JPH0770752A - Film forming method of oxide superconductor - Google Patents

Film forming method of oxide superconductor

Info

Publication number
JPH0770752A
JPH0770752A JP5217266A JP21726693A JPH0770752A JP H0770752 A JPH0770752 A JP H0770752A JP 5217266 A JP5217266 A JP 5217266A JP 21726693 A JP21726693 A JP 21726693A JP H0770752 A JPH0770752 A JP H0770752A
Authority
JP
Japan
Prior art keywords
film
oxide superconductor
forming method
film forming
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5217266A
Other languages
Japanese (ja)
Inventor
Masahito Matsubara
雅人 松原
Izumi Hirabayashi
泉 平林
Tadataka Morishita
忠隆 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Chubu Electric Power Co Inc
Original Assignee
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER, Chubu Electric Power Co Inc filed Critical KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Priority to JP5217266A priority Critical patent/JPH0770752A/en
Publication of JPH0770752A publication Critical patent/JPH0770752A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Conductive Materials (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve the smoothness of a film and improve crystallizability in the atomic layer epitaxy film forming. CONSTITUTION:In the film forming method of the oxide superconductor forming the atomic layer epitaxy film of the oxide superconductor consisting of the compd. containing more than three component metal element, the process in which plural metal elements consistuting of one part of an unit latice is laminated simultaneously as one unit is included. In the film forming method of RBa2 Cu3O7-delta (R is either one among Y, La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er and Yb), the simultaneously laminating process of Cu, R and Cu as a subunit in order of Ba/Cu, R and Cu/Ba/Cu is included.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導薄膜の成膜方法
に係り、特に、デバイスに利用するRBCO膜(Rは
Y,La,Pr,Nd,Sm,Eu,Gd,Dy,H
o,Er,Ybのうちいずれか1つである)の原子層エ
ピタキシー成膜に関するものである。前記RはY,L
a,Pr,Nd,Sm,Eu,Gd,Dy,Ho,E
r,Ybのうちいずれか1つである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a superconducting thin film, and more particularly to an RBCO film (R is Y, La, Pr, Nd, Sm, Eu, Gd, Dy, H for use in a device.
o, Er, or Yb), which is one of atomic layer epitaxy film formation. R is Y, L
a, Pr, Nd, Sm, Eu, Gd, Dy, Ho, E
Either one of r and Yb.

【0002】[0002]

【従来の技術】従来の酸化物超電導薄膜のc軸配向成膜
では、各成分を同時に供給するか、または、結晶構造に
対応した金属元素の層を順に積層していた。YBCO膜
の例としては、テラシマ(Terashima)らはPVD法を
用いて各成分を同時に供給し、反射高速電子線回析(R
HEED)パターンの振動強度を測定することにより、
膜厚や結晶成長表面の平滑性をモニターしながら膜を作
製している(Phy.Rev.Lett.65,2684,1990)。
2. Description of the Related Art In the conventional c-axis oriented film formation of an oxide superconducting thin film, each component is supplied at the same time, or layers of metal elements corresponding to the crystal structure are laminated in order. As an example of the YBCO film, Terashima et al. Use PVD method to supply each component at the same time, and reflect high speed electron beam diffraction (R
HEED) By measuring the vibration intensity of the pattern,
The film is produced while monitoring the film thickness and the smoothness of the crystal growth surface (Phy. Rev. Lett. 65, 2684, 1990).

【0003】一方、サカイ(Sakai)らは有機金属CV
D法(MOCVD:Metal OrganicChemical Vapor
Deposition法)を用いて結晶構造に対応したBa/Cu
/Ba/Cu/Y/Cuの順に各成分層を交互供給する
ことによりYBCO膜を作製している(Proceeding of
5th lnt Symposium on Superconductivity,Kob
e,1992。)
On the other hand, Sakai et al.
Method D (MOCVD: Metal Organic Chemical Vapor
Deposition method) for Ba / Cu corresponding to the crystal structure
A YBCO film is manufactured by alternately supplying the respective component layers in the order of / Ba / Cu / Y / Cu (Proceeding of
5th lnt Symposium on Superconductivity, Kob
e, 1992. )

【0004】[0004]

