JPH0238302A - Formation of superconducting thin film - Google Patents

Formation of superconducting thin film

Info

Publication number
JPH0238302A
JPH0238302A JP63188457A JP18845788A JPH0238302A JP H0238302 A JPH0238302 A JP H0238302A JP 63188457 A JP63188457 A JP 63188457A JP 18845788 A JP18845788 A JP 18845788A JP H0238302 A JPH0238302 A JP H0238302A
Authority
JP
Japan
Prior art keywords
thin film
superconducting thin
film
heat treatment
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63188457A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ono
俊之 大野
Yuzo Kozono
小園 裕三
Masahiro Kasai
葛西 昌弘
Masanobu Hanazono
雅信 華園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63188457A priority Critical patent/JPH0238302A/en
Publication of JPH0238302A publication Critical patent/JPH0238302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To prevent reduction of film component by heat treatment and form superconducting thin film having uniform composition in the face by surrounding support and film with a compound containing metal component composing said thin film and heat-treating said compound and all, in heat treatment of thin film in formation of superconducting thin film. CONSTITUTION:In a method of formation of superconducting thin film 1 on support 2, the support 2 and film 1 are surrounded (surroundings 3) with a compound containing metal component composing said superconducting thin film 1 and heat-treated (oven 4) together with said compound to prevent reduction of metal component of said thin film by evaporation or sublimation with the heat treatment. Said method is able to be effectively applied to prevent reduction of Tl component of the film in formation of superconducting thin film of Tl-Ba-Ca-Cu-O system.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物超電導薄膜の形成方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming an oxide superconducting thin film.

〔従来の技術〕[Conventional technology]

1986年に銅、酸素を含む焼結体において高い臨界温
度をもつ超電導体が発見されて以来、さらに高い臨界温
度をもつ超電導体の探索、あるいはこれらの超電導体を
材料として用いるための研究が盛んに行なわれている。
Since the discovery in 1986 of a superconductor with a high critical temperature in a sintered body containing copper and oxygen, research has been actively conducted to search for superconductors with even higher critical temperatures or to use these superconductors as materials. is being carried out.

将来の機能的デバイスへの応用を考えた場合には、上記
の超電導体を薄膜化することが重要であり、現在、良質
の薄膜を得るための研究開発も盛んに行なわれている。
When considering the application to future functional devices, it is important to make the above-mentioned superconductors into thin films, and research and development to obtain high-quality thin films is currently being actively conducted.

上述の酸化物超電導体の薄膜を形成するには例えば、酸
化マグネシウム(MgO)やチタン酸ストロンチウム(
SrTiOa)の支持体の上にスパッタリング法や電子
ビーム蒸着法などによって薄膜を堆積する。この際の組
成の制御は、スパッタリングのターゲットに用いる焼結
体の金属成分の比をコントロールしたり、多元蒸着法を
用いて各各の蒸発量によってコントロールしたりする方
法が用いられている。膜の結晶性は、通常、成膜時の支
持体温度が室温から摂氏300℃程度では非晶質であり
、また支持体温度が600℃程度では多結晶体であるこ
とが知られており、結晶性を向上させ、酸素を十分に供
給するために、成膜後に酸素雰囲気中で熱処理を施して
いる。熱処理温度は非晶質膜については900℃前後、
多結晶膜については600℃程度で数時間の熱処理が行
なわれている。
To form a thin film of the above-mentioned oxide superconductor, for example, magnesium oxide (MgO) or strontium titanate (
A thin film is deposited on the SrTiOa support by sputtering, electron beam evaporation, or the like. The composition is controlled by controlling the ratio of metal components in the sintered body used as the sputtering target, or by controlling the evaporation amount of each component using a multi-component vapor deposition method. It is known that the crystallinity of the film is usually amorphous when the support temperature during film formation is from room temperature to about 300 degrees Celsius, and polycrystalline when the support temperature is about 600 degrees Celsius. In order to improve crystallinity and supply sufficient oxygen, heat treatment is performed in an oxygen atmosphere after film formation. The heat treatment temperature is around 900℃ for amorphous films;
Polycrystalline films are heat treated at about 600° C. for several hours.

