JPH01304619A - Manufacture of oxide superconductive long sized material - Google Patents

Manufacture of oxide superconductive long sized material

Info

Publication number
JPH01304619A
JPH01304619A JP63134787A JP13478788A JPH01304619A JP H01304619 A JPH01304619 A JP H01304619A JP 63134787 A JP63134787 A JP 63134787A JP 13478788 A JP13478788 A JP 13478788A JP H01304619 A JPH01304619 A JP H01304619A
Authority
JP
Japan
Prior art keywords
phase source
gas phase
superconductor
oxide
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63134787A
Other languages
Japanese (ja)
Other versions
JP2527790B2 (en
Inventor
Shinya Aoki
青木 伸哉
Tsukasa Kono
河野 宰
Yutaka Osanai
裕 小山内
Tomoaki Shinada
品田 知章
Osamu Sugimoto
杉本 脩
Kiichiro Watanabe
渡辺 喜一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Kyushu Electric Power Co Inc
Chugoku Electric Power Co Inc
Chubu Electric Power Co Inc
Original Assignee
Fujikura Ltd
Kyushu Electric Power Co Inc
Chugoku Electric Power Co Inc
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Kyushu Electric Power Co Inc, Chugoku Electric Power Co Inc, Chubu Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP63134787A priority Critical patent/JP2527790B2/en
Publication of JPH01304619A publication Critical patent/JPH01304619A/en
Application granted granted Critical
Publication of JP2527790B2 publication Critical patent/JP2527790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To easily obtain a superconductive long sized material possessing a superconductor of the desired composition ratio by providing an adjusting means for adjusting the supply quantity of each gaseous phase source comprising each composing element of a superconductor of oxide in a gaseous phase source supply system. CONSTITUTION:A long sized base body K is bound to an output device 10 of a manufacturing device main body 1 and its one end is fixed to a take-up motion 11. Plasma flame P is generated in a plasma generating container 4 and the base material K is heated simultaneously. The gaseous phase source comprising composing elements of a superconductor of oxide is adjusted so as to be at the fixed ratio and supplied into a processing chamber 5; a superconductive long sized material indicated as usual formula A-B-Cu-O is thus obtained. A in the formula indicates one or more than two kinds among the periodic table group Vb elements such as Bi, Sb, etc., and B indicates one or more than two kinds among the periodic table group IIa elements such as Sr, Ba, Ca, etc.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、超電導マグネットコイルや電力輸送用等に
使用される酸化物系超電導長尺材の製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to an apparatus for manufacturing an oxide-based superconducting long material used for superconducting magnet coils, power transportation, and the like.

「従来の技術」 近時、常電導状態から超電導状態に遷移する臨界温度(
Tc)が液体窒素温度以上の高い値を示す酸化物系超電
導体が種々発見されつつある。
"Conventional technology" Recently, the critical temperature at which the normal conductive state transitions to the superconducting state (
Various oxide-based superconductors are being discovered that exhibit Tc) values higher than the liquid nitrogen temperature.

そして、例えばこのような酸化物系超電導体を備えた超
電導線を製造するには、Y −B a−Cu−0系の超
電導体を有した超電導線の場合、Y、03粉末と13 
a COs粉末とCuO粉末とを所望する比率で混合し
た混合粉末を仮焼・粉砕して仮焼粉末とし、さらにこの
仮焼粉末を銅、銀などの金属パイプ内に充填し、次いで
縮径加工および熱処理を順次行い、上記混合粉末を焼結
せしめてこれを超電導体とし、超電導線を得る方法が試
みられている。
For example, in order to manufacture a superconducting wire having such an oxide-based superconductor, in the case of a superconducting wire having a Y-B a-Cu-0-based superconductor, Y,03 powder and 13
a A mixed powder of COs powder and CuO powder mixed in a desired ratio is calcined and crushed to obtain a calcined powder, and this calcined powder is then filled into a metal pipe made of copper, silver, etc., and then diameter-reduced. A method of obtaining a superconducting wire by sequentially performing heat treatment and sintering the mixed powder to form a superconductor has been attempted.

ところが、このような方法では、熱処理に際し、熱膨倶
率の差に起因して金属パイプからなるシースと該シース
内の超電導体との間に応力が発生し、この応力により超
電導体内にクラックなどの欠陥部分が生じ易いため、長
平方向に沿って均一な超電導特性を示す超電導線が得ら
れにくいという問題がある。
However, in this method, stress is generated between the sheath made of the metal pipe and the superconductor within the sheath due to the difference in coefficient of thermal expansion during heat treatment, and this stress may cause cracks or the like within the superconductor. Since defective portions are likely to occur, there is a problem in that it is difficult to obtain a superconducting wire that exhibits uniform superconducting properties along the longitudinal direction.

