JPH01148798A - Production of superconducting thin film - Google Patents

Production of superconducting thin film

Info

Publication number
JPH01148798A
JPH01148798A JP62309048A JP30904887A JPH01148798A JP H01148798 A JPH01148798 A JP H01148798A JP 62309048 A JP62309048 A JP 62309048A JP 30904887 A JP30904887 A JP 30904887A JP H01148798 A JPH01148798 A JP H01148798A
Authority
JP
Japan
Prior art keywords
thin film
superconducting thin
crystal growth
growth chamber
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62309048A
Other languages
Japanese (ja)
Inventor
Yasuhito Takahashi
康仁 高橋
Mototsugu Ogura
基次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62309048A priority Critical patent/JPH01148798A/en
Publication of JPH01148798A publication Critical patent/JPH01148798A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To facilitate formation of a thin film of a superconductor and to enable the formation of a superconducting thin film by only once growth without requiring annealing after the film formation, by forming the superconducting thin film by the vapor growth process using an organometallic compd. CONSTITUTION:In a process for producing a superconducting thin film on a substrate 3 mounted on a susceptor 2 in a crystal growth chamber 1 by introducing a reaction gas 9 into a crystal growth chamber 1, an organometallic compd. is used for at least one of the reaction gas. It is preferred that the organometallic compd. consists of the constituting element of the superconducting thin film and C, H, O, and F, and that the atmosphere in the crystal growth chamber is O2, a mixture of O2 with H2, or O2 with inert gas. The reaction gas can be decomposed and allowed to react by the heat generated by high frequency 10 or electric current. Decomposition and reaction using light (e.g., excimer laser 20) may be also useful.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は有機金属化合物を用いた気相成長法によシ超電
導薄膜を作成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a superconducting thin film by a vapor phase growth method using an organometallic compound.

従来の技術 最近、高温超電導体としてY−Ba−Cu−0系が提案
され注目されている( M 、 K 、 WuM、 K
 、Wnetan、フィジカル レビュー レターズ(
PhysicalReview Letters)Vo
w、  5 B 、 A 9 、909−910(19
87)]。
Conventional technology Recently, the Y-Ba-Cu-0 system has been proposed as a high-temperature superconductor and has attracted attention (M, K, WuM, K
, Wnetan, Physical Review Letters (
Physical Review Letters) Vo
w, 5B, A9, 909-910 (19
87)].

この材料系が提案されるまではニオブとゲルマニウムの
化合物、Nb5Gθ薄膜の23Kが最高の転移温度であ
った。これまでの超電導材料は金属あるいは半導体であ
りBC3理論から転移温度限界が予測されていた。
Until this material system was proposed, the highest transition temperature of a Nb5Gθ thin film, a compound of niobium and germanium, was 23K. Until now, superconducting materials have been metals or semiconductors, and the transition temperature limit has been predicted from the BC3 theory.

Y−Ba−Cu−0系材料は酸化物セラミクスであり詳
細は明らかではないが転移温度が室温あるいはそれ以上
に高くなる可能性があシ高温超電導体として期待される
The Y-Ba-Cu-0 material is an oxide ceramic, and although the details are not clear, the transition temperature may be higher than room temperature or higher, and it is expected to be a high-temperature superconductor.

発明が解決しようとする問題点 しかしながら、Y−Ba−Cu−0系の材料は、現在焼
結法でしか形成できないためセラミックの粉末あるいは
ブロックの形状でしか得られない。−方、実用化を考え
た場合、セラミックの粉末あるいはブロックとしての用
途もあるが薄膜化することが強く望まれている。また、
この種の焼結体では、−度焼結させたのち、含まれる酸
素の量をコントロールするだめに、再度酸素雰囲気中で
アニールする必要があり酸素量によっては超電導になら
ない場合もある。
Problems to be Solved by the Invention However, Y-Ba-Cu-0 based materials can currently only be formed by sintering, and therefore can only be obtained in the form of ceramic powder or blocks. - On the other hand, when considering practical use, there is a strong desire to make it into a thin film, although it may be used as ceramic powder or blocks. Also,
After this type of sintered body has been sintered, it is necessary to anneal it again in an oxygen atmosphere in order to control the amount of oxygen contained, and depending on the amount of oxygen, it may not become superconducting.

