JP2632409B2 - Method and apparatus for forming high temperature superconductor thick film - Google Patents

Method and apparatus for forming high temperature superconductor thick film

Info

Publication number
JP2632409B2
JP2632409B2 JP8322989A JP8322989A JP2632409B2 JP 2632409 B2 JP2632409 B2 JP 2632409B2 JP 8322989 A JP8322989 A JP 8322989A JP 8322989 A JP8322989 A JP 8322989A JP 2632409 B2 JP2632409 B2 JP 2632409B2
Authority
JP
Japan
Prior art keywords
nozzle
chamber
mixture
inert gas
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8322989A
Other languages
Japanese (ja)
Other versions
JPH02259079A (en
Inventor
誠一郎 賀集
啓作 畑中
誠 海藤
誠 豊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU YAKIN KK
Kagaku Gijutsu Shinko Jigyodan
Original Assignee
SHINKU YAKIN KK
Kagaku Gijutsu Shinko Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU YAKIN KK, Kagaku Gijutsu Shinko Jigyodan filed Critical SHINKU YAKIN KK
Priority to JP8322989A priority Critical patent/JP2632409B2/en
Publication of JPH02259079A publication Critical patent/JPH02259079A/en
Application granted granted Critical
Publication of JP2632409B2 publication Critical patent/JP2632409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温超伝導体厚膜の形成法およびその形成
装置には関し、更に詳細には共蒸発源および同時蒸発源
を備えたガス・デポジション法による例えばBi0.7・Pb
0.3・Sr1・Ca1・Cu2・OY系超伝導体厚膜のような複数元
素の組成から成る高温超伝導材料の厚膜の形成法および
その形成装置に関する。
Description: TECHNICAL FIELD The present invention relates to a method for forming a high-temperature superconductor thick film and an apparatus for forming the same, and more particularly, to a gas provided with a co-evaporation source and a co-evaporation source. For example, by deposition method Bi 0.7 · Pb
The present invention relates to a method and an apparatus for forming a thick film of a high-temperature superconducting material composed of a plurality of elements, such as a thick film of a 0.3 · Sr 1 · Ca 1 · Cu 2 · O Y- based superconductor.

(従来の技術) この種の形成法として、本出願人は、先に特願昭63−
169119号で超伝導材料を構成する各元素を別個に不活性
ガス雰囲気中で加熱蒸発して夫々超微粒子に生成せし
め、該不活性ガスをキャリヤガスとして該元素の超微粒
子を別個に搬送すると共にこれ等を合流せしめて該超微
粒子を超伝導材料の組成の割合いで混合し、更にキャリ
ヤガス中に酸素ガスを導入し、該超微粒子の混合物をノ
ズルから加熱した基板へ噴射して、該基板に超微粒子の
膜を付着形成せしめる超伝導体厚膜の形成法を提案し
た。
(Prior Art) As a formation method of this kind, the present applicant has previously filed Japanese Patent Application No.
In 169119, each element constituting the superconducting material is separately heated and evaporated in an inert gas atmosphere to produce ultrafine particles, and the ultrafine particles of the element are separately transported while using the inert gas as a carrier gas. These are combined, the ultrafine particles are mixed at the composition ratio of the superconducting material, oxygen gas is further introduced into the carrier gas, and the mixture of the ultrafine particles is jetted from a nozzle onto a heated substrate to form the substrate. We have proposed a method for forming a superconductor thick film by depositing a film of ultrafine particles on it.

また前記提案と同時に前記形成法を実施する装置とし
て、第3図示のように、超微粒子生成室aを超伝導体材
料を構成する元素毎に設けると共に、各室aに該元素を
加熱して蒸発すべく収容する蒸発源bと、室a内に真空
にすべき真空排気装置cと、不活性ガス導入管dと、生
成した超微粒子を不活性ガスと共に導出する搬送管eと
を設けて成る超微粒子生成部と、酸素ガス導入管fと先
端にノズルgを有する搬送管hを備えた中間室iに接続
して成る超微粒子混合搬送部と、先端にノズルgを有す
る搬送管hを、加熱自在とした基板保持装置jと真空排
気装置kを備えた膜形成室l内に導くと共に該ノズルg
の先端を該基板保持装置jに保持した基板m面に接近配
置して成る超微粒子膜形成部とから成る超伝導体厚膜の
形成装置を提案した。尚、図中、nは超微粒子生成室a
の蒸発源b内の元素oを加熱する加熱装置、pは超微粒
子生成室aへの不活性ガスの供給源ボンベ、qは中間室
iへの酸素ガスの供給源ボンベ、rは膜成形室m内への
酸素ガスの供給源ボンベ、sは基板mの加熱装置、tは
主搬送管、uは二重管部を夫々示す。
Further, as an apparatus for carrying out the formation method simultaneously with the proposal, as shown in FIG. 3, an ultrafine particle generation chamber a is provided for each element constituting the superconductor material, and the element is heated in each chamber a. An evaporation source b to be accommodated for evaporation, a vacuum evacuation device c for evacuating the chamber a, an inert gas introduction pipe d, and a transport pipe e for leading out the generated ultrafine particles together with the inert gas are provided. An ultrafine particle generating unit, an ultrafine particle mixing / conveying unit connected to an intermediate chamber i provided with an oxygen gas introducing pipe f and a conveying pipe h having a nozzle g at the tip, and a transport pipe h having a nozzle g at the tip. The nozzle g is guided into a film forming chamber l provided with a substrate holding device j and a vacuum exhaust device k which can be heated freely.
And an ultra-fine particle film forming portion having the tip of the substrate close to the surface of the substrate m held by the substrate holding device j. In the figure, n is an ultrafine particle generation chamber a
A heating device for heating the element o in the evaporation source b, p is a supply cylinder of an inert gas to the ultrafine particle generation chamber a, q is a supply cylinder of an oxygen gas to the intermediate chamber i, and r is a film forming chamber. A supply source cylinder of oxygen gas into m, s denotes a heating device for the substrate m, t denotes a main transport pipe, and u denotes a double pipe section.

(発明が解決しようとする課題) しかしながら、前記超伝導体厚膜の形成法は、超伝導
材料を構成する元素の超微粒子の生成を、各元素毎に夫
々別個に不活性ガス雰囲気中で加熱蒸発するようにした
ので、例えばBi0.7・Pb0.3・Sr1・Ca1・Cu2・OY系超伝
導体厚膜のように該超伝導材料を構成する元素が酸素を
除き5種類(Bi,Pb,Sr,Ca,Cu)の場合は超微粒子の生成
を5か所で夫々別個に同時に行わねばならないため、各
超微粒子の生成が煩雑となる問題がある。
(Problems to be Solved by the Invention) However, in the method of forming a superconductor thick film, the generation of the ultrafine particles of the elements constituting the superconducting material is separately heated for each element in an inert gas atmosphere. since so as to evaporate, for example, Bi 0.7 · Pb 0.3 · Sr 1 · Ca 1 · Cu 2 · O Y -based superconductor thick five except the elements constituting the superconducting material is an oxygen like film (Bi , Pb, Sr, Ca, Cu), there is a problem that the generation of each ultra-fine particle is complicated because the generation of ultra-fine particles must be performed separately and simultaneously in five places.

また、前記形成装置は、超伝導材料を構成する元素の
超微粒子の生成用蒸発源bを、各元素材料毎に夫々別個
の蒸発源としたので、例えば前記該厚膜のように該超伝
導材料を構成する元素が前記のように5種類の場合は超
微粒子の生成用蒸発源bを備えた超微粒子生成室aを5
か所設置しなければならず、かつ該生成室a毎に真空排
気装置c、不活性ガス導入管d、生成した超微粒子の搬
送管e等の付帯設備が必要となるため、装置全体の構造
が大型かつ複雑となり、また装置全体の設置面積が大き
くなる等の問題がある。
In addition, since the forming apparatus uses the evaporation source b for generating ultrafine particles of the element constituting the superconducting material as a separate evaporation source for each elemental material, for example, the superconducting material such as the thick film is used. When the elements constituting the material are five types as described above, the ultrafine particle generation chamber a provided with the evaporation source b for generating the ultrafine particles has a size of 5 mm.
And ancillary equipment such as a vacuum exhaust device c, an inert gas introduction pipe d, and a transport pipe e for the generated ultrafine particles are required for each of the generation chambers a. However, there are problems such as that the device is large and complicated, and that the installation area of the entire device becomes large.