また、このような問題に鑑み、金属バイブに充填するこ
となく、化学気相蒸着法(以下、CVD法と略称する。
In addition, in view of such problems, a chemical vapor deposition method (hereinafter abbreviated as CVD method) is used instead of filling a metal vibrator.

)等により線状の基材上に直接超電導体を形成する方法
なども提案されている。
) has also been proposed, such as a method of directly forming a superconductor on a linear base material.

「発明が解決しようとする課題」 しかしながら、上記のCVD法を用いた超電導線の製造
方法にあっては、以下に述べるような不都合がある。
"Problems to be Solved by the Invention" However, the method for manufacturing a superconducting wire using the above CVD method has the following disadvantages.

この製造方法において使用されるCVD装置は、通常高
い蒸気圧を有する揮発性化合物を気相源として用いるも
のである。ところで、酸化物系超電導体を作製するにあ
たっては、例えばY、Ba、Cuなどの元素を含む揮発
性化合物を気相源として使用するが、これらY、Ba、
Cuなどの元素を含む揮発性化合物は、一般に蒸気圧が
低く、よってこれら化合物を、所望する組成比の超電導
体が形成可能となるよう調整してCVD装置に供給する
のが困難であり、したがって得られた超電導体はその組
成比が所望する適正なものとならず、十分な超電導特性
を有するものとならない。また、上述した超電導線のご
とく長尺材を作製するには、特に連続してCVD処理を
行うのが生産上望ましいが、通常使用されるCVD装置
は基板上への薄膜形成などに用いるのが普通であり、長
尺材を連続して処理し得るような機構が設けられていな
いのが実状である。
The CVD equipment used in this manufacturing method typically uses a volatile compound having a high vapor pressure as a gas phase source. By the way, in producing an oxide-based superconductor, a volatile compound containing elements such as Y, Ba, and Cu is used as a gas phase source.
Volatile compounds containing elements such as Cu generally have low vapor pressure, and therefore it is difficult to adjust and supply these compounds to a CVD apparatus so that a superconductor with a desired composition ratio can be formed. The obtained superconductor does not have the desired composition ratio and does not have sufficient superconducting properties. In addition, in order to produce long materials such as the superconducting wires mentioned above, it is particularly desirable to carry out continuous CVD treatment, but it is preferable to use commonly used CVD equipment for forming thin films on substrates. The reality is that there is no mechanism that can continuously process long materials.

この発明は上記事情に鑑みてなされたもので、その目的
とするところは、優れた超電導特性を有する長尺な超電
導材を作製するのに好適に用いられる製造装置を提供す
ることにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a manufacturing apparatus that can be suitably used for manufacturing a long superconducting material having excellent superconducting properties.

「課題を解決するための手段」 この発明の酸化物系超電導長尺材の製造装置では、化学
気相蒸着処理装置本体とこの装置本体に設けられた気相
源供給系を具備してなる酸化物系超電導長尺材の製造装
置において、上記装置本体内に長尺基材の送出装置およ
び巻取装置を配し、上記気相源供給系に上記A 、B 
、Cの各元素を含むそれぞれの気相源の供給量を個々に
調整し得る調整機構を設けたことを上記課題の解決手段
とした。
"Means for Solving the Problems" The apparatus for producing an oxide-based superconducting long material of the present invention comprises a chemical vapor deposition processing apparatus main body and a gas phase source supply system provided in the apparatus main body. In an apparatus for producing a physical superconducting long material, a feeding device and a winding device for the long base material are arranged in the device main body, and the above A and B are provided in the gas phase source supply system.
The solution to the above problem is to provide an adjustment mechanism that can individually adjust the supply amount of each gas phase source containing each element of , C.

「作用 」 この発明の酸化物系超電導長尺材の製造装置によれば、
気相源供給系に酸化物系超電導体の各構成元素を含むそ
れぞれの気相源の供給量を個々に調整し得る調整機構を
設けたので、各気相源が所定比に調整されて処理室内に
供給される。また、装置本体内に長尺基材の送出装置お
よび巻取装置を配したので、長尺基材に連続してCVD
処理による超電導体層の形成が行える。
"Function" According to the apparatus for producing an oxide-based superconducting long material of the present invention,
Since the gas phase source supply system is equipped with an adjustment mechanism that can individually adjust the supply amount of each gas phase source containing each component element of the oxide superconductor, each gas phase source is adjusted to a predetermined ratio and processed. Supplied indoors. In addition, since a feeding device and a winding device for long substrates are arranged in the main body of the device, continuous CVD is applied to long substrates.
A superconductor layer can be formed by processing.