【発明が解決しようとする問題点】薄膜の応用、特に、
エレクトロニクスデバイスへの応用を考えた場合、超電
導特性もさることながら、結晶の完全性や、膜表面の平
滑性も重要になってくる。従来、3成分以上の金属元素
を含む化合物からなる酸化物超電導体の原子層エピタキ
シー成膜では、単位胞の原子配列に応じ一原子層ずつ積
層を行っていた。
Problems to be Solved by the Invention Applications of thin films, especially,
When considering application to electronic devices, not only superconducting properties but also crystal perfection and film surface smoothness are important. Conventionally, in the atomic layer epitaxy film formation of an oxide superconductor made of a compound containing three or more metal elements, one atomic layer is laminated according to the atomic arrangement of the unit cell.

【0005】従来の積層方法では、例えば、c軸配向Y
BCO膜の生成とともにBaCuO2等の混合物も少な
からず存在しており、結晶の完全性や膜表面の平滑性に
おいて完全なものは得られなかった。また、表面の平滑
性の問題も一原子層ずつの積層では必ずしも十分な結果
が得られていない。
In the conventional lamination method, for example, the c-axis orientation Y
As the BCO film was formed, a considerable amount of a mixture of BaCuO 2 and the like was also present, and perfect crystals and smoothness of the film surface could not be obtained. In addition, the problem of surface smoothness has not always been sufficiently obtained by laminating one atomic layer at a time.

【0006】本発明は、前記問題点を解決するためにな
されたものであり、本発明の目的は、原子層エキピタシ
ー成膜において、膜の平滑性を向上することが可能な酸
化物超電導体の成膜方法を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide an oxide superconductor capable of improving the smoothness of an atomic layer epitaxy film. It is to provide a film forming method.

【0007】本発明の他の目的は、原子層エキピタシー
成膜において、結晶性を向上することが可能な酸化物超
電導体の成膜方法を提供することにある。
Another object of the present invention is to provide a film forming method of an oxide superconductor capable of improving crystallinity in atomic layer epitaxy film formation.

【0008】本発明の前記ならびにその他の目的及び新
規な特徴は、本明細書の記述及び添付図面によって明ら
かにする。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

【0009】[0009]

【問題点を解決するための手段】前記目的を達成するた
めに、本発明は、3成分以上の金属元素を含む化合物か
らなる酸化物超電導体の原子層エピタキシー膜を形成す
る酸化物超電導体の成膜方法であって、単位格子の一部
を構成する複数の金属元素を一単位として同時に積層す
る過程を含むことを最も主要な特徴とする。
In order to achieve the above object, the present invention provides an oxide superconductor which forms an atomic layer epitaxy film of an oxide superconductor made of a compound containing three or more metal elements. The film forming method is most characterized in that it includes a step of simultaneously laminating a plurality of metal elements forming a part of the unit cell as one unit.

【0010】前記積層単位の選択根拠は、結晶を構成す
る各原子層の電荷(チャージバランス)等を積層の各過
程においてできるだけ、自由エネルギー上昇をおさえ、
安定な不純物相生成を抑止する点にある。
The basis for selecting the stacking unit is to suppress the increase in free energy as much as possible in each step of stacking the charges (charge balance) of each atomic layer constituting the crystal,
The point is to suppress the generation of a stable impurity phase.

【0011】また、RBa2Cu37-δ (RはY,L
a,Pr,Nd,Sm,Eu,Gd,Dy,Ho,E
r,Ybのうちいずれか1つである)の成膜方法であっ
て、Ba/Cu,R,Cu/Ba/Cuの順でCu,
R,Cuをサブユニットセルとして同時に積層する過程
を含むことを特徴とする。
Further, RBa 2 Cu 3 O 7-δ (R is Y, L
a, Pr, Nd, Sm, Eu, Gd, Dy, Ho, E
(any one of r and Yb), wherein Ba / Cu, R, Cu / Ba / Cu in the order Cu,
It is characterized by including a process of simultaneously stacking R and Cu as subunit cells.

【0012】前記成膜方法において、基板としてSrT
iO3、MgOを使用したことを特徴とする。
In the above film forming method, SrT is used as the substrate.
It is characterized by using iO 3 and MgO.

【0013】前記成膜方法において、成膜方法としてM
OCVD法を用いたことを特徴とする。
In the film forming method, M is used as a film forming method.
It is characterized by using the OCVD method.