本発明は、かかる問題点を解消した高温超伝導体厚膜
の形成法およびその形成法を実施するに適した形成装置
を提供することを目的とする。
An object of the present invention is to provide a method for forming a high-temperature superconductor thick film that has solved the above-mentioned problems and a forming apparatus suitable for performing the method.

(課題を解決するための手段) 本発明は、前記目的を達成する形成法を提案するもの
で、高温超伝導材料を構成する複数元素を不活性ガス雰
囲気の超微粒子生成室内の1個の蒸発源で該高温超伝導
材料の組成の割合いとなるように加熱蒸発させて超微粒
子の混合物に生成せしめ、該不活性ガスをキャリヤガス
として該超微粒子の混合物を搬送しつつ、該キャリヤガ
ス中に酸素ガスを導入し、該超微粒子の混合物を酸素ガ
スを含むキャリヤガスと共にノズルから加熱した基板上
に噴射して該基板に超微粒子膜を付着形成せしめること
を特徴とする。
(Means for Solving the Problems) The present invention proposes a formation method for achieving the above-mentioned object, in which a plurality of elements constituting a high-temperature superconducting material are vaporized by one evaporation in an ultrafine particle generation chamber in an inert gas atmosphere. The mixture is heated and evaporated so as to have a composition ratio of the high-temperature superconducting material at a source to form a mixture of ultrafine particles, and while the mixture of ultrafine particles is transported using the inert gas as a carrier gas, The method is characterized in that an oxygen gas is introduced, and a mixture of the ultrafine particles is sprayed from a nozzle onto a heated substrate together with a carrier gas containing an oxygen gas to form an ultrafine particle film on the substrate.

またもう一つの形成法は、高温超伝導材料を構成する
複数元素を不活性ガス雰囲気の超微粒子生成室内の複数
個の蒸発源で該高温超伝導材料の組成の割合いとなるよ
うに夫々加熱蒸発させて超微粒子の混合物に生成せし
め、該不活性ガスをキャリヤガスとして該超微粒子の混
合物を搬送しつつ、該キャリヤガス中に酸素ガスを導入
し、該超微粒子の混合物を酸素ガスを含むキャリヤガス
と共にノズルから加熱した基板上に噴射して該基板に超
微粒子膜を付着形成せしめることを特徴とする。
Another method is to heat and evaporate a plurality of elements constituting the high-temperature superconducting material at a plurality of evaporation sources in an ultrafine particle generation chamber in an inert gas atmosphere so as to have a composition ratio of the high-temperature superconducting material. To form a mixture of ultra-fine particles, while introducing the mixture of ultra-fine particles using the inert gas as a carrier gas, introducing oxygen gas into the carrier gas, and converting the mixture of ultra-fine particles into a carrier containing oxygen gas. The method is characterized in that an ultrafine particle film is adhered and formed on a substrate heated by spraying from a nozzle together with a gas onto the substrate.

1個の蒸発源で複数の元素を加熱蒸発(以下共蒸発と
いう)させるには、元素の蒸発温度、溶湯(原料)の組
成比、蒸発表面積および蒸発時の圧力を調整して超伝導
材料の組成の割合いとなるようにする。
In order to heat and evaporate (hereinafter referred to as co-evaporation) a plurality of elements with one evaporation source, the evaporation temperature of the elements, the composition ratio of the molten metal (raw material), the evaporation surface area and the pressure at the time of evaporation are adjusted to adjust the superconducting material. The composition ratio is set.

例えばBi0.7・Pb0.3・Sr1・Ca1・Cu2・OY系高温超伝
導体厚膜のように酸素を除き5種類の元素(Bi,Pb,Sr,C
a,Cu)で構成される高温超伝導材料の場合は、 上記表1のように該高温超伝導材料を構成する複数元
素の中から蒸発温度がほぼ同一で、かつ蒸気圧が近似す
る2種類の元素を適宜選択すればよく、前記該厚膜膜の
場合はBiとPbを同一蒸発源、またSrとCaを同一蒸発源か
ら夫々加熱蒸発(以下同時蒸発という)させればよい。
また、同一蒸発源から共蒸発させる両元素の蒸発量の割
合いは蒸発源に供給する原料中の元素の配合比の調整で
行う。
For example Bi 0.7 · Pb 0.3 · Sr 1 · Ca 1 · Cu 2 · O Y system 5 kinds of elements except oxygen as high temperature superconductor thick film (Bi, Pb, Sr, C
a, Cu) As shown in Table 1, two types of elements having substantially the same evaporation temperature and similar vapor pressures may be appropriately selected from the plurality of elements constituting the high-temperature superconducting material. In this case, Bi and Pb may be heated and evaporated (hereinafter referred to as simultaneous evaporation) from the same evaporation source, and Sr and Ca may be heated and evaporated from the same evaporation source.
The ratio of the amount of evaporation of both elements co-evaporated from the same evaporation source is determined by adjusting the mixing ratio of the elements in the raw material supplied to the evaporation source.

また、高温超伝導材料を構成する元素の蒸気圧が可な
り相違するために前記のような手段を採用出来ない場合
は、同一蒸発源に供給する原料の配合比を調整してお
き、夫々の元素の異った蒸発条件を補正して目標とする
蒸発量の割合いに合せる。
Further, when the means described above cannot be adopted because the vapor pressures of the elements constituting the high-temperature superconducting material are considerably different, the mixing ratio of the raw materials supplied to the same evaporation source is adjusted, and each of them is adjusted. The evaporation conditions for different elements are corrected to match the target evaporation rate.

例えばY1・Ba2・Cu3・O7-X系高温超伝導体厚膜のよう
な場合は、 表2に示すごとくCuとYの蒸気圧は可なり異なってい
るが、この両元素を同一蒸発源で蒸発させるのには、蒸
発源に供給する両元素の配合比の調整で、両元素の蒸発
量の割合を制御すればよい。
For example, if Y 1 · Ba 2 · Cu 3 · O 7-X systems, such as high-temperature superconductor thick film, As shown in Table 2, the vapor pressures of Cu and Y are considerably different. However, in order to evaporate these two elements with the same evaporation source, the mixing ratio of both elements supplied to the evaporation source is adjusted. What is necessary is just to control the ratio of the amount of evaporation.

更に本発明は、前記形成法を実施する形成装置を提案
するもので、高温超伝導材料を構成する複数元素を該高
温超伝導材料の組成の割合いに同時に加熱蒸発させて超
微粒子の混合物を生成させる1個の蒸発源を備えた超微
粒子生成室に、室内を真空にすべき真空排気装置と、不
活性ガス導入管と、先端にノズルを有し、生成した超微
粒子の混合物を不活性ガスと共に導出する搬送管とを接
続した超微粒子生成部と、加熱自在の基板保持装置と真
空排気装置を備えた膜形成室内に該先端にノズルを有す
る搬送管を導くと共に、該ノズルの先端を該基板保持装
置に保持した基板面に接近して配置した超微粒子膜形成
部とから成り、該搬送管の先端側に酸素ガス導入管を備
えた中間室を接続したことを特徴とする。
Further, the present invention proposes a forming apparatus for performing the forming method, wherein a plurality of elements constituting the high-temperature superconducting material are simultaneously heated and evaporated to a composition ratio of the high-temperature superconducting material to form a mixture of ultrafine particles. The ultrafine particle generation chamber equipped with one evaporation source to be generated has a vacuum exhaust device for evacuating the chamber, an inert gas introduction pipe, and a nozzle at the tip to inactivate the mixture of generated ultrafine particles. An ultra-fine particle generating unit connected to a transport pipe led out together with the gas, and a transport pipe having a nozzle at the tip is introduced into a film forming chamber equipped with a heatable substrate holding device and a vacuum exhaust device, and the tip of the nozzle is moved An ultrafine particle film forming portion disposed close to the surface of the substrate held by the substrate holding device, wherein an intermediate chamber provided with an oxygen gas introduction pipe is connected to a tip end of the transfer pipe.