「実施例」 以下、この発明の酸化物系超電導長尺材の製造装置の一
実施例を詳しく説明する。
"Example" Hereinafter, an example of the apparatus for manufacturing an oxide-based superconducting long material of the present invention will be described in detail.

第1図はこの発明の酸化物系超電導長尺材の製造装置の
一実施例を示す図であって、図中符号lは製造装置であ
る。この製造装置1は、プラズマ化学気相蒸着処理を行
うための装置本体2と、この装置本体2に設けられた気
相源供給系3とから構成されたものである。
FIG. 1 is a diagram showing an embodiment of an apparatus for manufacturing an oxide-based superconducting long material according to the present invention, and reference numeral l in the figure indicates the manufacturing apparatus. This manufacturing apparatus 1 is composed of an apparatus main body 2 for performing plasma chemical vapor deposition processing, and a gas phase source supply system 3 provided in this apparatus main body 2.

装置本体2は、プラズマ発生容器4とこのプラズマ発生
容器4に連通ずる処理室5とからなっている。プラズマ
発生容器4は、石英等の絶縁体からなる円筒状のもので
、その外周部には高周波コイル6が巻回されている。こ
の高周波コイル6は、図示しない高周波電源に接続され
たものであり、高周波電磁誘導によってプラズマ発生容
器4内にプラズマを形成するものである。また、プラズ
マ発生容器4の天井部の開口部には、プラズマ発生用ガ
ス供給管7がプラズマ発生容器4内に連通して固定体8
により気密に取り付は固定されている。
The apparatus main body 2 includes a plasma generation container 4 and a processing chamber 5 communicating with the plasma generation container 4. The plasma generation container 4 is cylindrical and made of an insulator such as quartz, and has a high frequency coil 6 wound around its outer periphery. This high-frequency coil 6 is connected to a high-frequency power source (not shown), and forms plasma in the plasma generation container 4 by high-frequency electromagnetic induction. Further, a plasma generation gas supply pipe 7 is connected to the opening in the ceiling of the plasma generation container 4 and is connected to a fixed body 8.
The installation is fixed airtight.

プラズマ発生用ガス供給管7は、図示しない供給源に接
続されたものであり、酸素、亜酸化窒素(N、0)等の
酸素源ガスと、アルゴン、ヘリウム、窒素等の不活性ガ
スとの混合ガスなどをプラズマ発生容器4内に供給する
ためのものである。さらに、このプラズマ発生容器4の
底部の開口部には、上記処理室5が連設されている。
The plasma generation gas supply pipe 7 is connected to a supply source (not shown), and supplies oxygen source gas such as oxygen and nitrous oxide (N, 0), and inert gas such as argon, helium, and nitrogen. This is for supplying mixed gas and the like into the plasma generation container 4. Further, the processing chamber 5 is connected to the opening at the bottom of the plasma generating container 4 .