【0014】[0014]

【作用】前述の手段によれば、原子層エキピタシー成膜
において、単位格子の一部を構成する複数の金属元素を
一単位として同時に積層するので、膜の平滑性を向上す
ることができ、かつ、結晶性を向上することができる。
According to the above-mentioned means, in the atomic layer epitaxy film formation, since a plurality of metal elements constituting a part of the unit cell are simultaneously laminated as one unit, the smoothness of the film can be improved, and The crystallinity can be improved.

【0015】[0015]

【実施例】以下、本発明の一実施例により具体的に説明
する。
EXAMPLE An example of the present invention will be specifically described below.

【0016】図1は、MOCVD装置の各原料バルブの
on、offを示したシーケンスであり、(a)図は、
本発明の一実施例のシーケンス、(b)図は、従来法の
シーケンスである。図2は成膜方法の詳細を説明するた
めの図であり、(a)図は、本実施例の成膜方法による
成膜過程の詳細を示し、(b)図は、従来例の成膜方法
による成膜過程の詳細を示す。
FIG. 1 is a sequence showing on and off of each raw material valve of the MOCVD apparatus, and FIG.
The sequence of one embodiment of the present invention, (b), is the sequence of the conventional method. 2A and 2B are diagrams for explaining the details of the film forming method. FIG. 2A shows the details of the film forming process by the film forming method of this embodiment, and FIG. 2B shows the film forming method of the conventional example. The details of the film forming process by the method will be described.

【0017】本実施例の原料流量はY:Ba:Cu=
1:1:2である。成膜はMgO(100)単結晶基板
上で実施した。
The raw material flow rate in this embodiment is Y: Ba: Cu =
It is 1: 1: 2. The film formation was performed on a MgO (100) single crystal substrate.

【0018】本実施例の成膜方法は、図2の(a)図に
示うように、最初に、基板11上にBa層12を載せ、
その後流量比Y:Cu=1:2のCu-Y-Cuブロック
層13を積層し、Ba層14、Cu層15の順に積層し
て1シーケンスが終了する。原料はY(DPM)3、B
a(DPM)2、Cu(DPM)2のβ-ジケトン錯体を
用いた。ここで、DPMとはジピバロイルメタンを示
す。各原料の加熱温度は、それぞれ120℃、210
℃、110℃である。各原料のキャリアガスおよびパー
ジガスとしてArを用いた。また、成膜中O2を30s
ccm(CGS単位)常時供給し続けた。成膜温度は7
00℃、成膜圧力は6Torrである。この条件で10
シーケンス(図1のa図参照)繰り返し成膜終了後は、
1気圧(atm)のO2雰囲気下で膜を冷却した。
In the film forming method of this embodiment, as shown in FIG. 2A, first, a Ba layer 12 is placed on a substrate 11,
After that, the Cu—Y—Cu block layer 13 having the flow rate ratio Y: Cu = 1: 2 is laminated, the Ba layer 14 and the Cu layer 15 are laminated in this order, and one sequence is completed. Raw material is Y (DPM) 3 , B
The β-diketone complex of a (DPM) 2 and Cu (DPM) 2 was used. Here, DPM means dipivaloyl methane. The heating temperature of each raw material is 120 ° C. and 210, respectively.
℃ and 110 ℃. Ar was used as a carrier gas and a purge gas for each raw material. Also, during film formation, O 2 was used for 30 s
ccm (CGS unit) was continuously supplied. Deposition temperature is 7
The temperature is 00 ° C. and the film forming pressure is 6 Torr. 10 in this condition
Sequence (Refer to FIG. 1A) After the repeated film formation,
The film was cooled under an atmosphere of O 2 at 1 atm.

【0019】また、従来例の成膜方法は、図1のb図に
示すように、原料流量はY:Ba:Cu=1:1:1で
ある。そして、図2のb図に示すように、最初に、Ba
層12を基板11上に載せ、その後、Cu/Y/Cu/
Ba/Cuの順に1原子層ずつ積層していく方法であ
る。
In the conventional film forming method, as shown in FIG. 1B, the raw material flow rate is Y: Ba: Cu = 1: 1: 1. Then, as shown in FIG. 2B, first, Ba
Layer 12 is placed on substrate 11, then Cu / Y / Cu /
This is a method of laminating one atomic layer in the order of Ba / Cu.