問題点を解決するだめの手段 これらの問題点を解決するために、本発明は有機金属化
合物を用いて気相成長法により超電導薄膜を形成するも
のであシ、原料ガスに有機金属化合物を用いることによ
り、成長温度は幅広くとることができる。また、成長雰
囲気も水素や不活性ガス雰囲気中に所定の酸素を混入さ
せることにより成膜中の酸素量を容易にコントロールす
ることができる。また、エキシマレーザ等の光を用いる
ことによシ超電導薄膜の構成元素と酸素間の結合を切っ
たり、酸素と炭素間の結合を切ったりできるので、この
方法によっても成膜中の酸素量はコントロールできる。
Means for Solving the Problems In order to solve these problems, the present invention forms a superconducting thin film by vapor phase growth using an organometallic compound, and uses the organometallic compound as a raw material gas. As a result, the growth temperature can be varied over a wide range. Furthermore, the amount of oxygen during film formation can be easily controlled by mixing a predetermined amount of oxygen into the growth atmosphere such as hydrogen or an inert gas atmosphere. In addition, by using light from an excimer laser, etc., it is possible to break the bonds between the constituent elements of the superconducting thin film and oxygen, as well as the bonds between oxygen and carbon, so this method also reduces the amount of oxygen during film formation. I can control it.

作  用 本発明によると、超電導体が容易に薄膜化でき、また成
膜後のアニールを必要とせず一度の成長で超電導薄膜が
形成できる。従来の焼結体に比べて均質である。
Effects According to the present invention, a superconductor can be easily made into a thin film, and a superconducting thin film can be formed by one-time growth without requiring annealing after film formation. It is more homogeneous than conventional sintered bodies.

実施例 本発明の一実施例を図面とともに説明する。第1図に第
1の実施例を示す。1は結晶成長室、2はサセプターた
とえば炭素製サセプター、3は基板たとえばSrTiO
3,4はキャリアガスとして用いる水素(H)、6は酸
素(02)、6はトリスジピバロイルメタナトイツトリ
ウム(Y(C11H19o2)3)(以下Y(DPM)
と記す)、7はバリウムヘキサフルオロアセチルアセト
ナト錯体(Ba (C5HF602)2)(以下Ba(
HFA)2と記す)、8はビスヘキサフルオロアセチル
アセトナト鋼(Cu(C6HF602)2(以下Cu 
(HF A ) 2と記す)、9は反応ガスを結晶成長
室に導く反応ガス導入管、10はサセプターを熱する高
周波誘導コイルである。
Embodiment An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment. 1 is a crystal growth chamber, 2 is a susceptor, for example, a carbon susceptor, and 3 is a substrate, for example, SrTiO.
3 and 4 are hydrogen (H) used as carrier gas, 6 is oxygen (02), and 6 is trisdipivaloylmethanatoytrium (Y(C11H19o2)3) (hereinafter referred to as Y(DPM)).
), 7 is a barium hexafluoroacetylacetonato complex (Ba (C5HF602)2) (hereinafter referred to as Ba (
8 is bishexafluoroacetylacetonato steel (Cu(C6HF602)2 (hereinafter referred to as Cu
(denoted as HF A ) 2), 9 is a reaction gas introduction pipe for introducing the reaction gas into the crystal growth chamber, and 10 is a high frequency induction coil for heating the susceptor.

この方法は基本的には化合物半導体の単結晶薄膜の結晶
成長に用いられている方法と類似したM○VPE (M
etal Organic Vapor Phase 
Epitary)法であり焼結させる場合と異なシ非平
衡状態で作成するため成長温度を幅広く検討することが
でき非常に都合がよい。以下に具体的に述べる。
This method is basically similar to the method used for crystal growth of single crystal thin films of compound semiconductors.
etal Organic Vapor Phase
Since this method is different from the case of sintering and is produced in a non-equilibrium state, a wide range of growth temperatures can be considered, which is very convenient. The details will be described below.