処理室5は、その中央部にて上記プラズマ発生容器4に
連通ずる横方向に長い密閉容器状のもので、その両端部
にはロール室9.9が配置されている。これらロール室
9.9内には、一方に送出装置lOが、他方に巻取装置
11が収納されている。送出装置10および巻取装置1
1は、それぞれ線材あるいはテープ材等の長尺基材を送
り出し、または処理後の長尺材を巻き取るためのもので
、第1図中矢印へ方向に回転するものであるが、逆回転
も可能であり、これによって−旦処理した長尺材を容易
に再処理することが可能なようになっている。また、ロ
ール室9.9には、上記送出装置10および巻取装置1
1を取り出しあるいは収納するための図示しない扉が気
密に設けられている。処理室5には、処理室5内および
これに連通ずるプラズマ発生容器4内を真空引きしある
いは減圧するための排気口12が形成されており、この
排気口12には図示しない負圧源が接続されている。ま
た、この処理室5内の中央部にはヒータ13が配設され
ており、これによって処理室5では上記送出装置10お
よび巻取装置11に巻架された長尺材を熱処理可能なよ
うになっている。さらに、この処理室5には、該処理室
5内にCVD処理を施すための気相源を供給する気相源
供給系3が、供給管14を介して接続されている。ここ
で、供給管14は、その処理室5内側の一端がプラズマ
発生容器4の底部開口部に臨んで開口しており、これに
よってプラズマ発生容器4内で形成されたプラズマフレ
ーム中に気相源を供給し得るようになっている。
The processing chamber 5 is in the form of a laterally long sealed container that communicates with the plasma generation container 4 at its center, and roll chambers 9.9 are arranged at both ends thereof. In these roll chambers 9.9, a delivery device 10 is housed on one side, and a winding device 11 is housed on the other side. Sending device 10 and winding device 1
1 is for sending out long base materials such as wire rods or tape materials, or winding up long materials after processing, and rotates in the direction of the arrow in Fig. 1, but can also rotate in the opposite direction. This makes it possible to easily reprocess previously processed long materials. The roll chamber 9.9 also includes the above-mentioned delivery device 10 and winding device 1.
A door (not shown) for taking out or storing 1 is airtightly provided. The processing chamber 5 is formed with an exhaust port 12 for evacuating or depressurizing the inside of the processing chamber 5 and the plasma generation container 4 communicating therewith, and the exhaust port 12 is connected to a negative pressure source (not shown). It is connected. Further, a heater 13 is disposed in the center of the processing chamber 5, so that the processing chamber 5 can heat-process the long material wound on the delivery device 10 and the winding device 11. It has become. Furthermore, a gas phase source supply system 3 that supplies a gas phase source for performing CVD processing into the processing chamber 5 is connected to the processing chamber 5 via a supply pipe 14 . Here, one end of the supply pipe 14 inside the processing chamber 5 is open facing the bottom opening of the plasma generation container 4, thereby causing a gas phase source to be added to the plasma flame formed in the plasma generation container 4. It is now possible to supply

気相源供給系3は、第2図に示すように、酸化物系超電
導体の構成元素を含む各々の気相源を貯留する容器15
・・と、これら容器15・・内の気相源を上記供給管1
4を介して処理室5内に導入するための配管系16と、
該配管系16に配設された複数のレギュレーター17・
・・とからなっている。
As shown in FIG. 2, the gas phase source supply system 3 includes a container 15 for storing each gas phase source containing constituent elements of the oxide superconductor.
..., and the gas phase source in these containers 15... is connected to the supply pipe 1.
a piping system 16 for introducing into the processing chamber 5 via 4;
A plurality of regulators 17 arranged in the piping system 16.
It consists of...