【0020】以下に本実施例の積層法で成膜した膜と従
来法で成膜した膜を比較する。
The film formed by the lamination method of this embodiment and the film formed by the conventional method will be compared below.

【0021】図1の(a)図,(b)図それぞれのシー
ケンスで成膜した膜のXRDパターンを図3に示す。図
3から図1の(a)図のシーケンスで成膜したもの(図
3のaのパターン)は、図1の(b)図のシーケンスで
成膜したもの(図3のbパターン)よりも(001),
(002),(003)・・・(00n)のピークが高
くc軸配向YBCO膜の結晶性が良いことがわかる。ま
た、図1の(b)図のシーケンスで成膜したものは、c
軸配向YBCO以外にもバリウム銅酸化物(BaCuO
2等)や銅酸化物(CuO)の混合物も同時に生成され
ている。
FIG. 3 shows an XRD pattern of the film formed by the sequence shown in each of FIGS. 1 (a) and 1 (b). The film formed in the sequence of FIG. 3 to FIG. 1A (the pattern of FIG. 3A) is more than the film formed in the sequence of FIG. 1B (the pattern of FIG. 3B). (001),
It can be seen that the peaks of (002), (003) ... (00n) are high and the crystallinity of the c-axis oriented YBCO film is good. In addition, the film formed in the sequence of FIG.
In addition to the axially oriented YBCO, barium copper oxide (BaCuO
2 etc.) and a mixture of copper oxides (CuO) are also produced at the same time.

【0022】図4は、図1の(a)図,(b)図それぞ
れのシーケンスで成膜した膜の走査電子顕微鏡(SE
M)写真図である。図4からわかるように、(a)図の
膜は、(b)図に比べマトリックス部分が非常に平滑で
異物の析出も少ない。
FIG. 4 is a scanning electron microscope (SE) of the film formed in the sequence of each of FIGS. 1 (a) and 1 (b).
M) It is a photograph figure. As can be seen from FIG. 4, in the film of FIG. 4A, the matrix portion is much smoother than that of FIG.

【0023】図5は、図1の(a)図,(b)図それぞ
れのシーケンスで成膜を原子間力顕微鏡(AFM)で観
察した膜表面の凹凸を表す図であり、原子間力顕微鏡
(AFM)写真図の下の曲線は、写真図中の直線部分の
断面図である。図5において、点線より下が基板、上が
膜である。ここで、Raは中心線平均粗さを表し、粗さ
曲線からその中心線の長さl(Lの小文字)の部分を抜
き取り、この抜き取り部分の中心線をX軸、Y軸とし、
粗さ曲線y=f(x)で表したとき、次の数式によって求
められる値を表したものである。
FIG. 5 is a diagram showing the unevenness of the film surface observed by an atomic force microscope (AFM) for film formation in the sequence of each of FIGS. 1 (a) and 1 (b). The curve below the (AFM) photograph is a cross-sectional view of the straight line portion in the photograph. In FIG. 5, the substrate is below the dotted line and the film is above. Here, Ra represents the average roughness of the center line, the length l (lowercase letter of L) of the center line is extracted from the roughness curve, and the center line of the extracted portion is taken as the X axis and the Y axis,
When the roughness curve y = f (x) is represented, the value obtained by the following mathematical expression is represented.

【0024】[0024]

【数1】 [Equation 1]

【0025】図5からわかるように、(a)図の膜は、
(b)図の膜よりも表面の凹凸が非常に少なく、本実施
例による積層方法を適用することにより平滑性が著しく
改善される。
As can be seen from FIG. 5, the film of FIG.
The unevenness of the surface is much smaller than that of the film shown in (b), and the smoothness is remarkably improved by applying the laminating method according to this embodiment.

【0026】以上、本発明を実施例に基づき具体的に説
明したが、本発明は、前記実施例に限定されるものでは
なく、その要旨を逸脱しない範囲において種々変更し得
ることはいうまでもない。
Although the present invention has been specifically described based on the embodiments above, it is needless to say that the present invention is not limited to the above embodiments and can be variously modified without departing from the scope of the invention. Absent.