また、もう一つの形成装置は、高温超伝導材料を構成
する複数元素を該高温超伝導材料の組成の割合いに夫々
加熱蒸発させて超微粒子の混合物を生成させる複数の蒸
発源を備えた超微粒子生成室に、室内を真空にすべき真
空排気装置と、不活性ガス導入管と、先端にノズルを有
し、生成した超微粒子の混合物を不活性ガスと共に導出
する搬送管とを接続した超微粒子生成部と、加熱自在の
基板保持装置と真空排気装置を備えた膜形成室内に該先
端にノズルを有する搬送管を導くと共に、該ノズルの先
端を該基板保持装置に保持した基板面に接近して配置し
た超微粒子膜形成部とから成り、該搬送管の先端側に酸
素ガス導入管を備えた中間室を接続したことを特徴とす
る。
Further, another forming apparatus comprises a plurality of evaporation sources for heating and evaporating a plurality of elements constituting the high-temperature superconducting material at a proportion of the composition of the high-temperature superconducting material to generate a mixture of ultrafine particles. In the particle generation chamber, an ultra-vacuum device for evacuating the chamber, an inert gas introduction pipe, and a transport pipe having a nozzle at the tip and connecting the generated ultra-fine particle mixture together with the inert gas are connected. A transport tube having a nozzle at the tip is guided into a film forming chamber equipped with a fine particle generator, a heatable substrate holding device and a vacuum exhaust device, and the tip of the nozzle approaches the substrate surface held by the substrate holding device. And an intermediate chamber provided with an oxygen gas introducing pipe is connected to the distal end side of the transport pipe.

(作用) 高温超伝導材料を構成する複数元素を、超微粒子生成
室内に備えられた1個或いは複数の蒸発源による原料の
共蒸発或いは同時蒸発により、該高温超伝導材料の組成
の割合いとなるように加熱蒸発させて超微粒子の混合物
を生成し、このような所定組成の超微粒子の混合物を酸
素ガスを含むキャリヤガスと共にノズルから加熱した基
板上に噴射して該基板に超微粒子膜を付着形成せしめ
る。
(Function) The composition ratio of the high-temperature superconducting material is determined by co-evaporation or simultaneous evaporation of a plurality of elements constituting the high-temperature superconducting material by one or a plurality of evaporation sources provided in the ultrafine particle generation chamber. A mixture of ultrafine particles is generated by heating and evaporating as described above, and the mixture of ultrafine particles having such a predetermined composition is sprayed together with a carrier gas containing oxygen gas from a nozzle onto a heated substrate to deposit an ultrafine particle film on the substrate. Let it form.

(実施例) 本発明の形成法並びに装置の実施例を添付図面に基づ
き説明する。
(Example) An example of a forming method and an apparatus of the present invention will be described with reference to the accompanying drawings.

第1図は例えばBi0.7・Pb0.3・Sr1・Ca1・Cu2・OY
高温超伝導体厚膜(以下BPSCCO系膜という)のような酸
素を除き5種類の元素(Bi,Pb,Sr,Ca,Cu)から構成され
る高温超伝導体の厚膜を形成する装置の1例を示すもの
で、1は第1超微粒子生成室(以下第1生成室とい
う)、2は第2超微粒子生成室(以下第2生成室とい
う)、3は中間室、4は膜形成室を示し、第1生成室
1、第2生成室2および膜形成室4は夫々真空ポンプ5,
6,7に排気管8,9,10を介して接続されている。11,12,13
は該排気管8,9,10に夫々介入した調整弁を示す。第1生
成室1および第2生成室2は一端が不活性ガス供給源の
ボンベ14,15に夫々接続する不活性ガス導入管16,17を調
整弁18,19を介して接続されており、また中間室3およ
び膜形成室4は一端が酸素ガス供給源のボンベ20,21に
接続する酸素ガス導入管22,23が調整弁24,25を介して接
続されている。更にまた、第1生成室1はその下部に加
熱蒸発させる原料A「例えばビスマス(Bi)と鉛(P
b)」を収容するタンタルルツボから成る容器26と、こ
れをタンタルヒーター等で間接加熱する加熱装置27とか
ら成る第1蒸発源28と、該第1蒸発源28と同一構成であ
って加熱蒸発させる原料B「例えばストロンチウム(S
r)とカルシウム(Ca)」用の第2蒸発源29とを備え
る。また第2生成室2はその下部に前記第1蒸発源28と
同一構成であって加熱蒸発させる原料C「例えば銅(C
u)」を収容する黒鉛ルツボから成る容器26と、これを
タンタルヒーター等で間接加熱する加熱装置27とから成
る蒸発源30を備える。これら容器26および加熱装置27は
加熱蒸発させる元素材料に応じて公知のものから適宜選
択出来る。また膜形成室4はその下部に例えば一辺20mm
の正方形で厚さ1mmのマグネシャ(MgO)の基板31を保持
する基板保持装置32を水平方向に移動する移動装置33を
備える。また、該移動装置33には該基板31を加熱自在と
する抵抗加熱装置34を備える。
Figure 1, for example, except oxygen such as Bi 0.7 · Pb 0.3 · · Sr 1 · Ca 1 · Cu 2 O Y -based superconductor thick film (hereinafter referred BPSCCO based film) 5 kinds of elements (Bi, Pb , Sr, Ca, Cu) shows an example of an apparatus for forming a thick film of a high-temperature superconductor composed of: (1) a first ultrafine particle generation chamber (hereinafter referred to as a first generation chamber); 2 Ultra-fine particle generation chamber (hereinafter referred to as a second generation chamber), 3 is an intermediate chamber, 4 is a film formation chamber, and the first generation chamber 1, the second generation chamber 2 and the film formation chamber 4 are vacuum pumps 5,
6, 7 are connected via exhaust pipes 8, 9, 10. 11,12,13
Denotes regulating valves intervening in the exhaust pipes 8, 9 and 10, respectively. The first generation chamber 1 and the second generation chamber 2 are connected to inert gas introduction pipes 16 and 17 having one ends connected to the cylinders 14 and 15 of the inert gas supply source via regulating valves 18 and 19, respectively. The intermediate chamber 3 and the film forming chamber 4 are connected to oxygen gas supply pipes 22 and 23 having one ends connected to cylinders 20 and 21 of an oxygen gas supply source via regulating valves 24 and 25, respectively. Further, the first production chamber 1 has a raw material A "for example, bismuth (Bi) and lead (P
b), a first evaporation source 28 comprising a container 26 made of a tantalum crucible and a heating device 27 for indirectly heating the container 26 with a tantalum heater or the like; The raw material B to be made, for example, strontium (S
r) and a second evaporation source 29 for “calcium (Ca)”. The second generation chamber 2 has the same structure as that of the first evaporation source 28 in the lower part, and the raw material C to be heated and evaporated, for example, copper (C
u) ”is provided with an evaporation source 30 including a graphite crucible-containing container 26 and a heating device 27 that indirectly heats the container 26 with a tantalum heater or the like. The container 26 and the heating device 27 can be appropriately selected from known ones according to the elemental material to be heated and evaporated. The film forming chamber 4 has, for example,
A moving device 33 for horizontally moving a substrate holding device 32 for holding a magnesia (MgO) substrate 31 having a square shape and a thickness of 1 mm. In addition, the moving device 33 includes a resistance heating device 34 that can freely heat the substrate 31.

35は第1生成室1内の上部に一端を開口し、その天井
部を気密に貫通し外部に導出して設けた第1搬送管、36
は第2生成室2内の上部に一端を開口し、その天井部を
気密に貫通し外部に導出して設けた第2搬送管を示す。
該第1搬送管35は例えば内径6mm、外径7.2mmの細管から
成り、その他端が中間室3の内部に開口し、中間室3の
一側壁を気密に貫通して主搬送管37を形成する。また該
第2搬送管36は例えば内径3.6mm、外径4.8mmの細管から
なり、その他端は該主搬送管37にその管壁から内部へ挿
入して気密に接続し、中間室3の方向に向けて開口する
同心の二重管部38を構成する。この場合、二重管部38に
おける内外通路の断面積はともに10mm2と等しくなる。3
9は一端開口が中間室3内の主搬送管37の開口に近接対
向し、中間室3の他側壁を気密に貫通し外部に導出して
設けた搬送管を示し、その他端は先端にステンレス製の
ノズル40を備え、膜形成室4の天井部を気密に貫通し、
該ノズル40の先端は膜形成室4内の基板31と1mmの間隔
を存している。該ノズル40の形状は長径1mm、短径0.5mm
の楕円形で基板31の移動方向に短径の軸方向を向けて配
置する。
Reference numeral 35 denotes a first transfer pipe having an opening at an upper part in the first generation chamber 1 and penetrating the ceiling part thereof in an airtight manner and leading to the outside.
Denotes a second transfer pipe having one end opened at the upper part in the second generation chamber 2 and penetrating the ceiling part thereof in an airtight manner and led out to the outside.
The first transfer pipe 35 is formed of, for example, a thin pipe having an inner diameter of 6 mm and an outer diameter of 7.2 mm. The other end is opened inside the intermediate chamber 3, and the main transfer pipe 37 is formed by airtightly penetrating one side wall of the intermediate chamber 3. I do. The second transfer pipe 36 is made of, for example, a small pipe having an inner diameter of 3.6 mm and an outer diameter of 4.8 mm, and the other end is inserted into the main transfer pipe 37 from the pipe wall to the inside to be airtightly connected. A concentric double tube portion 38 that opens toward the container is formed. In this case, the cross-sectional areas of the inner and outer passages in the double pipe portion 38 are both equal to 10 mm 2 . Three
Reference numeral 9 denotes a transfer pipe having an opening at one end close to and opposed to the opening of the main transfer pipe 37 in the intermediate chamber 3, and airtightly penetrating the other side wall of the intermediate chamber 3 and leading to the outside. Nozzle 40, and airtightly penetrates the ceiling of the film forming chamber 4,
The tip of the nozzle 40 is spaced from the substrate 31 in the film forming chamber 4 by 1 mm. The nozzle 40 has a long diameter of 1 mm and a short diameter of 0.5 mm
Are arranged in such a manner that the axis of the minor axis is directed in the moving direction of the substrate 31.