水素4、酸素6はマスフローコントロラーにより正確に
流量制御される。また、Y(DPM)3e、Ba(HF
A)  7、Cu (HF A ) 2 Bは、恒温槽
の中で正確に蒸気圧が制御され、マスフローコントロラ
ーにより正確に流量制御された水素ガスを導入すること
により結晶成長室への供給量が決定される。基板3の温
度は高周波誘導によシ熱せられたサセプター2からの熱
で所望の温度にされる。単結晶の薄膜を作成するには基
板温度は300〜60C)Cの範囲がこの成長方法では
最適である。
The flow rates of hydrogen 4 and oxygen 6 are accurately controlled by a mass flow controller. In addition, Y(DPM)3e, Ba(HF
A) 7, Cu (HF A) 2 B is supplied to the crystal growth chamber by precisely controlling the vapor pressure in a constant temperature bath and introducing hydrogen gas whose flow rate is precisely controlled by a mass flow controller. is determined. The temperature of the substrate 3 is brought to a desired temperature by heat from the susceptor 2 heated by high frequency induction. In order to produce a single-crystal thin film, a substrate temperature in the range of 300 to 60C is optimal for this growth method.

この温度より低い温度では成膜自体は超電導を示すが、
単結晶にはならない。この温度よシ高い温度では成膜自
体は超電導を示すが、多結晶膜となる場合が多い。
At temperatures lower than this temperature, the film itself exhibits superconductivity, but
It will not become a single crystal. At temperatures higher than this temperature, the film itself exhibits superconductivity, but it often becomes a polycrystalline film.

第2の実施例を第2図に示す。サセプター3の上流に発
振波長が300nm付近のレーザ光入射する窓21を結
晶成長室1に設け、レーザ光20を入射する。この場合
、第1の実施例に比べて装置は複雑になるが、有機金属
化合物の特定のボンドで切り放すことができ、基板温度
をさらに低くできる。たとえば100℃付近まで良好な
単結晶薄膜が容易に作成することができる。これらの方
法で作成された超電導薄膜の成長速度は1μm/hであ
シ典型的な転移温度は210にであった。
A second embodiment is shown in FIG. A window 21 through which laser light having an oscillation wavelength of around 300 nm enters is provided in the crystal growth chamber 1 upstream of the susceptor 3, and the laser light 20 enters the window 21. In this case, although the device becomes more complicated than in the first embodiment, it can be cut using a specific bond of the organometallic compound, and the substrate temperature can be further lowered. For example, a good single crystal thin film can be easily produced up to temperatures around 100°C. The growth rate of superconducting thin films produced by these methods was 1 μm/h, and the typical transition temperature was 210°C.

以上述べた方法は水素と酸素の混合雰囲気で作成したも
のであるが、酸素雰囲気はもちろんあこと、Ar、Xe
、Ne、Krのような不活性ガスとの混合雰囲気でも良
好な超電導薄膜が得られるのけ言うまでもない。さらに
Y(イツトリウム)をSc(スカンジウム)やLa (
ランタン)、さらにランタン系列の元素(原子番号57
〜71)に置き換えてもよい。また、Ba  (バリウ
ム)についてもSr(ストロンチウム)、Ca(カルシ
ウム)等のIIa 族元素に置き換えてもよいことはも
ちろんである。また、基板3は、ペロブスカイト構造あ
るいはスピネル構造を有する酸化物、Si、Geあるい
はI−V、n −Vl化合物半導体等を用いることがで
きる。
The method described above was created in a mixed atmosphere of hydrogen and oxygen.
Needless to say, a good superconducting thin film can be obtained even in a mixed atmosphere with an inert gas such as , Ne, or Kr. Furthermore, Y (yttrium) is replaced with Sc (scandium) and La (
Lanthanum), as well as elements in the lanthanum series (atomic number 57
~71) may be replaced. Furthermore, it goes without saying that Ba (barium) may be replaced with IIa group elements such as Sr (strontium) and Ca (calcium). Further, the substrate 3 can be made of an oxide having a perovskite structure or a spinel structure, Si, Ge, IV, n-Vl compound semiconductor, or the like.