【0027】[0027]

【発明の効果】以上、説明したように、本発明によれ
ば、原子層エキピタシー成膜において、単位格子の一部
を構成する複数の金属元素を一単位として同時に積層す
るので、膜の平滑性を向上することができ、かつ、結晶
性を向上することができる。
As described above, according to the present invention, in the atomic layer epitaxy film formation, since a plurality of metal elements forming a part of the unit cell are simultaneously laminated as one unit, the film smoothness is improved. And the crystallinity can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 MOCVD装置の各原料バルブのon、of
fを示したシーケンスであり、(a)は本発明の一実施
例によるシーケンス、(b)は従来法のシーケンスであ
る。
FIG. 1 on / of each material valve of MOCVD apparatus
3A is a sequence showing f, (a) is a sequence according to one embodiment of the present invention, and (b) is a sequence of a conventional method.

【図2】 本実施例による成膜方法と従来法の成膜方法
を説明するための図であり、(a)は本実施例の成膜方
法、bは従来法の成膜方法である。
2A and 2B are diagrams for explaining a film forming method according to the present embodiment and a conventional film forming method, wherein FIG. 2A is a film forming method according to the present embodiment, and b is a conventional film forming method.

【図3】 図1におけるシーケンスで成膜した膜のXR
Dパターンを示す図であり、(a)は本実施例の成膜方
法による膜のXRDパターン、(b)は従来の成膜方法
による膜のXRDパターンである。
FIG. 3 is an XR of a film formed by the sequence shown in FIG.
It is a figure which shows D pattern, (a) is the XRD pattern of the film by the film-forming method of a present Example, (b) is the XRD pattern of the film by the conventional film-forming method.

【図4】 図1におけるシーケンスで成膜した膜の表面
SEM像であり、(a)本実施例の成膜方法による膜の
表面SEM像、(b)は従来の成膜方法による膜の表面
SEM像である。
FIG. 4 is a surface SEM image of a film formed by the sequence of FIG. 1, where (a) is a surface SEM image of the film formed by the film forming method of the present embodiment, and (b) is a surface of the film formed by the conventional film forming method. It is a SEM image.

【図5】 図1におけるシーケンスで成膜した膜の表面
の凹凸の原子間力顕微鏡(AFM)で観察した図であ
り、(a)本実施例の成膜方法による膜の表面を観察し
た図、(b)は従来の成膜方法による膜の表面を観察し
た図である。
FIG. 5 is a diagram of an unevenness of the surface of the film formed by the sequence in FIG. 1 observed by an atomic force microscope (AFM), and (a) is a view of the surface of the film formed by the film forming method of the present embodiment. , (B) are views observing the surface of a film formed by a conventional film forming method.

【符号の説明】 11…基板、12…Ba層、13…Cu-Y-Cu層、1
4…Ba層、15…Cu層、16…YBCO、17…バ
リウム銅酸化物。
[Explanation of Codes] 11 ... Substrate, 12 ... Ba Layer, 13 ... Cu-Y-Cu Layer, 1
4 ... Ba layer, 15 ... Cu layer, 16 ... YBCO, 17 ... Barium copper oxide.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平林 泉 愛知県名古屋市熱田区六野二丁目4番1 財団法人 国際超電導産業技術研究センタ ー 超電導工学研究所 名古屋研究室内 (72)発明者 森下 忠隆 東京都江東区東雲1丁目14番3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Izumi Hirabayashi Izumi Hirabayashi 2-4-1, Rokuno, Atsuta-ku, Nagoya-shi, Aichi International Superconductivity Technology Center, Superconductivity Research Institute Nagoya Laboratory (72) Inventor Tadashi Morishita Takashi 1-14-3 Shinonome, Koto-ku, Tokyo International Superconductivity Industrial Technology Research Center Superconductivity Engineering Laboratory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 3成分以上の金属元素を含む化合物から
なる酸化物超電導体の原子層エピタキシー膜を形成する
酸化物超電導体の成膜方法であって、単位格子の一部を
構成する複数の金属元素を一単位として同時に積層する
過程を含むことを特徴とする酸化物超電導体の成膜方
法。
1. A method for forming an oxide superconductor, which comprises forming an atomic layer epitaxy film of an oxide superconductor made of a compound containing three or more metal elements, comprising a plurality of parts constituting a unit lattice. A method for forming a film of an oxide superconductor, which comprises a step of simultaneously laminating metal elements as one unit.
【請求項2】 RBa2Cu37-δ (RはY,La,
Pr,Nd,Sm,Eu,Gd,Dy,Ho,Er,Y
bのうちいずれか1つである)の成膜方法であって、B
a/Cu,R,Cu/Ba/Cuの順でCu,R,Cu
をサブユニットセルとして同時に積層する過程を含むこ
とを特徴とする酸化物超電導体の成膜方法。
2. RBa 2 Cu 3 O 7-δ (R is Y, La,
Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Y
b) any one of b)),
a / Cu, R, Cu / Ba / Cu in this order Cu, R, Cu
And a step of simultaneously stacking as a subunit cell, the method for forming an oxide superconductor.
【請求項3】 請求項2に記載の酸化物超電導体の成膜
方法において、基板としてSrTiO3、MgOを使用
したことを特徴とする成膜方法。
3. The method for forming an oxide superconductor according to claim 2, wherein SrTiO 3 and MgO are used as the substrate.
【請求項4】 請求項3に記載の酸化物超電導体の成膜
方法において、成膜方法として有機金属CVD法(MO
CVD法)を用いたことを特徴とする酸化物超電導体の
成膜方法。
4. The method for forming a film of an oxide superconductor according to claim 3, wherein a metal organic CVD method (MO
CVD method) is used to form a film of an oxide superconductor.
【請求項5】 請求項2乃至4に記載のうちいずれか1
項に記載の酸化物超電導体の成膜方法において、前記R
がYであることを特徴とする成膜方法。
5. Any one of claims 2 to 4
In the method for forming an oxide superconductor according to the item 1,
Is Y is a film forming method.
JP5217266A 1993-09-01 1993-09-01 Film forming method of oxide superconductor Pending JPH0770752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5217266A JPH0770752A (en) 1993-09-01 1993-09-01 Film forming method of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5217266A JPH0770752A (en) 1993-09-01 1993-09-01 Film forming method of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH0770752A true JPH0770752A (en) 1995-03-14

Family

ID=16701449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5217266A Pending JPH0770752A (en) 1993-09-01 1993-09-01 Film forming method of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH0770752A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525426A (en) * 1998-09-11 2002-08-13 エイエスエム マイクロケミストリ オーワイ Method for growing oxide thin film containing barium and strontium
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525426A (en) * 1998-09-11 2002-08-13 エイエスエム マイクロケミストリ オーワイ Method for growing oxide thin film containing barium and strontium
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers

Similar Documents

Publication Publication Date Title
CA1330193C (en) Method for making artificial layered high-t_ superconductors
WO2006071543A1 (en) HIGH RATE BUFFER LAYER FOR IBAD MgO COATED CONDUCTORS
EP0406126B2 (en) Substrate having a superconductor layer
EP0446145B1 (en) Process for preparing high-temperature superconducting thin films
EP0635894B1 (en) Layered structure comprising insulator thin film and oxide superconductor thin film
JPH0354116A (en) Compound oxide superconducting thin film and production thereof
JPH0770752A (en) Film forming method of oxide superconductor
US5416062A (en) Thin film superconductor with an interlayer on a silicon substrate
US5340793A (en) Layer-by-layer process for forming Bi -containing oxide superconducting films
US5292718A (en) Process for preparing superconducting junction of oxide superconductor
EP0459906B1 (en) Process for preparing superconducting junction of oxide superconductor
US5240904A (en) Process for preparing a-axis oriented superconducting oxide thin films
EP0519769B1 (en) A process for preparing a superconducting thin film of compound oxide
JP2797186B2 (en) Semiconductor substrate having superconductor layer
US6606780B1 (en) Mercury-containing copper oxide superconductor and method of producing same
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
JP3604939B2 (en) Oxide superconductor and manufacturing method thereof
JPH03275504A (en) Oxide superconductor thin film and its production
JPS63236794A (en) Production of superconductive thin film of oxide
JPH06183894A (en) Method for forming surface of oxide single crystal
JPH0244782A (en) Superconductive element and manufacture thereof
Matsubara et al. On the Mechanism of the CVD Growth of YBCO Films
JPH0829938B2 (en) Composite oxide superconducting thin film and method for producing the same
JPH05319823A (en) Copper oxide material
JPH0812937B2 (en) Method for producing multi-layer film including superconductor film