容器15・・には、それぞれに上記一般式A−B−Cu
−OにおけるA元素、B元素およびCu元素を含む気相
源がそれぞれ貯留されている。ここで、これら気相源と
1しては、例えば酸化物系超電導体がY−B a−Cu
−0系の場合、Y元素を含む気相源とじてトリス−シク
ロペンタジェニルイツトリウム等が、Ba元素を含む気
相源としてビス−ヘキサフルオロアセチルアセトンバリ
ウム等が、さらにCu元素を含む気相源としてビスージ
ピバロイルメタナート銅等がそれぞれ用いられる。容1
115・・は、ステンレス等の金属製のものであって、
その底部には容器15・・内の気相源を加熱するための
図示しないヒータが配設されている。配管系16は、上
記供給管14と容器15・・とを連通せしめ、さらにこ
れらをキャリヤガス源18および真空ポンプ19に連通
せしめるものであり、キャリヤガス源18からキャリヤ
ガスを導入しあるいは真空ポンプ19で真空引きするこ
とにより、上記容器15・・内およびこれに連通ずる配
管内を10−’+nmHg〜1.5Kg/cn+’の範
囲で制御可能としたものである。すなわち、この配管系
16には、その主配管20の一端側にキャリヤガス源1
8が、また他端側に真空ポンプ19が接続されており、
真空ポンプ19側に主配管20より分岐して上記供給管
14が配設されている。主配管20には一対の補助配管
21.21が分岐して配設されており、これら補助配管
21,21間にはさらに分岐管22・・が配設されてい
る。分岐管22・・には、該分岐管22・・に上記容器
15・・を連通せしめるための容器用管23・・がそれ
ぞれに配設されている。レギュレーター17・・・は、
配管系16の主配管20、補助配管21,21、分岐管
22・・および容器用管23・・、さらには供給管14
にそれぞれ配設されたもので、それぞれの管内あるいは
容615・・内の圧力を一定にし得るよう調節可能なも
のである。このような構成のもとに気相源供給系3は、
上記A 、B 、Cの各元素を含むそれぞれの気相源の
供給量を個々に調整し得る調整機構を有したものとなっ
ている。すなわち気相源供給系3は、キャリヤガス源1
8から窒素、アルゴン等のキャリヤガスを容器15・・
に流入せしめ、容器15・・中の気相源をバブリングす
ることにより気相源を気化せしめ、これらを供給管14
を介して処理室5内に導入することができ、そして、そ
の際に容器用管23・・に配設されたレギュレーター1
7a・・および17b・・を適宜調節することにより、
個々の気相源の処理室5内への導入量を調整することが
できるようになっている。また、キャリヤガスの流入を
停止し、真空ポンプ19を駆動することにより、容器1
5・・内をそれぞれ減圧して気相源を気化せしめ、その
後真空ポンプ19側に配設されたレギュレーター17c
を閉塞し、処理室5の排気口12に接続された図示しな
い真空ポンプを駆動することによって上記の気化した気
相源を処理室5内に導入する。そして、この場合も容器
用管23・・に配設されたレギュレーター17a・・お
よび17b・・を適宜調節することにより、個々の気相
源の処理室5内への導入量を調整することができるよう
になっている。
Containers 15... each have the above general formula A-B-Cu.
Gas phase sources containing A element, B element, and Cu element in -O are each stored. Here, as these gas phase sources, for example, oxide-based superconductors include Y-Ba-Cu
In the case of -0 series, tris-cyclopentagenyl yttrium etc. are used as a gas phase source containing the Y element, barium bis-hexafluoroacetylacetonate etc. are used as a gas phase source containing the Ba element, and a gas phase source containing the Cu element is used. Copper bis-dipivaloyl methanate and the like are used as the metal. Volume 1
115... is made of metal such as stainless steel,
A heater (not shown) for heating the gas phase source inside the container 15 is disposed at the bottom thereof. The piping system 16 connects the supply pipe 14 and the container 15, and further connects these to a carrier gas source 18 and a vacuum pump 19, and introduces carrier gas from the carrier gas source 18 or connects the vacuum pump to the carrier gas source 18. By evacuation at step 19, the inside of the container 15 and the inside of the piping communicating therewith can be controlled within the range of 10-'+nmHg to 1.5 Kg/cn+'. That is, this piping system 16 has a carrier gas source 1 at one end of its main piping 20.
8, and a vacuum pump 19 is connected to the other end,
The supply pipe 14 is arranged to branch from the main pipe 20 on the vacuum pump 19 side. A pair of auxiliary pipes 21, 21 are branched from the main pipe 20, and branch pipes 22, . . . are further arranged between these auxiliary pipes 21, 21. The branch pipes 22 are each provided with a container pipe 23 for communicating the container 15 with the branch pipe 22. Regulator 17... is
The main pipe 20, auxiliary pipes 21, 21, branch pipes 22, and container pipes 23 of the piping system 16, as well as the supply pipe 14
The pressure inside each pipe or volume 615 can be adjusted to be constant. Based on such a configuration, the gas phase source supply system 3
It has an adjustment mechanism that can individually adjust the supply amount of each gas phase source containing the above-mentioned elements A, B, and C. That is, the gas phase source supply system 3 is the carrier gas source 1
8 to a carrier gas such as nitrogen or argon to a container 15...
The gas phase source in the container 15 is bubbled to vaporize the gas phase source, and these are passed through the supply pipe 14.
can be introduced into the processing chamber 5 via the regulator 1 disposed in the container pipe 23.
By appropriately adjusting 7a... and 17b...
The amount of each gas phase source introduced into the processing chamber 5 can be adjusted. Also, by stopping the inflow of the carrier gas and driving the vacuum pump 19, the container 1
5. The pressure inside each is reduced to vaporize the gas phase source, and then the regulator 17c disposed on the vacuum pump 19 side
The vaporized gas phase source is introduced into the processing chamber 5 by closing a vacuum pump (not shown) connected to the exhaust port 12 of the processing chamber 5 . In this case as well, the amount of each gas phase source introduced into the processing chamber 5 can be adjusted by appropriately adjusting the regulators 17a... and 17b... disposed in the container pipes 23... It is now possible to do so.