次に、上記第1図示の形成装置の作動を説明する。 Next, the operation of the above-described first forming apparatus will be described.

第1生成室1内の第1蒸発源28の容器26内の原料Aと
して重量比ビスマス(Bi)7:鉛(Pb)3のBi−Pb合金を
用意すると共に、該第1生成室1内の第2蒸発源29の容
器26内の原料Bとして重量比ストロンチウムSr)1:カル
シウム(Ca)1のSr−Ca合金を用意し、第2生成室2内
の蒸発源30の容器26内の原料Cとして銅(Cu)を用意す
る。真空ポンプ5,6および7を作動せしめる一方、不活
性ガス導入管16,17より夫々アルゴン(Ar)ガスを各生
成室1,2内に導入し、加熱装置27により夫々各元素原料
A,BおよびCを加熱蒸発させる。このときの超微粒子の
生成条件を表3に示す。
A Bi-Pb alloy having a weight ratio of bismuth (Bi) 7: lead (Pb) 3 is prepared as the raw material A in the container 26 of the first evaporation source 28 in the first generation chamber 1, and A Sr-Ca alloy of strontium (Sr) 1: calcium (Ca) 1 is prepared as a raw material B in the container 26 of the second evaporation source 29, and the raw material B in the container 26 of the evaporation source 30 in the second generation chamber 2 is prepared. Copper (Cu) is prepared as a raw material C. While the vacuum pumps 5, 6 and 7 were operated, argon (Ar) gas was introduced into each of the production chambers 1 and 2 from the inert gas introduction pipes 16 and 17, respectively.
A, B and C are heated and evaporated. Table 3 shows the conditions for forming the ultrafine particles at this time.

かくして、第1生成室1で生成されたBi,Pb,Srおよび
Baの超微粒子の混合物および、第2生成室2で生成され
たCuの超微粒子は夫々導入された不活性ガスをキャリヤ
ガスとして、膜形成室4との間の差圧で、各搬送管35,3
6および主搬送管37を通り、中間室3を経由して膜形成
室4に搬送されるが、搬送途中の第1生成室1の上部の
搬送管35の開口付近においてBiとPbの混合超微粒子と,S
rとCaの混合超微粒子とが不活性ガス中で混合され、ま
た二重管部38の開口付近でそのBiとPbとSrとCaの該超微
粒子の混合物とCu超微粒子とがキャリヤガスとした不活
性ガス中で混合する。このBiとPbとSrとCaおよびCuの超
微粒子の混合混合物がキャリヤガスと共に主搬送管37内
を流れて中間室3に達するが、中間室3で酸素ガス導入
管22から酸素(O2)ガス0.2l/minが導入されるため、中
間室3から膜形成室4へのキャリヤガス中にO2ガスが加
わり、搬送管39中でBiとPbとSrとCaおよびCuの超微粒子
の酸化が進行する。
Thus, Bi, Pb, Sr generated in the first generation chamber 1 and
The mixture of the Ba ultrafine particles and the Cu ultrafine particles generated in the second generation chamber 2 use the introduced inert gas as a carrier gas, and a pressure difference between the mixture and the film formation chamber 4 to make each transport pipe 35 , 3
6 and the main transfer pipe 37, the wafer is transferred to the film forming chamber 4 via the intermediate chamber 3, and the mixture of Bi and Pb is mixed near the opening of the transfer pipe 35 above the first generation chamber 1 during the transfer. Fine particles and S
The mixed ultrafine particles of r and Ca are mixed in an inert gas, and the mixture of the ultrafine particles of Bi, Pb, Sr, and Ca, and the ultrafine particles of Cu are mixed with the carrier gas near the opening of the double pipe section 38. Mix in inert gas. The mixture of the ultrafine particles of Bi, Pb, Sr, Ca and Cu flows in the main carrier pipe 37 together with the carrier gas and reaches the intermediate chamber 3 where the oxygen (O 2 ) Since a gas of 0.2 l / min is introduced, O 2 gas is added to the carrier gas from the intermediate chamber 3 to the film forming chamber 4, and oxidation of ultrafine particles of Bi, Pb, Sr, Ca, and Cu in the transfer pipe 39. Progresses.

搬送管39を通って膜形成室4内に搬送された混合超微
粒子は先端のノズル40から、1mmの間隔を保って基板保
持装置32にて保持された一辺20mm、厚さ1mmのMgO基板31
面へ噴射される。基板31は予め加熱装置34で温度450℃
に加熱されており、移動装置33によりノズル40の短径軸
方向に3mm/minの速度で移動し、連続した膜を形成す
る。
The mixed ultrafine particles transported into the film forming chamber 4 through the transport pipe 39 are fed from the nozzle 40 at the tip thereof to the MgO substrate 31 having a side of 20 mm and a thickness of 1 mm, which is held by the substrate holding device 32 at an interval of 1 mm.
Injected on the surface. The substrate 31 is previously heated at 450 ° C.
Is moved by the moving device 33 in the direction of the minor axis of the nozzle 40 at a speed of 3 mm / min to form a continuous film.

膜形成中は表3に示す各生成室1,2の圧力および不活
性ガス導入量を保ち、中間室3に0.2l/minのO2ガスを導
入すると共に、膜形成時の加熱状態での酸素の欠損を防
止するため膜形成室4に酸素ガス導入管23から0.5l/min
のO2ガスを導入している。膜形成室4の圧力は2.4Torr
で、O2ガスの分圧は0.5Torrである。
During the film formation, the pressure and the amount of the inert gas introduced into each of the production chambers 1 and 2 shown in Table 3 were maintained, and 0.2 l / min of O 2 gas was introduced into the intermediate chamber 3 while the film was heated at the time of film formation. 0.5 l / min from the oxygen gas introduction pipe 23 to the film formation chamber 4 to prevent oxygen deficiency
It has introduced the O 2 gas. The pressure in the film forming chamber 4 is 2.4 Torr
The partial pressure of O 2 gas is 0.5 Torr.

また膜形成後は膜形成室4を酸素ガスで大気圧に充填
したのち、基板31を温度450℃から室温まで徐冷したの
ち取出す。
After the film is formed, the film forming chamber 4 is filled with oxygen gas to atmospheric pressure, and then the substrate 31 is gradually cooled from 450 ° C. to room temperature and then taken out.

形成されたBPSCCO径膜中のBi,Pb,Sr,CaおよびCuの組
成比をX線微小分析法(X線マイクロアナライザー)に
より調べ、その結果を表4に示す。
The composition ratio of Bi, Pb, Sr, Ca and Cu in the formed BPSCCO diameter film was examined by X-ray microanalysis (X-ray microanalyzer), and the results are shown in Table 4.

表4から明らかなように上記実施例で形成されたBPSC
CO系膜中のBi,Pb,Sr,CaおよびCuの組成比率は目標値に
達していることが確認された。
As is clear from Table 4, the BPSC formed in the above example
It was confirmed that the composition ratio of Bi, Pb, Sr, Ca and Cu in the CO-based film reached the target value.

尚、高温超伝導膜形成のための蒸発後にBi・Pb合金お
よびSr・Ca合金の蒸発による重量の減少量を調べたとこ
ろ夫々152mgと85mgであった。
After the evaporation for forming the high-temperature superconducting film, the weight loss due to the evaporation of the Bi · Pb alloy and the Sr · Ca alloy was determined to be 152 mg and 85 mg, respectively.

上記形成法で形成されたBPSCCO系膜を更に大気中で温
度850℃、20時間の熱処理を行い、低温でのR−T特性
を測定した結果、臨界温度はTc(on)98K,Tc(off)80K
の高温超伝導特性を示し、またX線回折による測定結果
でもC軸配向の高温超伝導の結晶を示していた。
The BPSCCO-based film formed by the above forming method was further subjected to a heat treatment at 850 ° C. for 20 hours in the air, and the RT characteristics at low temperature were measured. As a result, the critical temperature was Tc (on) 98K, Tc (off ) 80K
, And the measurement results by X-ray diffraction showed a C-axis oriented high temperature superconducting crystal.

上記第1図示実施例ではBPSCCO系膜について説明した
が、これに限定されるものではなく、例えば第1生成室
1内の第1蒸発源28の容器26内に入れる原料AをBi−Pb
合金の代わりにイッテルビウム(Yb)のような元素単
独、また同室1内の第2蒸発源29の容器26内に入れる原
料BをSr−Ca合金の代わりにバリウム(Ba)のような元
素単独、第2生成室2内の蒸発源30の容器26内に入れる
原料CをCu元素を用いて、Yb・Ba・Cu・O系のような酸
素を除いた3元素から成る高温超伝導材料の膜形成にも
広く応用出来る。
Although the BPSCCO-based film has been described in the first illustrated embodiment, the present invention is not limited to this. For example, the raw material A put in the vessel 26 of the first evaporation source 28 in the first generation chamber 1 is Bi-Pb
An element such as ytterbium (Yb) alone instead of the alloy, or a raw material B put in the container 26 of the second evaporation source 29 in the same chamber 1 is replaced with an element such as barium (Ba) alone instead of the Sr-Ca alloy, A film of a high-temperature superconducting material composed of three elements such as Yb, Ba, Cu, and O, excluding oxygen, using a Cu element as a raw material C to be put into a container 26 of an evaporation source 30 in a second generation chamber 2 Widely applicable to formation.

第2図は例えばY1・Ba2・Cu3・O7-X系高温超伝導体厚
膜(以下YBCO系膜という)のような酸素を除き3種類の
元素(Y,Ba,Cu)から構成される高温超伝導体の厚膜を
形成する装置の1例を示すもので、51は第1超微粒子生
成室(以下第1生成室という)、52は第2超微粒子生成
室(以下第2生成室という)、53は中間室、54は膜形成
室を示し、第1生成室51、第2生成室52および膜形成室
54は夫々真空ポンプに排気管58,59,60を介して接続され
ている。61,62,63は該排気管58,59,60に夫々介入した調
節弁を示す。更に、第1生成室51および第2生成室52は
一端が不活性ガス供給源のボンベ64,65に夫々接続する
不活性ガス導入管66,67を調節弁68,69を介して接続して
備え、中間室53および膜形成室54は一端が酸素ガス供給
源のボンベ70,71に夫々接続する酸素ガス導入管72,73を
調節弁74,75を介して接続して備える。更にまた、第1
生成室51はその下部に、加熱蒸発させる原料A「例えば
バリウム(Ba)」を収容するタンタルルツボから成る容
器76とこれをタンタルヒーター等で間接加熱する加熱装
置77とから成る蒸発源78を備える。また第2生成室52は
その下部に加熱蒸発させる原料B「例えばイットリウム
(Y)と銅(Cu)」を収容する水冷銅ハース等から成る
容器79とタングステン電極間のアーク放電により加熱す
る加熱装置80とから成る蒸発源81を備える。これら各蒸
発源78,81の容器76,79および加熱装置77,80は加熱蒸発
させる元素材料に応じて公知のものから適宜選択出来
る。膜形成室54はその下部に例えば一辺20mmの正方形で
厚さ1mmのマグネシヤ(MgO)基板82と、該基板82を保持
する基板保持装置83を水平方向に移動する移動装置84を
備える。また、該移動装置84には該基板82を加熱自在と
する抵抗加熱加熱装置85を備える。
Figure 2, for example Y 1 · Ba 2 · Cu 3 · O 7-X based oxygen except three elements such as high-temperature superconductor thick film (hereinafter referred to as YBCO-based film) (Y, Ba, Cu) from This shows one example of an apparatus for forming a thick film of a high-temperature superconductor formed, in which 51 is a first ultrafine particle generation chamber (hereinafter, referred to as a first generation chamber), and 52 is a second ultrafine particle generation chamber (hereinafter, a first generation chamber). Reference numeral 53 denotes an intermediate chamber, 54 denotes a film formation chamber, and a first generation chamber 51, a second generation chamber 52, and a film formation chamber.
Numeral 54 is connected to vacuum pumps via exhaust pipes 58, 59, 60, respectively. Reference numerals 61, 62 and 63 denote control valves intervening in the exhaust pipes 58, 59 and 60, respectively. Further, the first generation chamber 51 and the second generation chamber 52 are connected via control valves 68 and 69 to inert gas introduction pipes 66 and 67 having one ends connected to cylinders 64 and 65 of an inert gas supply source, respectively. The intermediate chamber 53 and the film forming chamber 54 are provided with oxygen gas introduction pipes 72 and 73 having one ends connected to cylinders 70 and 71 of an oxygen gas supply source via control valves 74 and 75, respectively. Furthermore, the first
The lower part of the production chamber 51 is provided with an evaporation source 78 composed of a container 76 made of a tantalum crucible for accommodating a raw material A to be heated and evaporated, for example, barium (Ba), and a heating device 77 for indirectly heating this with a tantalum heater or the like. . The second generation chamber 52 is heated by an arc discharge between a tungsten electrode and a container 79 made of a water-cooled copper hearth or the like containing a raw material B (for example, yttrium (Y) and copper (Cu)) to be heated and evaporated at a lower portion thereof. And an evaporation source 81 consisting of 80. The containers 76 and 79 and the heating devices 77 and 80 of these evaporation sources 78 and 81 can be appropriately selected from known ones according to the element materials to be heated and evaporated. The film forming chamber 54 is provided with, for example, a magnesium (MgO) substrate 82 having a square shape of 20 mm on a side and a thickness of 1 mm, and a moving device 84 for horizontally moving a substrate holding device 83 for holding the substrate 82. Further, the moving device 84 includes a resistance heating and heating device 85 that can freely heat the substrate 82.

86は第1生成室51内の上部に一端を開口し、その天井
部を気密に貫通し外部に導出して設けた第1搬送管、87
は第2生成室52内の上部に一端を開口し、その天井部を
気密に貫通し外部に導出して設けた第2搬送管を示す。
該第1搬送管86は例えば内径6mm、外径7.2mmの細管から
成り、その他端が中間室53の内部に開口し、中間室53の
一側壁を気密に貫通して主搬送管88を形成する。該第2
搬送管87は例えば内径3.6mm、外径5.4mmの細管から成
り、その他端は該主搬送管88にその管壁から内部に挿入
して気密に接続し、中間室53の方向に向けて開口する同
心の二重管部89を構成する。この場合、二重管部89にお
ける内外通路の断面積はともに10mm2と等しくなる。ま
た、90は一端開口が中間室53内の主搬送管88の開口に接
近対向し、中間室53の他側壁を気密に貫通し外部に導出
して設けた搬送管を示し、その先端にステンレス製のノ
ズル91を備え、膜形成室54の天井部を気密に貫通し、該
ノズル91の先端は膜形成室54内の基板82と1mmの間隙を
存している。該ノズル91の形状は長径1mm、短径0.5mmの
楕円形で基板82の移動方向に短径の軸方向を向けて配置
する。
Reference numeral 86 denotes a first transfer pipe having one end opened at an upper part in the first generation chamber 51 and penetrating the ceiling part thereof in an air-tight manner and led out to the outside.
Denotes a second transfer pipe having one end opened at the upper part in the second generation chamber 52, penetrating the ceiling part thereof airtightly, and leading to the outside.
The first transfer pipe 86 is formed of, for example, a thin tube having an inner diameter of 6 mm and an outer diameter of 7.2 mm, and has another end opened inside the intermediate chamber 53 and hermetically penetrating one side wall of the intermediate chamber 53 to form a main transfer pipe 88. I do. The second
The transfer pipe 87 is formed of, for example, a thin tube having an inner diameter of 3.6 mm and an outer diameter of 5.4 mm, and the other end is inserted into the main transfer pipe 88 from the wall thereof to be airtightly connected, and is opened toward the intermediate chamber 53. A concentric double pipe section 89 is formed. In this case, the cross-sectional areas of the inner and outer passages in the double pipe portion 89 are both equal to 10 mm 2 . Reference numeral 90 denotes a transfer pipe whose one end opening is close to and opposed to the opening of the main transfer pipe 88 in the intermediate chamber 53, penetrates the other side wall of the intermediate chamber 53 in an airtight manner, and is provided to the outside. A nozzle 91 is formed, and the ceiling of the film forming chamber 54 is airtightly penetrated. The tip of the nozzle 91 has a gap of 1 mm from the substrate 82 in the film forming chamber 54. The nozzle 91 has an elliptical shape with a major axis of 1 mm and a minor axis of 0.5 mm, and is arranged with the minor axis oriented in the moving direction of the substrate 82.

次に、上記第2図示の形成装置の作動を説明する。 Next, the operation of the forming apparatus shown in FIG. 2 will be described.

第1生成室51内の蒸発源78の容器76内の原料Aとして
バリウム(Ba)を用意し、第2生成室52内の蒸発源81の
容器79内の原料Bとして重量比イットリウム(Y)2.5:
銅(Cu)1のY・Cu合金を用意する。真空ポンプ55,56
および57を作動せしめる一方、不活性ガス導入管66,67
より夫々ヘリウム(He)ガスを各生成室51,52に導入
し、加熱装置77,79により夫々原料AおよびBを加熱蒸
発させる。このときの超微粒子の生成条件を表5に示
す。
Barium (Ba) is prepared as a raw material A in the container 76 of the evaporation source 78 in the first generation chamber 51, and yttrium (Y) is used as a raw material B in the container 79 of the evaporation source 81 in the second generation chamber 52. 2.5:
A Y (Cu) alloy of copper (Cu) 1 is prepared. Vacuum pump 55, 56
And 57, while the inert gas introduction pipes 66 and 67
Helium (He) gas is introduced into each of the production chambers 51 and 52, and the raw materials A and B are heated and evaporated by the heating devices 77 and 79, respectively. Table 5 shows the conditions for forming the ultrafine particles at this time.

かくして、第1生成室51で生成されたBaの超微粒子お
よび第2生成室52で生成されたYとCuの混合物の超微粒
子は夫々導入された不活性ガスをキャリヤガスとして、
膜形成室54との差圧で、各搬送管86,87および主搬送管8
8を通り、中間室53を経由して膜形成室54に搬送される
が、搬送途中の主搬送管88において、二重管部89の開口
付近でYとCuの超微粒子の混合物とBa超微粒子とがキャ
リヤガスとした不活性ガス中で混合する。このY,Cuおよ
びBaの超微粒子の混合物がキャリヤガスと共に主搬送管
88内を流れて中間室53に達するが、中間室53で酸素ガス
導入管72から酸素(O2)ガス0.2l/minが導入されるた
め、中間室53から膜形成室54へのキャリヤガス中にO2
スが加わり、搬送管90中でY,CuおよびBaの超微粒子の酸
化が進行する。
Thus, the ultrafine particles of Ba generated in the first generation chamber 51 and the ultrafine particles of the mixture of Y and Cu generated in the second generation chamber 52 use the introduced inert gas as a carrier gas, respectively.
Due to the pressure difference between the film forming chamber 54 and each of the transfer pipes 86 and 87 and the main transfer pipe 8
8, the mixture is conveyed to the film formation chamber 54 via the intermediate chamber 53, and in the main conveyance pipe 88 in the middle of conveyance, a mixture of ultrafine particles of Y and Cu and Ba The fine particles are mixed with the carrier gas in an inert gas. This mixture of ultrafine particles of Y, Cu and Ba together with the carrier gas
After flowing through the inside 88 and reaching the intermediate chamber 53, oxygen (O 2 ) gas 0.2 l / min is introduced from the oxygen gas introduction pipe 72 in the intermediate chamber 53, so that the carrier gas from the intermediate chamber 53 to the film forming chamber 54. O 2 gas is added to the inside, and the oxidation of ultrafine particles of Y, Cu and Ba proceeds in the transport tube 90.

搬送管90を通って膜形成室54内に搬送された混合超微
粒子は先端のノズル91から1mmの間隙を保って基板保持
装置83にて保持された一辺20mm、厚さ1mmのMgO基板82面
へ噴射される。基板82は予め加熱装置85で温度450℃に
加熱されており、移動装置84によりノズル91の短径軸方
向に3mm/minの速度で移動し、連続した膜を形成する。
The mixed ultrafine particles transported into the film forming chamber 54 through the transport pipe 90 are maintained on the MgO substrate 82 having a side length of 20 mm and a thickness of 1 mm held by the substrate holding device 83 while maintaining a gap of 1 mm from the nozzle 91 at the tip. Injected to The substrate 82 is heated in advance to a temperature of 450 ° C. by the heating device 85, and is moved by the moving device 84 in the direction of the minor axis of the nozzle 91 at a speed of 3 mm / min to form a continuous film.

膜形成中は表5に示す各生成室51,52の圧力および不
活性ガス導入量を保ち、中間室53に0.2l/minのO2ガスを
導入すると共に、膜形成時の加熱状態での酸素の欠損を
防止するため膜形成室54に酸素ガス導入管73から0.5l/m
inのO2ガスを導入している。膜形成室54の圧力は3.8Tor
rで、O2ガスの分圧は0.7Torrである。
During the film formation, the pressure and the amount of the inert gas introduced into each of the production chambers 51 and 52 shown in Table 5 were maintained, and 0.2 l / min of O 2 gas was introduced into the intermediate chamber 53. 0.5 l / m from the oxygen gas introduction pipe 73 to the film formation chamber 54 to prevent oxygen deficiency
In O 2 gas is introduced. The pressure of the film forming chamber 54 is 3.8 Torr
At r, the partial pressure of the O 2 gas is 0.7 Torr.

また膜形成後は、膜形成室54をO2ガスで大気圧に充填
した後、基板82を温度450℃から室温まで徐冷したのち
取出す。
After forming the film, the film forming chamber 54 is filled with O 2 gas to the atmospheric pressure, and then the substrate 82 is gradually cooled from 450 ° C. to room temperature, and then taken out.

形成されたYBCO系厚膜中のY,CuおよびBaの組成比をX
線微小分析法(X線マイクロアナライザー)により調
べ、その結果を表6に示す。
The composition ratio of Y, Cu and Ba in the formed YBCO-based thick film is changed to X
Inspection was conducted by X-ray microanalysis (X-ray microanalyzer), and the results are shown in Table 6.

表6から明らかなように上記実施例で形成されたYBCO
系膜中のY,CuおよびBaの組成比率は目標値に達している
ことが確認された。
As is clear from Table 6, the YBCO formed in the above example was
It was confirmed that the composition ratio of Y, Cu and Ba in the base film reached the target value.

尚、上記第2図示実施例では蒸発源81の容器79に充填
する原料Bを次のようにして作成した。先ず原料Bとな
る元素Y17gとCu6.8g(重量比でY:Cu=2.5:1)を水冷銅
ハース内に入れ、チップ状のW製電極との間に直流アー
ク放電(10V×240A)で溶解し、ボタン状の母合金を作
成した。
In the second embodiment, the raw material B to be filled in the container 79 of the evaporation source 81 was prepared as follows. First, the element Y17g and Cu6.8g (weight ratio: Y: Cu = 2.5: 1) as the raw material B are put in a water-cooled copper hearth, and a direct current arc discharge (10V × 240A) is applied between the chip-shaped W electrode. This was melted to form a button-shaped mother alloy.

また、高温超伝導膜形成のための蒸発後にY・Cu合金
の蒸発による重量の減少量を調べたところ180mgであっ
た。
The amount of weight loss due to evaporation of the Y-Cu alloy after evaporation for forming a high-temperature superconducting film was 180 mg.

上記形成法で形成されたYBCO系膜を更に大気中で温度
900℃、3時間の加熱処理を行い、低温でのR−T特性
を測定した結果、臨界温度はTc(on)90K,Tc(off)80K
の高温超伝導特性を示し、またX線回折による測定結果
でもC軸配向の高温超伝導の結晶を示していた。
The temperature of the YBCO-based film formed by
As a result of performing heat treatment at 900 ° C. for 3 hours and measuring RT characteristics at a low temperature, the critical temperatures are Tc (on) 90 K, Tc (off) 80 K
, And the measurement results by X-ray diffraction showed a C-axis oriented high temperature superconducting crystal.

上記第2図示実施例ではYBCO系厚膜について説明した
が、これに限定されるものではなく、その他の高温超伝
導材料にも広く応用出来る。
In the second embodiment, the YBCO-based thick film is described. However, the present invention is not limited to this, and can be widely applied to other high-temperature superconducting materials.

尚、前記第1図示実施例および第2図示実施例の形成
法によれば、膜の形状はノズルの口径および基板の移動
速度を適宜選択することにより幅は0.05〜10mm、厚さは
1〜1000μmの範囲が形成されているが、この数値は本
発明の形成法の限界ではない。長さについては例えば一
筆書きの方法で長く連続した膜も形成することが出来、
また厚さについては例えば積層などの方法で膜厚を厚く
することが出来る。
In addition, according to the forming method of the first illustrated embodiment and the second illustrated embodiment, the film has a width of 0.05 to 10 mm and a thickness of 1 to 1 by appropriately selecting the diameter of the nozzle and the moving speed of the substrate. Although a range of 1000 μm is formed, this value is not a limit of the forming method of the present invention. For the length, for example, a long continuous film can be formed by a single-stroke method,
The thickness can be increased by, for example, lamination.

また、本発明法は、高温超伝導材料以外の用途への転
用として、例えば、チタン酸バリウム(BaTiO3)膜は高
い誘電率を備える材料としてガス・デポジション法によ
る膜形成が行われるが、その特性の向上にSr,CaおよびZ
rO2の添加がキュリー温度の常温付近までの移動と、誘
電率の温度変化の平坦化に有効であるので、BaTiO3膜中
へSr,CaおよびZrO2の添加は本発明装置の蒸発源を用い
ることによって可能である。
In addition, in the method of the present invention, for example, a barium titanate (BaTiO 3 ) film is formed as a material having a high dielectric constant by using a gas deposition method as a material having a high dielectric constant. Sr, Ca and Z to improve their properties
Since the addition of rO 2 is effective in moving the Curie temperature to around the normal temperature and flattening the temperature change of the dielectric constant, the addition of Sr, Ca and ZrO 2 into the BaTiO 3 film causes the evaporation source of the device of the present invention. It is possible by using.

(発明の効果) このように本発明によるときは、高温超伝導材料を構
成する複数元素を超微粒子生成室内に備えられた1個或
いは複数の蒸発源で該高温超伝導材料の組成の割合いと
なるように加熱蒸発させて超微粒子の混合物を生成し、
これら超微粒子の混合物をキャリヤガスにより搬送する
と共に、キャリヤガス中に酸素ガスを加えて、加熱され
た基板上に噴射させて超微粒子膜を形成するようにした
ので、従来法のような該高温超伝導材料を構成する元素
毎の加熱蒸発を行わずに、共蒸発或いは同時蒸発によっ
て均一な組成の超微粒子混合物が得られるので、蒸発雰
囲気調整等が簡単で製造が容易であり、また、従来装置
のような各生成室毎の真空排気装置、不活性ガス導入
管、生成した超微粒子の搬送管等の付帯設備を設置しな
くてもよいから、装置が簡単であり、また多数の超微粒
子生成室を要せず装置の設置を小さい面積とすることが
出来る等の効果がある。
(Effect of the Invention) As described above, according to the present invention, the ratio of the composition of the high-temperature superconducting material to one or a plurality of evaporation sources provided in the ultrafine particle generation chamber is determined by the composition of the high-temperature superconducting material. Heat to produce a mixture of ultrafine particles,
Since a mixture of these ultrafine particles is transported by a carrier gas, an oxygen gas is added to the carrier gas, and the mixture is sprayed onto a heated substrate to form an ultrafine particle film. A superfine particle mixture having a uniform composition can be obtained by co-evaporation or co-evaporation without heating and evaporating each element of the superconducting material. Since there is no need to install auxiliary equipment such as a vacuum exhaust device for each production chamber, an inert gas introduction pipe, and a transport pipe for the generated ultrafine particles, the apparatus is simple, and a large number of ultrafine particles are required. There is an effect that the installation of the apparatus can be made small in area without the need for a production chamber.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明装置の1実施例の説明線図、第2図は他
の実施例の説明線図、第3図は従来装置の説明線図であ
る。 1,51…第1超微粒子生成室 2,52…第2超微粒子生成室 3,53…中間室 4,54…超微粒子膜形成室 5,6,7,55,56,57…真空排気装置 8,9,58,59…不活性ガス導入管 31,82…基板 32,83…基板保持装置 35,86…第1搬送管 36,87…第2搬送管 37,88…主搬送管 39,90…搬送管 40,91…ノズル
FIG. 1 is an explanatory diagram of one embodiment of the device of the present invention, FIG. 2 is an explanatory diagram of another embodiment, and FIG. 3 is an explanatory diagram of a conventional device. 1,51: first ultra-fine particle generation chamber 2,52 ... second ultra-fine particle generation chamber 3,53 ... intermediate chamber 4,54 ... ultra-fine particle film formation chamber 5,6,7,55,56,57 ... vacuum exhaust device 8,9,58,59… Inert gas introduction pipe 31,82… Substrate 32,83… Substrate holding device 35,86… First transport pipe 36,87… Second transport pipe 37,88… Main transport pipe 39, 90… Conveyer tube 40,91… Nozzle

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高温超伝導材料を構成する複数元素を不活
性ガス雰囲気の超微粒子生成室内の1個の蒸発源で該高
温超伝導材料の組成の割合いとなるように加熱蒸発させ
て超微粒子の混合物に生成せしめ、該不活性ガスをキャ
リヤガスとして該超微粒子の混合物を搬送しつつ、該キ
ャリヤガス中に酸素ガスを導入し、該超微粒子の混合物
を酸素ガスを含むキャリヤガスと共にノズルから加熱し
た基板上に噴射して該基板に超微粒子膜を付着形成せし
めることを特徴とする高温超伝導体厚膜の形成法。
An ultra-fine particle obtained by heating and evaporating a plurality of elements constituting a high-temperature superconducting material so as to have a composition ratio of the high-temperature superconducting material by a single evaporation source in an ultra-fine particle generation chamber in an inert gas atmosphere. Oxygen gas is introduced into the carrier gas while transporting the mixture of ultrafine particles using the inert gas as a carrier gas, and the mixture of ultrafine particles is passed through a nozzle together with a carrier gas containing oxygen gas from a nozzle. A method for forming a high-temperature superconductor thick film, which comprises spraying an ultrafine particle film on a heated substrate to form an ultrafine particle film on the substrate.
【請求項2】高温超伝導材料を構成する複数元素を不活
性ガス雰囲気の超微粒子生成室内の複数個の蒸発源で該
高温超伝導材料の組成の割合いとなるように夫々加熱蒸
発させて超微粒子の混合物に生成せしめ、該不活性ガス
をキャリヤガスとして該超微粒子の混合物を搬送しつ
つ、該キャリヤガス中に酸素ガスを導入し、該超微粒子
の混合物を酸素ガスを含むキャリヤガスと共にノズルか
ら加熱した基板上に噴射して該基板に超微粒子膜を付着
形成せしめることを特徴とする高温超伝導体厚膜の形成
法。
2. A method in which a plurality of elements constituting a high-temperature superconducting material are heated and evaporated by a plurality of evaporation sources in an ultrafine particle generation chamber in an inert gas atmosphere so as to have a composition ratio of the high-temperature superconducting material. Oxygen gas is introduced into the carrier gas while the mixture of ultrafine particles is generated as a carrier gas using the inert gas as a carrier gas, and the mixture of ultrafine particles is mixed with a carrier gas containing oxygen gas by a nozzle. Forming a high-temperature superconductor thick film by spraying onto a substrate heated from above to form an ultrafine particle film on the substrate.
【請求項3】前記高温超伝導材料を構成する元素のうち
1種は別個の超微粒子生成室で生成し、これを前記高温
超伝導材料の組成比の割合いに蒸発して生成された超微
粒子の混合物に混合せしめて搬送するようにしたことを
特徴とする請求項1または2に記載の高温超伝導体厚膜
の形成法。
3. One of the elements constituting the high-temperature superconducting material is generated in a separate ultra-fine particle generation chamber, and the ultra-high-temperature superconducting material is formed by evaporating it to a composition ratio of the high-temperature superconducting material. 3. The method for forming a high-temperature superconductor thick film according to claim 1, wherein the high-temperature superconductor thick film is mixed with a mixture of fine particles and transported.
【請求項4】高温超伝導材料を構成する複数元素を該高
温超伝導材料の組成の割合いに同時に加熱蒸発させて超
微粒子の混合物を生成させる1個の蒸発源を備えた超微
粒子生成室に、室内を真空にすべき真空排気装置と、不
活性ガス導入管と、先端にノズルを有し、生成した超微
粒子の混合物を不活性ガスと共に導出する搬送管とを接
続した超微粒子生成部と、加熱自在の基板保持装置と真
空排気装置を備えた膜形成室内に該先端にノズルを有す
る搬送管を導くと共に、該ノズルの先端を該基板保持装
置に保持した基板面に接近して配置した超微粒子膜形成
部とから成り、該搬送管の先端側に酸素ガス導入管を備
えた中間室を接続したことを特徴とする高温超伝導体厚
膜の形成装置。
4. An ultrafine particle generation chamber having one evaporation source for simultaneously heating and evaporating a plurality of elements constituting the high-temperature superconducting material in a proportion of the composition of the high-temperature superconductive material to generate a mixture of ultrafine particles. An ultra-fine particle generating unit in which a vacuum exhaust device for evacuating the room, an inert gas introduction pipe, and a transport pipe having a nozzle at the tip and leading out a mixture of generated ultra-fine particles together with the inert gas are connected. And guiding a transfer pipe having a nozzle at the tip into a film forming chamber equipped with a freely heatable substrate holding device and a vacuum exhaust device, and disposing the tip of the nozzle close to the substrate surface held by the substrate holding device. A high-temperature superconductor thick film forming apparatus, comprising: an intermediate chamber having an oxygen gas introduction pipe connected to a tip side of the transfer pipe.
【請求項5】高温超伝導材料を構成する複数元素を該高
温超伝導材料の組成の割合いに夫々加熱蒸発させて超微
粒子の混合物を生成させる複数の蒸発源を備えた超微粒
子生成室に、室内を真空にすべき真空排気装置と、不活
性ガス導入管と、先端にノズルを有し、生成した超微粒
子の混合物を不活性ガスと共に導出する搬送管とを接続
した超微粒子生成部と、加熱自在の基板保持装置と真空
排気装置を備えた膜形成室内に該先端にノズルを有する
搬送管を導くと共に、該ノズルの先端を該基板保持装置
に保持した基板面に接近して配置した超微粒子膜形成部
とから成り、該搬送管の先端側に酸素ガス導入管を備え
た中間室を接続したことを特徴とする高温超伝導体厚膜
の形成装置。
5. An ultrafine particle generation chamber having a plurality of evaporation sources for heating and evaporating a plurality of elements constituting the high-temperature superconducting material in proportion to the composition of the high-temperature superconductive material to generate a mixture of ultrafine particles. An ultra-fine particle generating unit connected to a vacuum exhaust device for evacuating the room, an inert gas introduction pipe, and a transport pipe having a nozzle at the tip and leading out a mixture of generated ultra-fine particles together with the inert gas. A transport pipe having a nozzle at the tip was guided into a film forming chamber equipped with a freely heatable substrate holding device and a vacuum exhaust device, and the tip of the nozzle was arranged close to a substrate surface held by the substrate holding device. An apparatus for forming a high-temperature superconductor thick film, comprising: an ultrafine particle film forming section; and an intermediate chamber provided with an oxygen gas introducing pipe connected to a tip side of the transfer pipe.
【請求項6】前記高温超伝導材料を構成する元素のうち
1種を別個に加熱蒸発させて超微粒子を生成させる蒸発
源を備えた超微粒子生成室に、室内を真空にすべき真空
排気装置と、不活性ガス導入管と、生成した超微粒子を
不活性ガスと共に導出する搬送管とを設けて成る超微粒
子生成部の該搬送管を前記中間室の上流側において前記
搬送管に結合したことを特徴とする請求項4または5に
記載の高温超伝導体厚膜の形成装置。
6. A vacuum evacuation apparatus for evacuating a room in an ultrafine particle generation chamber provided with an evaporation source for separately heating and evaporating one of the elements constituting the high-temperature superconducting material to generate ultrafine particles. And an inert gas introduction pipe, and a transport pipe that guides the generated ultrafine particles together with the inert gas, wherein the transport pipe of the ultrafine particle generation unit is coupled to the transport pipe on the upstream side of the intermediate chamber. The apparatus for forming a high-temperature superconductor thick film according to claim 4 or 5, wherein:
JP8322989A 1989-03-31 1989-03-31 Method and apparatus for forming high temperature superconductor thick film Expired - Lifetime JP2632409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8322989A JP2632409B2 (en) 1989-03-31 1989-03-31 Method and apparatus for forming high temperature superconductor thick film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8322989A JP2632409B2 (en) 1989-03-31 1989-03-31 Method and apparatus for forming high temperature superconductor thick film

Publications (2)

Publication Number Publication Date
JPH02259079A JPH02259079A (en) 1990-10-19
JP2632409B2 true JP2632409B2 (en) 1997-07-23

Family

ID=13796488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8322989A Expired - Lifetime JP2632409B2 (en) 1989-03-31 1989-03-31 Method and apparatus for forming high temperature superconductor thick film

Country Status (1)

Country Link
JP (1) JP2632409B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355063A (en) * 2000-06-14 2001-12-25 Canon Inc Apparatus and method for forming film
US6803075B2 (en) 2002-04-23 2004-10-12 Canon Kabushiki Kaisha Method employing plurality of particles and pressure differentials to deposit film
US7005047B2 (en) 2002-04-24 2006-02-28 Canon Kabushiki Kaisha Film deposition apparatus and film deposition method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355063A (en) * 2000-06-14 2001-12-25 Canon Inc Apparatus and method for forming film
JP4560177B2 (en) * 2000-06-14 2010-10-13 キヤノン株式会社 Film forming apparatus and film forming method
US6803075B2 (en) 2002-04-23 2004-10-12 Canon Kabushiki Kaisha Method employing plurality of particles and pressure differentials to deposit film
US7005047B2 (en) 2002-04-24 2006-02-28 Canon Kabushiki Kaisha Film deposition apparatus and film deposition method
US7462380B2 (en) 2002-04-24 2008-12-09 Canon Kabushiki Kaisha Film forming method employing sub-electrodes aligned toward target

Also Published As

Publication number Publication date
JPH02259079A (en) 1990-10-19

Similar Documents

Publication Publication Date Title
US5017550A (en) Method for producing thin film of oxide superconductor
KR910007382B1 (en) Superconductor material and method of manufacturing super-conductor film
EP0387456B1 (en) Method for vapor-phase growth of an oxide thin film
US4925829A (en) Method for preparing thin film of compound oxide superconductor by ion beam techniques
US5112802A (en) Superconducting ceramics elongated body and method of manufacturing the same
US8153281B2 (en) Metalorganic chemical vapor deposition (MOCVD) process and apparatus to produce multi-layer high-temperature superconducting (HTS) coated tape
JP2632409B2 (en) Method and apparatus for forming high temperature superconductor thick film
JPS63274032A (en) Method of forming superconducting layer on substrate
US5061684A (en) Production of thin layers of a high temperature superconductor (htsc) by a plasma-activated physical vapor deposition process, and cathodes used therein
US5863336A (en) Apparatus for fabrication of superconductor
US5478800A (en) Process for preparing a superconducting thin film
JPH0285370A (en) Manufacture of thin oxide film
JP2906076B2 (en) Method for forming high temperature superconductor thick film by gas deposition method and its forming apparatus
JP2794294B2 (en) Method and apparatus for forming oxide superconductor thick film
US5273954A (en) Method for forming superconducting ceramics elongated body
JP2527790B2 (en) Equipment for manufacturing long oxide superconducting materials
US5232909A (en) Method for manufacturing superconducting ceramics elongated body
Lee et al. R&D of RABiTS-based coated conductors: Conversion of ex situ YBCO superconductor using a novel pulsed electron-beam deposited precursor
JPH0238302A (en) Formation of superconducting thin film
JP2955939B2 (en) Method of forming high-temperature superconductor thick film
JPH02270965A (en) Device and method for continuously supplying raw material for apparatus for producing oxide superconductor
JPH02302305A (en) Formation of thick film of oxide superconductor and equipment therefor
JP2575443B2 (en) Method for producing oxide-based superconducting wire
JPH01115014A (en) Manufacture of superconducting thin film
JP3425966B2 (en) Manufacturing method of magnetic shielding container made of oxide superconducting material