発明の効果 本発明にかかる超電導薄膜の製造方法は超電導体を均一
性のよい薄膜化している所に大きな特徴がある。しかも
従来成膜後酸素雰囲気でアニールする必要があったが成
膜中に酸素濃度を容易にコントロールできるため成膜後
のアニールは必要がない。したがって本発明により形成
された超電導薄膜は良好な特性を示すだけでなく、非常
に低価格で作成することができ、工業的価値は高く、実
用的効果は大である。
Effects of the Invention The method for producing a superconducting thin film according to the present invention is characterized in that the superconductor is made into a thin film with good uniformity. Moreover, although conventionally it was necessary to anneal in an oxygen atmosphere after film formation, since the oxygen concentration can be easily controlled during film formation, there is no need for annealing after film formation. Therefore, the superconducting thin film formed according to the present invention not only exhibits good properties, but also can be produced at a very low cost, has high industrial value, and has great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の方法を示す概略図、第
2図は本発明の第2の実施例の方法を示す概略図である
。 1・・・・・・結晶成長室、2・・・・・・サセプター
、3・・・・・・・ 基板、4・・・・・・水素ガス、
6・・・・・・酸素ガス、6・・・・・・Y(C11H
19o2)3.7・・・・・・Ba(C2HF6o2)
2.8・・・・・・Cu(C5HF6o2)2.10・
・・・・・高周波誘導コイル、2o・・・・・・エキシ
マレーザ。
FIG. 1 is a schematic diagram showing a method according to a first embodiment of the present invention, and FIG. 2 is a schematic diagram showing a method according to a second embodiment of the present invention. 1...Crystal growth chamber, 2...Susceptor, 3...Substrate, 4...Hydrogen gas,
6...Oxygen gas, 6...Y(C11H
19o2)3.7...Ba(C2HF6o2)
2.8...Cu(C5HF6o2)2.10.
...High frequency induction coil, 2o...Excimer laser.

Claims (5)

【特許請求の範囲】[Claims] (1)結晶成長室内に反応ガスを導入し、前記結晶成長
室内に載置されたサセプター上の基板上に超電導薄膜を
作成する際、前記反応ガスの内少なくとも一種は有機金
属化合物を用いる超電導薄膜の製造方法。
(1) When a reactive gas is introduced into a crystal growth chamber and a superconducting thin film is created on a substrate on a susceptor placed in the crystal growth chamber, at least one of the reactive gases is a superconducting thin film using an organometallic compound. manufacturing method.
(2)反応ガスは高周波誘導あるいは電流による熱によ
り分解および反応が行われる特許請求の範囲第1項に記
載の超電導薄膜の製造方法。
(2) The method for producing a superconducting thin film according to claim 1, wherein the reaction gas is decomposed and reacted by heat generated by high-frequency induction or electric current.
(3)反応ガスは光によって分解および反応が行われる
特許請求の範囲第1項に記載の超電導薄膜の製造方法。
(3) The method for producing a superconducting thin film according to claim 1, wherein the reaction gas is decomposed and reacted by light.
(4)光はエキシマレーザである特許請求の範囲第3項
に記載の超電導薄膜の製造方法。
(4) The method for producing a superconducting thin film according to claim 3, wherein the light is an excimer laser.
(5)有機金属化合物は超電導薄膜の構成元素の一元素
とC、H、O、Fからなり、結晶成長室内の雰囲気は酸
素雰囲気あるいは酸素と水素からなる雰囲気あるいは酸
素と不活性ガスからなる雰囲気である特許請求の範囲第
1項に記載の超電導薄膜の製造方法。
(5) The organometallic compound consists of one of the constituent elements of the superconducting thin film, C, H, O, and F, and the atmosphere in the crystal growth chamber is an oxygen atmosphere, an atmosphere consisting of oxygen and hydrogen, or an atmosphere consisting of oxygen and an inert gas. A method for producing a superconducting thin film according to claim 1.
JP62309048A 1987-12-07 1987-12-07 Production of superconducting thin film Pending JPH01148798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62309048A JPH01148798A (en) 1987-12-07 1987-12-07 Production of superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62309048A JPH01148798A (en) 1987-12-07 1987-12-07 Production of superconducting thin film

Publications (1)

Publication Number Publication Date
JPH01148798A true JPH01148798A (en) 1989-06-12

Family

ID=17988246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62309048A Pending JPH01148798A (en) 1987-12-07 1987-12-07 Production of superconducting thin film

Country Status (1)

Country Link
JP (1) JPH01148798A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294506A (en) * 1988-05-19 1989-11-28 Nichicon Corp Production of metallic oxide and thin film thereof with excimer laser
JPH01308806A (en) * 1988-06-06 1989-12-13 Mitsubishi Metal Corp Production of filmy superconductor
JPH01308804A (en) * 1988-06-06 1989-12-13 Mitsubishi Metal Corp Production of filmy superconductor
JPH01308802A (en) * 1988-06-06 1989-12-13 Mitsubishi Metal Corp Production of filmy superconductor and device therefor
JPH01308807A (en) * 1988-06-06 1989-12-13 Mitsubishi Metal Corp Production of filmy superconductor
JPH0254769A (en) * 1988-08-18 1990-02-23 Mitsubishi Metal Corp Manufacture of thin superconductor film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294506A (en) * 1988-05-19 1989-11-28 Nichicon Corp Production of metallic oxide and thin film thereof with excimer laser
JPH01308806A (en) * 1988-06-06 1989-12-13 Mitsubishi Metal Corp Production of filmy superconductor
JPH01308804A (en) * 1988-06-06 1989-12-13 Mitsubishi Metal Corp Production of filmy superconductor
JPH01308802A (en) * 1988-06-06 1989-12-13 Mitsubishi Metal Corp Production of filmy superconductor and device therefor
JPH01308807A (en) * 1988-06-06 1989-12-13 Mitsubishi Metal Corp Production of filmy superconductor
JPH0254769A (en) * 1988-08-18 1990-02-23 Mitsubishi Metal Corp Manufacture of thin superconductor film

Similar Documents

Publication Publication Date Title
JP5219109B2 (en) Manufacturing method of superconducting material
EP0681744A4 (en) SUPERCONDUCTING YBa2Cu307-x PRODUCED AT LOW TEMPERATURES.
US5453306A (en) Process for depositing oxide film on metallic substrate by heat plasma flash evaporation method
JPH01148798A (en) Production of superconducting thin film
JPH0219468A (en) Formation of metal oxide
JPH01208327A (en) Production of thin film of superconductor
JPH03174304A (en) Production of thin film of oxide superconductor
JPH01219016A (en) Production of thin superconducting ceramic film containing dispersed oxide
JPH0328110A (en) Production of superconducting film of oxide and device therefor
JP2551983B2 (en) Preparation method of oxide superconducting film using chemical vapor deposition
JPS63242923A (en) Production of ceramic superconductor crystal
JPS63292524A (en) Manufacture of superconductive film
JPH03285804A (en) Production of oxide superconductor thin film
JPH0350193A (en) Formation of superconducting thin film
JPS63257127A (en) Manufacture of thin film superconductor
RU1575856C (en) Method of producing films of superconductive oxide materials
JPH0196015A (en) Formation of superconducting thin film
JPH01226734A (en) Production of superconducting thin film of bi-sr-ca-cu-o by sputtering
JPH02210718A (en) Gaseous phase growing method for oxide superconductor
Ritums et al. Epitaxially deposited SrVO/sub 3/conducting films by laser ablation and metal organic chemical vapor deposition
Zhong High rate growth of YBCO films by photo-assisted metal-organic chemical vapor deposition
JPH01188420A (en) Production of oxide superconducting thin film
JPH0375207A (en) Production of thin film of oxide superconductor
JPH01304619A (en) Manufacture of oxide superconductive long sized material
Sinha et al. Reduced thermal budget processing of high-Tc superconducting thin films and related materials by MOCVD