なお、最近発見された新しい酸化物超電導体としてTQ
−Ba−Ca−Cu−0があり、ネイチャー332.3
月31日(1988年)第420〜422 (Natu
re voj、、332,31Marchl 988 
 P420−422)に記載されている。
Furthermore, TQ is a recently discovered new oxide superconductor.
-Ba-Ca-Cu-0, Nature 332.3
May 31st (1988) No. 420-422 (Natsu
re voj,, 332, 31 Marchl 988
P420-422).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

銅と酸素を含む酸化物の超電導体はこれまで、La−B
a−Cu−0,La−3r−Cu−0゜Y−B a−C
u−0,希土類−Ba−Cu−0゜B1−3r−Ca−
Cu−0等の系が発見され、研究されており、これらの
物質の薄膜化は前述の方法により可能である。しかし、
最近発見されたTQ−Ba−Ca−Cu−0という物質
系については、前述のように膜形成後、熱処理を行なう
とTΩ成分が著しく減少してしまうという問題がある。
Until now, superconductors of oxides containing copper and oxygen have been La-B
a-Cu-0, La-3r-Cu-0゜Y-B a-C
u-0, rare earth-Ba-Cu-0゜B1-3r-Ca-
Systems such as Cu-0 have been discovered and studied, and it is possible to form thin films of these materials by the methods described above. but,
Regarding the recently discovered material system TQ-Ba-Ca-Cu-0, there is a problem in that the TΩ component is significantly reduced when heat treatment is performed after film formation as described above.

このような問題を解決するための一つの方法としては、
例えばネイチャー332.3月31日(1988年)第
420頁から第422頁(Naturevol、 33
2.31 March 1988  P420−422
)(公知例1)で述べられているように、熱処理による
成分減少をみこして、あらかじめT2成分を多めにした
膜を形成するという方法が考えられる。しかし、公知例
1は焼結体試料の作製について述べられたものであり、
薄膜作製の場合には、熱処理によるT0成分の減少が膜
の面内で必ずしも一定とは限らないから、上記の方法で
は熱処理の結果、膜面内で組成の均一な超電導薄膜を形
成することは不可能であり、それよりも、膜組成をなる
べく変化させないような熱処理を施すことが必要である
One way to solve such problems is to
For example, Nature 332. March 31 (1988), pages 420 to 422 (Naturevol, 33
2.31 March 1988 P420-422
) (Known Example 1), a method can be considered in which a film is formed in advance in which the T2 component is increased to a large extent in anticipation of the component being reduced by heat treatment. However, Publication Example 1 describes the preparation of a sintered body sample,
In the case of thin film production, the decrease in T0 component due to heat treatment is not necessarily constant within the film plane, so the above method cannot form a superconducting thin film with a uniform composition within the film plane as a result of heat treatment. This is not possible, and it is necessary to perform heat treatment that does not change the film composition as much as possible.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこのような欠点を改善したものであり、支持体
上へ超電導薄膜を形成する方法において、熱処理に伴い
、薄膜を構成する金属成分が蒸発あるいは昇化すること
によって減少することを防ぐために、前記の超電導薄膜
の構成金属成分、特にT Q、を含む化合物により、支
持体及び膜を密閉した後、その化合物ごと炉に入れて熱
処理することを特徴とするものである。この方法の一例
を腹式的に第1図に示す。第1図において、符号1は超
電導薄膜、2は支持体、3は超電導薄膜の構成金属成分
を含む化合物による囲い、4は電気炉を示す。この方法
によれば熱処理の際には、支持体2及び超電導薄膜1の
周囲の、例えばTQ化合物の囲い3によって十分なTf
fあるいはTQ化合物の蒸気圧が供給されるために膜中
のTQ酸成分減少を防ぐことができる。このTR化合物
で膜を囲む際に、完全に密閉しないで少し隙間をあける
か、TQ化合物の多孔質体によって囲むことにより酸素
気流中で膜に酸素を供給しながらの熱処理をすることも
可能である。
The present invention improves these drawbacks, and in order to prevent metal components constituting the thin film from decreasing due to evaporation or elevation during heat treatment in a method for forming a superconducting thin film on a support. The method is characterized in that after the support and the membrane are sealed with a compound containing the constituent metal components of the superconducting thin film, particularly TQ, the whole compound is placed in a furnace and heat-treated. An example of this method is schematically shown in FIG. In FIG. 1, reference numeral 1 indicates a superconducting thin film, 2 a support, 3 an enclosure made of a compound containing metal components constituting the superconducting thin film, and 4 an electric furnace. According to this method, during the heat treatment, sufficient Tf can be obtained by, for example, a TQ compound enclosure 3 around the support 2 and the superconducting thin film 1.
Since the vapor pressure of f or the TQ compound is supplied, a decrease in the TQ acid component in the film can be prevented. When surrounding the membrane with this TR compound, it is also possible to leave a small gap without completely sealing it, or by surrounding it with a porous body of TQ compound, heat treatment can be performed while supplying oxygen to the membrane in an oxygen stream. be.

これまでは、主としてTQ成分減少の防止という見地で
述べたが、本発明は、単にTQ酸成分場合に限らず、一
般に成分が減少しやすい薄膜を熱処理する方法として有
効である。膜を囲む化合物の組成を膜と類似なものとす
れば膜のすべての成分の減少を防ぐことが可能となる。
So far, the present invention has been described mainly from the viewpoint of preventing the reduction of TQ components, but the present invention is effective not only in the case of TQ acid components, but also as a method for heat-treating thin films in which components tend to decrease in general. By making the composition of the compound surrounding the membrane similar to that of the membrane, it is possible to prevent the loss of all components of the membrane.

〔作用〕 前記のような熱処理方法を用いることにより、熱処理に
よる膜の成分減少が防止でき、面内で組成の均一な超電
導薄膜を形成することができる。
[Function] By using the heat treatment method as described above, it is possible to prevent a decrease in the components of the film due to heat treatment, and it is possible to form a superconducting thin film with a uniform composition within the plane.

〔実施例〕〔Example〕

以下、本発明の実施例を比較例と対比して説明するが、
本発明はこれに限定されるものではない。
Examples of the present invention will be explained below in comparison with comparative examples.
The present invention is not limited to this.

超電導薄膜の堆積方法としてはスパッタリング法、電子
ビーム蒸着法などがある。
Examples of methods for depositing superconducting thin films include sputtering and electron beam evaporation.

比較例 1)高周波スパッタリング装置にタリウム、バリウム、
カルシウム、銅、酸素からなる焼結体ターゲットを装着
する。この焼結体ターゲットの組成は、TQ:Ba:C
a:Cu=2:2:2:3となるように調整する。この
ような組成のターゲットを用い、下記の条件でスパッタ
リングを行なうと、堆積した膜の組成はTQ:Ba:C
a:Cu=4 : 1 :1.3 : 2.2となるこ
とが予備検討から確認されている。ターゲットの対向位
置に5mn+X 20mmX 0 、5mmの大きさの
酸化マグネシウム(MgO)単結晶((100)面)を
支持体として固定し、I X 10−BTorr程度に
まで排気した後、支持体の表面温度を200 ’Cに保
ちつつ、酸素(02)、アルゴン(Ar)の混合ガスを
8X10−3Torrの圧力まで導入する。この時のガ
ス比は、02/ (Ar+0z)=0.25となるよう
にする。
Comparative Example 1) Thallium, barium,
A sintered target consisting of calcium, copper, and oxygen is attached. The composition of this sintered target is TQ:Ba:C
Adjust so that a:Cu=2:2:2:3. When sputtering is performed using a target with such a composition under the following conditions, the composition of the deposited film is TQ:Ba:C.
It has been confirmed from preliminary studies that a:Cu=4:1:1.3:2.2. A magnesium oxide (MgO) single crystal ((100) plane) with a size of 5 mm + 20 mm While maintaining the temperature at 200'C, a mixed gas of oxygen (02) and argon (Ar) is introduced to a pressure of 8X10-3 Torr. The gas ratio at this time is set to 02/(Ar+0z)=0.25.

13.56MHz、出力200Wの高周波グロー放電に
より、TQ−Ba−Ca−Cu−0薄膜を1μmの厚み
まで堆積する。
A TQ-Ba-Ca-Cu-0 thin film is deposited to a thickness of 1 μm by high-frequency glow discharge of 13.56 MHz and 200 W output.

2)1)で作製したTQ−Ba−Ca−Cu −0薄膜
を電気炉に入れ、1気圧の酸素気流中で820℃に保ち
、2時間の熱処理を行なう。
2) The TQ-Ba-Ca-Cu-0 thin film prepared in 1) is placed in an electric furnace, maintained at 820°C in an oxygen stream of 1 atm, and heat-treated for 2 hours.

3)2)で熱処理したTR−Ba−Ca−Cu −○薄
膜の第2図に示したような面内の数ケ所における組成を
EPMAにより測定する。この結果を表1に示す。これ
より従来法による熱処理では明らかに面内での組成分布
が存在し、TRが著しく減少している所もあることがわ
かる。
3) The composition of the TR-Ba-Ca-Cu-○ thin film heat-treated in 2) at several points in the plane as shown in FIG. 2 is measured by EPMA. The results are shown in Table 1. From this, it can be seen that in the heat treatment by the conventional method, there is clearly an in-plane composition distribution, and there are places where the TR is significantly reduced.

表  1 実施例 1)高周波スパッタリング装置にタリウム、バリウム、
カルシウム、銅、酸素からなる焼結体ターゲットを装着
する。この焼結体ターゲットの組成は、TQ:Ba:C
a:Cu”1:4:3:4となるように調整する。この
ような組成のターゲットを用い、下記の条件でスパッタ
リングを行なうと、堆積した膜の組成はTQ:Ba:C
a:Cu=2:2:2:3となることが予備検討から確
認されている。ターゲットの対向位置に5vnX20m
mX0.5mmの大きさのMgO(100)単結晶を支
持体として固定し、I X 10−6Torr程度にま
で排気した後、支持体の表面温度を200℃に保ちつつ
、酸素、アルゴンの混合ガスを8X10−”Torrの
圧力まで導入する。この時のガス比はO2/(Ar+○
z)=0.25となるようにする。
Table 1 Example 1) Thallium, barium,
A sintered target consisting of calcium, copper, and oxygen is attached. The composition of this sintered target is TQ:Ba:C
a:Cu" 1:4:3:4. When sputtering is performed under the following conditions using a target with such a composition, the composition of the deposited film is TQ:Ba:C.
It has been confirmed from preliminary studies that a:Cu=2:2:2:3. 5vn x 20m opposite the target
After fixing an MgO (100) single crystal with a size of m x 0.5 mm as a support and evacuating to about I x 10-6 Torr, a mixed gas of oxygen and argon was applied while maintaining the surface temperature of the support at 200 °C. is introduced to a pressure of 8×10-” Torr.The gas ratio at this time is O2/(Ar+○
z)=0.25.

13 、56 MI(z、出力200Wの高周波グロー
放電により、T Q −B a −Ca −Cu −0
薄膜を1μmの厚みまで堆積する。
13, 56 MI (z, by high-frequency glow discharge with an output of 200 W, T Q -B a -Ca -Cu -0
A thin film is deposited to a thickness of 1 μm.

2)1)で作製したTQ−Ba−Ca−Cu−〇薄膜を
板状のTΩzBa2caxcus○、焼結体によって第
1図に示したように箱状に囲む。この際、完全に密閉し
てしまわずに、多少の隙間をあけておくようにする。次
に、この箱を電気炉に入れ酸素気流中で820°C,3
時間加熱することによりTQ−Ba−Ca−Cu−0薄
膜の熱処理を行なう。
2) The TQ-Ba-Ca-Cu-○ thin film produced in 1) is surrounded by a plate-shaped TΩzBa2caxcus○, sintered body in a box shape as shown in FIG. At this time, do not completely seal it, but leave some space. Next, this box was placed in an electric furnace at 820°C for 3 hours in an oxygen stream.
The TQ-Ba-Ca-Cu-0 thin film is heat-treated by heating for a certain period of time.

3)実施例1−3)と同様にして、2)で熱処理したT
Q−Ba−Ca−Cu−0薄膜の面内の組成分布をEP
MAにより測定する。この結果を表2に示す。
3) T heat treated in 2) in the same manner as in Example 1-3)
EP the in-plane composition distribution of the Q-Ba-Ca-Cu-0 thin film.
Measured by MA. The results are shown in Table 2.

表  2 表2から明らかなように、本発明による熱処理方法を用
いれば、薄膜の面内における組成分布が小さく、熱処理
前と比べて大きな組成ずれはおきないことがわかる。
Table 2 As is clear from Table 2, when the heat treatment method according to the present invention is used, the in-plane composition distribution of the thin film is small, and no large composition deviation occurs compared to before heat treatment.

4)3)における、A、B、Fの位置の各々四端子の電
極をつけ、各々の位置における比抵抗の温度依存性を測
定する。この結果を第3図に示す。
4) Attach four-terminal electrodes to each of the positions A, B, and F in 3), and measure the temperature dependence of specific resistance at each position. The results are shown in FIG.

膜面内での組成のずれが小さいことを反映して比抵抗の
温度依存性は膜面内で大きく変わらないことがわかる。
It can be seen that the temperature dependence of resistivity does not change significantly within the film plane, reflecting the small deviation in composition within the film plane.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明による熱処理方
法を用いれば従来法に比べて熱処理による組成のずれ、
特にTQ酸成分減少が小さく、かつ膜面内での組成の分
布も小さい良好な超電導薄膜を形成すことができる。
As is clear from the above explanation, if the heat treatment method according to the present invention is used, there will be less deviation in composition due to heat treatment than in the conventional method.
In particular, it is possible to form a good superconducting thin film in which the decrease in TQ acid components is small and the composition distribution within the film plane is small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による超電導薄膜の熱処理方法の一例を
電気炉の断面図として模式的に示した概略図である。 第2図は比較例及び実施例で作製した膜の組成分布を調
べる際に、その測定点を示した膜平面図である。 第3図は本発明の実施例で作製した膜のA、B。 Fの測定点における比抵抗の温度変化を示す特性図であ
る。 1・・・超電導薄膜、2・・・支持体、3・・・超電導
薄膜の構成金属成分を含む化合物による囲い、4・・・
電気高30 TeTnperatuie (に)
FIG. 1 is a schematic cross-sectional view of an electric furnace showing an example of the heat treatment method for a superconducting thin film according to the present invention. FIG. 2 is a plan view of the membranes showing measurement points when examining the composition distribution of the membranes produced in Comparative Examples and Examples. FIG. 3 shows A and B of films produced in Examples of the present invention. It is a characteristic diagram which shows the temperature change of specific resistance at the measurement point of F. DESCRIPTION OF SYMBOLS 1... Superconducting thin film, 2... Support, 3... Enclosure made of a compound containing a constituent metal component of the superconducting thin film, 4...
Electric High School 30 TeTnperatuie (in)

Claims (1)

【特許請求の範囲】 1、支持体上へ超電導薄膜を形成する方法において、熱
処理に伴い、薄膜の構成金属成分が蒸発あるいは昇化す
ることによって減少することを防ぐために、前記超電導
薄膜の構成金属成分を含む化合物により、支持体及び膜
を囲んだ後、その化合物ごと熱処理することを特徴とす
る超電導薄膜形成方法。 2、支持体上へ超電導薄膜を形成する方法において、熱
処理に伴い、薄膜の構成金属成分が蒸発あるいは昇化す
ることによって減少することを防ぐために、前記超電導
薄膜の構成金属成分を含む化合物からなる多孔質体によ
り、支持体及び膜を囲んだ後、その多孔質体ごと熱処理
することを特徴とする超電導薄膜形成方法。 3、前記超電導薄膜が構成元素としてタリウム(Tl)
を含むことを特徴とする請求項1又は2に記載の超電導
薄膜形成方法。 4、前記超電導薄膜がタリウム、バリウム(Ba)、カ
ルシウム(Ca)、銅及び酸素により構成されることを
特徴とする請求項1又は2に記載の超電導薄膜形成方法
[Scope of Claims] 1. In the method of forming a superconducting thin film on a support, in order to prevent the constituent metal components of the thin film from decreasing due to evaporation or elevation due to heat treatment, the constituent metal components of the superconducting thin film are A method for forming a superconducting thin film, which comprises surrounding a support and a membrane with a compound containing the components, and then heat-treating the compound together. 2. In the method of forming a superconducting thin film on a support, in order to prevent the constituent metal components of the thin film from decreasing due to evaporation or elevation due to heat treatment, a compound containing the constituent metal components of the superconducting thin film is used. A method for forming a superconducting thin film, which comprises surrounding a support and a membrane with a porous material, and then heat-treating the porous material together. 3. The superconducting thin film contains thallium (Tl) as a constituent element.
The method for forming a superconducting thin film according to claim 1 or 2, comprising: 4. The method for forming a superconducting thin film according to claim 1 or 2, wherein the superconducting thin film is composed of thallium, barium (Ba), calcium (Ca), copper, and oxygen.
JP63188457A 1988-07-29 1988-07-29 Formation of superconducting thin film Pending JPH0238302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63188457A JPH0238302A (en) 1988-07-29 1988-07-29 Formation of superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63188457A JPH0238302A (en) 1988-07-29 1988-07-29 Formation of superconducting thin film

Publications (1)

Publication Number Publication Date
JPH0238302A true JPH0238302A (en) 1990-02-07

Family

ID=16224041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63188457A Pending JPH0238302A (en) 1988-07-29 1988-07-29 Formation of superconducting thin film

Country Status (1)

Country Link
JP (1) JPH0238302A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217316A (en) * 1988-12-22 1990-08-30 General Electric Co <Ge> High-temperature superconductive material and its manufacture
US5139998A (en) * 1988-08-31 1992-08-18 Superconductor Technologies, Inc. Controlled thallous oxide evaporation for thallium superconductor films and reactor design
JPH04310521A (en) * 1991-01-29 1992-11-02 Internatl Business Mach Corp <Ibm> Method of forming thin oxide film
WO1993008319A1 (en) * 1991-10-25 1993-04-29 Superconductor Technologies, Inc. Reactor vessel for manufacture of superconducting films

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139998A (en) * 1988-08-31 1992-08-18 Superconductor Technologies, Inc. Controlled thallous oxide evaporation for thallium superconductor films and reactor design
US5306699A (en) * 1988-08-31 1994-04-26 Superconductor Technologies, Inc. Reactor vessel for manufacture of superconducting films
JPH02217316A (en) * 1988-12-22 1990-08-30 General Electric Co <Ge> High-temperature superconductive material and its manufacture
JPH04310521A (en) * 1991-01-29 1992-11-02 Internatl Business Mach Corp <Ibm> Method of forming thin oxide film
WO1993008319A1 (en) * 1991-10-25 1993-04-29 Superconductor Technologies, Inc. Reactor vessel for manufacture of superconducting films

Similar Documents

Publication Publication Date Title
US4925829A (en) Method for preparing thin film of compound oxide superconductor by ion beam techniques
JPH01144518A (en) Long-sized superconductor and manufacture thereof
JPH0238302A (en) Formation of superconducting thin film
JPH02141567A (en) Manufacture of the thin layer of high temperature superconductor
JPS63239742A (en) Manufacture for film superconductor
JPH01208327A (en) Production of thin film of superconductor
JP2611332B2 (en) Manufacturing method of thin film superconductor
JPH0292809A (en) Production of thin film of oxide superconductor
JP2523785B2 (en) Method for manufacturing superconductor thin film
JPH01215963A (en) Formation of thin superconducting film
JPH0446098A (en) Superconducting member
JPH07106904B2 (en) Method of manufacturing thin film superconductor
JPH01124919A (en) Manufacture of oxide superconductor
JPH0517147A (en) Production of thin compound oxide film containing lead
JPH01201009A (en) Production of oxide superconductor
JP2817299B2 (en) