. A magnesium oxide substrate or the like can also be used as the substrate.

以上説明した酸化物超伝導体薄膜の製造をより具体的に
説明すると、温度200℃の Y(dpm)、のバブラー容器6を通過した250cc
/分のアルゴンガスと、温度150°CのBa (dp
m)2THF錯体容器7を通過した200cc/分のア
ルゴンガスと、温度120℃のCu(dpm)、の容器
8を通過した200cc/分のアルゴンガスと圧力調整
用のIQ/分のアルゴンガスを反応容器l内に導く。同
時に、温度30’(1:の過酸化水素容器9を通過した
lQ/分の酸素ガス、および圧力調整用のIQ/分のア
ルゴンガスを反応容器l内に導き、600℃の温度に加
熱された基板に吹き付ける。成長速度は1時間当たり5
μmであり、得られた単結晶薄膜の表面は、良好な鏡面
が形成され結晶性にも問題はなかった。Tcは90にで
あった。
To explain in more detail the production of the oxide superconductor thin film described above, 250 cc of Y (dpm) was passed through a bubbler container 6 at a temperature of 200°C.
/min of argon gas and Ba (dp
m) 200 cc/min of argon gas passed through the 2THF complex container 7, 200 cc/min of argon gas passed through the container 8 of Cu (dpm) at a temperature of 120°C, and argon gas of IQ/min for pressure adjustment. into the reaction vessel l. At the same time, oxygen gas of 1Q/min passed through the hydrogen peroxide container 9 at a temperature of 30' (1:1) and argon gas of IQ/min for pressure adjustment were introduced into the reaction vessel 1 and heated to a temperature of 600°C. The growth rate is 5% per hour.
μm, and the surface of the obtained single crystal thin film had a good mirror surface and no problem with crystallinity. Tc was 90.

実施例 2〜4 実施例1において過酸化水素の替わりに表3の原料およ
び条件を使用する他は同様にしてイツトリウム系超伝導
体薄膜の成長を行った。いずれの場合においても実施例
1と同様、優れた特性の単結晶薄膜が得られた。
Examples 2 to 4 Yttrium-based superconductor thin films were grown in the same manner as in Example 1 except that the raw materials and conditions shown in Table 3 were used instead of hydrogen peroxide. In each case, as in Example 1, single crystal thin films with excellent properties were obtained.

表3 実施例2〜4での成長条件 実施例 5 第2図は、本発明をビスマス系超伝導体IWXの製造に
適用した場合の装置の構成を示す系統図である。同図に
おいて、有機金属化合物としてそれぞれB i  (C
H,)、、 S r (d pm)、、 Ca(dpm
)、Cu(dpm)、、を容器16から19で使用して
いる。ボンベ温度はそれぞれ8゜’C,200℃、18
0℃、+20’cとした。実施例1と同様過酸化水素を
用いて、基板温度650℃で成長を行ったところ、1時
間当たり10μmの速度で成長できた。得られた単結晶
薄膜の表面は、良好な鏡面が形成され結晶性にも問題は
なかった。Tcはll0Kであった。
Table 3 Growth Condition Example 5 for Examples 2 to 4 FIG. 2 is a system diagram showing the configuration of an apparatus when the present invention is applied to the production of bismuth-based superconductor IWX. In the figure, B i (C
H,),, S r (d pm),, Ca (dpm
), Cu (dpm), are used in containers 16 to 19. The cylinder temperatures were 8°C, 200°C, and 18°C, respectively.
The temperature was 0°C and +20'c. When growth was performed at a substrate temperature of 650° C. using hydrogen peroxide as in Example 1, growth was possible at a rate of 10 μm per hour. The surface of the obtained single crystal thin film had a good mirror surface and no problem in crystallinity. Tc was 110K.

実施例 6 実施例5において以下の原料化合物を使用する他は同様
にしてタリウム系の酸化物超伝導体薄膜の成長を行った
。Ti  (CH,)、、Ba(dpm)2THF錯体
、Ca(dpm)、Cu(dpm)。
Example 6 A thallium-based oxide superconductor thin film was grown in the same manner as in Example 5 except that the following raw material compounds were used. Ti (CH,), Ba (dpm)2THF complex, Ca (dpm), Cu (dpm).

を容器16から19で使用した。ボンベ温度はそれぞれ
80℃、200℃、180’c、120℃とした。実施
例1と同様過酸化水素を用いて、基板温度650℃で成
長を行ったところ、1時間当たりloILmの速度で成
長できた。得られた単結晶薄膜の表面は、良好な鏡面が
形成され結晶性にも問題はなかった。Tcは120にで
あった。
was used in containers 16 to 19. The bomb temperatures were 80°C, 200°C, 180'C, and 120°C, respectively. When growth was performed at a substrate temperature of 650° C. using hydrogen peroxide as in Example 1, growth was possible at a rate of loILm per hour. The surface of the obtained single crystal thin film had a good mirror surface and no problem in crystallinity. Tc was 120.

実施例 7 実施例5において以下の原料化合物を使用する他は同様
にしてランタン系の酸化物超伝導体薄膜の成長を行った
。La(C1H1)、、Ba (dpm)2THF錯体
、Cu (dpm)jを容器16から19で使用した。
Example 7 A lanthanum-based oxide superconductor thin film was grown in the same manner as in Example 5 except that the following raw material compounds were used. La(C1H1), Ba(dpm)2THF complex, Cu(dpm)j were used in vessels 16-19.

ボンベ温度はそれぞれ300℃、200℃、180℃、
120℃とした。実施例1と同様過酸化水素を用いて、
基板温度650℃で成長を行ったところ、1時間当たり
5μmの速度で成長できた。得られた単結晶薄膜の表面
は、良好な鏡面が形成され結晶性にも問題はなかった。
Cylinder temperature is 300℃, 200℃, 180℃, respectively.
The temperature was 120°C. Using hydrogen peroxide as in Example 1,
When growth was performed at a substrate temperature of 650° C., growth was possible at a rate of 5 μm per hour. The surface of the obtained single crystal thin film had a good mirror surface and no problem in crystallinity.

Tcは40にであった。Tc was 40.

以上、本発明の実施例を具体的に説明したが、本発明は
上記実施例に限定されるものではなく、その要旨を逸脱
しない範囲において種々変更可能であることは勿論であ
る。
Although the embodiments of the present invention have been specifically described above, the present invention is not limited to the above embodiments, and it goes without saying that various changes can be made without departing from the spirit of the invention.

〔発明の効果J 以上説明したように、本発明に係る酸化物超伝導体薄膜
の製造方法によれば、酸素を含有した特定の化合物を使
用するので、低い基板温度で高品質の単結晶薄膜が得ら
れる利点がある。
[Effect of the invention J As explained above, according to the method for producing an oxide superconductor thin film according to the present invention, a specific compound containing oxygen is used, so that a high quality single crystal thin film can be produced at a low substrate temperature. There are advantages that can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例1〜4において用いたイツト
リウム系酸化物超伝導体薄膜の製造装置の構成を示す系
統図、第2図は、実施例5〜7において用いた酸化物超
伝導体薄膜の製造装置の構成を示す系統図である。 l・・・反応容器 2・・・基板ホルダ 3・・・基板 4・・・熱電対 5・・・高周波加熱コイル 6.7.8.18.19・・・有機金属化合物容器9.
20・・・酸素含有化合物容器 10.11,12.13.14.15.21.22.2
3.24.25.26.27・・・ガス流量コントロー
ラー
FIG. 1 is a system diagram showing the configuration of the manufacturing apparatus for the yttrium-based oxide superconductor thin film used in Examples 1 to 4 of the present invention, and FIG. FIG. 1 is a system diagram showing the configuration of a conductor thin film manufacturing apparatus. l...Reaction container 2...Substrate holder 3...Substrate 4...Thermocouple 5...High frequency heating coil 6.7.8.18.19...Organometallic compound container 9.
20... Oxygen-containing compound container 10.11, 12.13.14.15.21.22.2
3.24.25.26.27...Gas flow controller

Claims (2)

【特許請求の範囲】[Claims] 1.反応容器内に、多種類の有機金属化合物と、酸素を
含む化合物とを気相で導入し、これらを熱分解して上記
反応容器内に設置した基板上に酸化物超伝導体薄膜を製
造する方法において、上記酸素を含む化合物として、過
酸化水素、エーテル化合物、アルコール化合物の中から
選択された少なくとも1つの化合物を使用することを特
徴とする酸化物超伝導体薄膜の製造方法。
1. A variety of organometallic compounds and a compound containing oxygen are introduced in a gas phase into a reaction vessel, and these are thermally decomposed to produce an oxide superconductor thin film on a substrate placed in the reaction vessel. A method for producing an oxide superconductor thin film, characterized in that at least one compound selected from hydrogen peroxide, an ether compound, and an alcohol compound is used as the oxygen-containing compound.
2.上記酸化物超伝導体が、(1)ランタン元素・バリ
ウム元素またはストロンチウム元素・銅元素・酸素元素
、(2)イットリウム元素・バリウム元素・銅元素・酸
素元素、(3)ビスマス元素・ストロンチウム元素・カ
ルシウム元素・銅元素・酸素元素、または(4)タリウ
ム元素・バリウム元素・カルシウム元素・銅元素・酸素
元素からなることを特徴とする請求項1記載の酸化物超
伝導体薄膜の製造方法。
2. The above oxide superconductor includes (1) lanthanum element, barium element or strontium element, copper element, oxygen element, (2) yttrium element, barium element, copper element, oxygen element, (3) bismuth element, strontium element, 2. The method for producing an oxide superconductor thin film according to claim 1, characterized in that it consists of calcium element, copper element, oxygen element, or (4) thallium element, barium element, calcium element, copper element, and oxygen element.
JP1310672A 1989-12-01 1989-12-01 Production of thin film of oxide superconductor Pending JPH03174304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1310672A JPH03174304A (en) 1989-12-01 1989-12-01 Production of thin film of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1310672A JPH03174304A (en) 1989-12-01 1989-12-01 Production of thin film of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH03174304A true JPH03174304A (en) 1991-07-29

Family

ID=18008068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1310672A Pending JPH03174304A (en) 1989-12-01 1989-12-01 Production of thin film of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH03174304A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458086A (en) * 1993-10-13 1995-10-17 Superconductor Technologies, Inc. Apparatus for growing metal oxides using organometallic vapor phase epitaxy
US5686151A (en) * 1993-09-14 1997-11-11 Kabushiki Kaisha Toshiba Method of forming a metal oxide film
CN103771852A (en) * 2014-01-06 2014-05-07 西安理工大学 Preparation method of yttrium-group high-temperature superconducting thin film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686151A (en) * 1993-09-14 1997-11-11 Kabushiki Kaisha Toshiba Method of forming a metal oxide film
US5458086A (en) * 1993-10-13 1995-10-17 Superconductor Technologies, Inc. Apparatus for growing metal oxides using organometallic vapor phase epitaxy
USRE36295E (en) * 1993-10-13 1999-09-14 Superconductor Technologies, Inc. Apparatus for growing metal oxides using organometallic vapor phase epitaxy
CN103771852A (en) * 2014-01-06 2014-05-07 西安理工大学 Preparation method of yttrium-group high-temperature superconducting thin film

Similar Documents

Publication Publication Date Title
US5241191A (en) Cubic perovskite crystal structure, a process of preparing the crystal structure, and articles constructed from the crystal structure
US5143896A (en) Process and system for preparing a superconducting thin film of oxide
US5141918A (en) Method of forming an oxide superconducting thin film of a single phase having no carbonate
KR970018599A (en) A method of producing bismuth oxide, a method of forming an oxide film, and a method of manufacturing a capacitor structure of a semiconductor device
JPH03174304A (en) Production of thin film of oxide superconductor
JPH08277197A (en) Raw material for chemical vapor phase growing, bismuth layer compound produced by using the raw material and its production
JPH01148798A (en) Production of superconducting thin film
CN113838965B (en) Preparation method of independent high-temperature superconducting film
JPH035397A (en) Vapor growth method for thin oxide crystal film
JPH1112094A (en) Production of rare earth-barium-cuprate-based superconductor
JPH053439B2 (en)
JP3292004B2 (en) Method for producing bismuth compound
JP2595261B2 (en) Manufacturing method of oxide superconductor
JP3809669B2 (en) Chemical vapor deposition
JP2661169B2 (en) Superconductor thin film manufacturing method
JP3253295B2 (en) Manufacturing method of oxide thin film
JPH01100818A (en) High temperature superconducting material
JPH0489378A (en) Production of oxide superconductor by chemical vapor deposition method of organic metal
KR950008862B1 (en) MANUFACTURING METHOD OF YBA2 CU3O7-x (X=0-0.5) SUPER CONDUCTOR
JP2551983B2 (en) Preparation method of oxide superconducting film using chemical vapor deposition
Hashimoto et al. Deposition of Bi, Sr, Ca, and Cu oxide films by Rf glow discharge generated at relatively high pressure
JP2606025B2 (en) Bi-Sr-Ca-Cu-O-based superconducting thin film and method for producing the same
JPH0770752A (en) Film forming method of oxide superconductor
JPH0196015A (en) Formation of superconducting thin film
Ritums et al. Epitaxially deposited SrVO/sub 3/conducting films by laser ablation and metal organic chemical vapor deposition