このような構成の製造装置1によって超電導長尺材を作
製するには、まず線状あるいはテープ状等の長尺基材K
を送出装置10に巻回し、その−端を巻取装置11に固
定する。ここで、長尺基材にとしては、銅、ニッケル等
の金属、ステンレス等の合金、石英ガラス等のセラミッ
クスファイバ、炭素繊維等の非金属材、さらには金属の
表面上にセラミックス等をコートしてなる複合材などの
材質のものが用いられる。次に、高周波コイル6に通電
し、高周波電磁誘導によってプラズマ発生容器4内を加
熱するとともに、該プラズマ発生容器4内にプラズマ発
生用ガス供給管7よりプラズマ発生用のガスを導入し、
プラズマ発生容器4内にプラズマフレームFを発生させ
る。
In order to produce a superconducting long material using the manufacturing apparatus 1 having such a configuration, first, a long base material K such as a linear or tape-like material is prepared.
is wound around the delivery device 10, and its lower end is fixed to the winding device 11. Here, long base materials include metals such as copper and nickel, alloys such as stainless steel, ceramic fibers such as quartz glass, non-metallic materials such as carbon fibers, and even ceramics coated on the surface of metals. Materials such as composite materials are used. Next, the high frequency coil 6 is energized to heat the inside of the plasma generation container 4 by high frequency electromagnetic induction, and a plasma generation gas is introduced into the plasma generation container 4 from the plasma generation gas supply pipe 7.
A plasma flame F is generated in the plasma generation container 4.

次いで、処理室5内のヒータ13に通電して長尺基材K
を適宜な温度に加熱し、さらにこれと同時に気相源供給
系3より、酸化物系超電導体の構成元素を含む気相源を
所定比となるように調節して処理室5内に供給する。す
ると供給された各気相源は、プラズマフレームF中に導
入されてここで分解され、プラズマフレームF中に含ま
れる酸素と反応して酸化物系超電導体の各構成元素の酸
化物、例えばYtO3,BaO,CuOなどの酸化物の
微粉末となる。この場合に各気相源の処理室5内への導
入は、上述のごとくキャリヤガスを容器I5・・内に導
入せしめ、あるいは真空ポンプ19を駆動させて気相源
を気化せしめる方法によって行なわれ、その際予めレギ
ュレーター17a、17bを調節することにより各気相
源の供給量の比率を所定比に調整しておく。
Next, the heater 13 in the processing chamber 5 is energized to heat the long substrate K.
is heated to an appropriate temperature, and at the same time, from the gas phase source supply system 3, a gas phase source containing the constituent elements of the oxide superconductor is adjusted to a predetermined ratio and supplied into the processing chamber 5. . The supplied gas phase sources are then introduced into the plasma flame F, where they are decomposed, and react with the oxygen contained in the plasma flame F to form oxides of each constituent element of the oxide superconductor, such as YtO3. , BaO, CuO, and other oxide powders. In this case, each gas phase source is introduced into the processing chamber 5 by introducing the carrier gas into the container I5 as described above, or by driving the vacuum pump 19 to vaporize the gas phase source. At that time, the ratio of the supply amount of each gas phase source is adjusted to a predetermined ratio by adjusting the regulators 17a and 17b in advance.

次いで、処理室5の排気口12より排気しつつ、送出装
置lOおよび巻取装置11を回転させ、長尺基材Kを適
宜な速度で移動させる。すると長尺基材にでは、その表
面上に上記の酸化物系超電導体の構成元素の酸化物微粉
末が所定の比率で堆積し付着して超電導材料層が形成さ
れ、さらにこの超電導材料層がプラズマフレームFおよ
びヒータ13により800〜1000℃程度に加熱され
て超電導体層が形成される。
Next, while exhausting air from the exhaust port 12 of the processing chamber 5, the delivery device IO and the winding device 11 are rotated to move the long base material K at an appropriate speed. Then, on the surface of the long base material, fine oxide powder of the constituent elements of the oxide-based superconductor is deposited and attached at a predetermined ratio to form a superconducting material layer, and this superconducting material layer is further A superconductor layer is formed by heating to about 800 to 1000° C. using a plasma flame F and a heater 13.

その後、長尺基材Kをさらに移動することによって形成
した超電導体層を徐冷し、順次巻取装置11に巻き取っ
て超電導長尺材を得る。
Thereafter, the elongated base material K is further moved to slowly cool the formed superconductor layer, and the superconducting elongated material is obtained by sequentially winding it up on the winding device 11.

このような構成の製造装置lにあっては、酸化物系超電
導体の各構成元素を含む気相源を所定比で供給できるた
め、所望する組成比の超電導体を有した超電導長尺材を
作製することができる。また、処理室5内に送出装置I
Oおよび巻取装置llを配したので、長尺基材Kに連続
してCVD処理による超電導体層の形成を行うことがで
きる。
The manufacturing apparatus l having such a configuration can supply a gas phase source containing each constituent element of the oxide-based superconductor at a predetermined ratio, so that a superconducting long material having a superconductor with a desired composition ratio can be produced. It can be made. In addition, a delivery device I is installed in the processing chamber 5.
Since O and the winding device 11 are arranged, the superconductor layer can be continuously formed on the long base material K by CVD treatment.

さらに、得られた超電導長尺材にあっては、金属パイプ
などをシース材として用いていないため、クラック等の
欠陥が生ずることなく、よって臨界電流密度などの超電
導特性に優れたものとなる。
Furthermore, since the obtained superconducting long material does not use a metal pipe or the like as a sheath material, defects such as cracks do not occur, and therefore it has excellent superconducting properties such as critical current density.

また、この超電導長尺材では、長尺基材に上に薄膜状の
超電導体層が形成されるので、可撓性に優れよって容易
にコイル化し得るものとなる。
Further, in this superconducting long material, since a thin film-like superconducting layer is formed on the long base material, it has excellent flexibility and can be easily coiled.

なお、上記例では、長尺基材に上に形成した超電導材料
層を連続的に加熱し、超電導体層としたが、−旦超電導
材料層を形成した長尺基材Kを巻取装置11に巻き取り
、その後別の加熱装置内で熱処理を施し、超電導体を形
成して超電導線を作製するようにしてもよい。
In the above example, the superconducting material layer formed on the elongated base material was continuously heated to form a superconducting layer. A superconducting wire may be produced by winding the wire into a wire and then subjecting it to heat treatment in a separate heating device to form a superconductor.

「発明の効果」 以上説明したように、この発明の酸化物系超電導長尺材
の製造装置は、気相源供給系に酸化物系超電導体の各構
成元素を含むそれぞれの気相源の供給量を個々に調整し
得る調整機構を有してし)るので、各気相源を所定比に
調整して供給でき、よって所望する組成比の超電導体を
有した超電導長尺材を容易に作製することができる。ま
た、装置大体内に長尺基材の送出装置および巻取装置を
配したので、長尺基材に連続してCVD処理による超電
導体層の形成を行うことができ、よって生産性の向上を
図ることができる。
"Effects of the Invention" As explained above, the apparatus for producing an oxide-based superconducting long material of the present invention supplies each gas-phase source containing each constituent element of an oxide-based superconductor to the gas-phase source supply system. Since it has an adjustment mechanism that can individually adjust the amount, it is possible to adjust each gas phase source to a predetermined ratio and supply it, thereby easily producing a superconducting long material having a desired composition ratio of superconductors. It can be made. In addition, since a feeding device and a winding device for the long base material are arranged within the main body of the device, it is possible to continuously form a superconductor layer on the long base material by CVD treatment, thereby improving productivity. can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明の酸化物系超電導長尺材
の製造装置の一実施例を示す図であって、第1図は製造
装置の概略構成図、第2図は気相源供給系の概略構成図
である。 ■・・・・・・製造装置、2・・・・・・装置本体、3
・・・・・・気相源供給系、9・・・・・・ロール室、
10・・・・・・送出装置、II・・・・・・巻取装置
、15・・・・・・容器、I6・・・・・・配管系、I
I・・・・・・レギュレーター。
1 and 2 are diagrams showing an embodiment of an apparatus for manufacturing an oxide-based superconducting long material of the present invention, in which FIG. 1 is a schematic configuration diagram of the manufacturing apparatus, and FIG. 2 is a gas phase source. It is a schematic block diagram of a supply system. ■...Manufacturing equipment, 2...Equipment body, 3
... Gas phase source supply system, 9 ... Roll chamber,
10... Delivery device, II... Winding device, 15... Container, I6... Piping system, I
I...Regulator.

Claims (1)

【特許請求の範囲】  一般式A−B−Cu−O (ただし、AはY、Sc、La、Yb、Er、Ho、D
y等の周期律表第IIIa族元素およびBi、Sb等の周
期律表第Vb族のうち1種あるいは2種以上を示し、B
はSr、Ba、Ca等の周期律表第IIa族元素のうち1
種あるいは2種以上を示す。)として表される酸化物系
超電導長尺材の製造装置であって、化学気相蒸着処理装
置本体とこの装置本体に設けられた気相源供給系を具備
してなり、上記装置本体内に長尺基材の送出装置および
巻取装置を配し、上記気相源供給系に上記A、B、Cの
各元素を含むそれぞれの気相源の供給量を個々に調整し
得る調整機構を設けたことを特徴とする酸化物系超電導
長尺材の製造装置。
[Claims] General formula A-B-Cu-O (where A is Y, Sc, La, Yb, Er, Ho, D
Indicates one or more elements of group IIIa of the periodic table such as y and group Vb of the periodic table such as Bi and Sb,
is one of Group IIa elements of the periodic table such as Sr, Ba, Ca, etc.
Indicates a species or two or more species. ) is a manufacturing apparatus for an oxide-based superconducting long material represented by A feeding device and a winding device for the long base material are disposed, and the gas phase source supply system is provided with an adjustment mechanism capable of individually adjusting the supply amount of each gas phase source containing each of the elements A, B, and C. An apparatus for manufacturing an oxide-based superconducting long material, characterized in that:
JP63134787A 1988-06-01 1988-06-01 Equipment for manufacturing long oxide superconducting materials Expired - Lifetime JP2527790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63134787A JP2527790B2 (en) 1988-06-01 1988-06-01 Equipment for manufacturing long oxide superconducting materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63134787A JP2527790B2 (en) 1988-06-01 1988-06-01 Equipment for manufacturing long oxide superconducting materials

Publications (2)

Publication Number Publication Date
JPH01304619A true JPH01304619A (en) 1989-12-08
JP2527790B2 JP2527790B2 (en) 1996-08-28

Family

ID=15136539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63134787A Expired - Lifetime JP2527790B2 (en) 1988-06-01 1988-06-01 Equipment for manufacturing long oxide superconducting materials

Country Status (1)

Country Link
JP (1) JP2527790B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234515A (en) * 1988-07-26 1990-02-05 Sumitomo Electric Ind Ltd Superconducting material and its production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241818A (en) * 1987-03-27 1988-10-07 Sumitomo Electric Ind Ltd Manufacture of superconducting wire rod
JPH01220311A (en) * 1988-02-27 1989-09-04 Riken Corp Manufacture of superconductive ceramic wire rod

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241818A (en) * 1987-03-27 1988-10-07 Sumitomo Electric Ind Ltd Manufacture of superconducting wire rod
JPH01220311A (en) * 1988-02-27 1989-09-04 Riken Corp Manufacture of superconductive ceramic wire rod

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234515A (en) * 1988-07-26 1990-02-05 Sumitomo Electric Ind Ltd Superconducting material and its production

Also Published As

Publication number Publication date
JP2527790B2 (en) 1996-08-28

Similar Documents

Publication Publication Date Title
KR910007382B1 (en) Superconductor material and method of manufacturing super-conductor film
WO2006137873A2 (en) A chemical vapor deposition (cvd) apparatus usable in the manufacture of superconducting conductors
US20120258863A1 (en) Metalorganic chemical vapor deposition (mocvd) process and apparatus to produce multi-layer high-temperature superconducting (hts) coated tape
CA1338202C (en) Chemical vapor deposition of oxide films containing alkaline earth metals from metal-organic sources
US5200388A (en) Metalorganic chemical vapor deposition of superconducting films
EP0342009A2 (en) Process for forming a superconducting film
JPH07106898B2 (en) Method for manufacturing oxide-based superconductor
US20040178175A1 (en) Atomic layer deposition for high temperature superconductor material synthesis
US3400016A (en) Method of coating superconducting niobium tin with lattice defects
US5863336A (en) Apparatus for fabrication of superconductor
JPH01304619A (en) Manufacture of oxide superconductive long sized material
JP3771143B2 (en) Manufacturing method of oxide superconductor
JPH0825742B2 (en) How to make superconducting material
US5252390A (en) Laminated film
JP2632409B2 (en) Method and apparatus for forming high temperature superconductor thick film
JP2575443B2 (en) Method for producing oxide-based superconducting wire
JP3756322B2 (en) Manufacturing apparatus and manufacturing method of oxide superconducting conductor
JP2539032B2 (en) Continuous raw material supply device for oxide superconductor manufacturing apparatus and continuous raw material supply method
JPH01200518A (en) Manufacture of oxide superconducting wire material
JP4112314B2 (en) Oxide superconducting conductor manufacturing liquid material supply device for CVD reactor and oxide superconducting conductor manufacturing method
JP2575442B2 (en) Method for producing oxide-based superconducting wire
JPH0375207A (en) Production of thin film of oxide superconductor
JPH01100816A (en) High temperature superconducting material
JPH01220311A (en) Manufacture of superconductive ceramic wire rod
JPH02255508A (en) Production of superconducting thin film by chemical vapor growth method of organic metallic complex

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 12

EXPY Cancellation because of completion of term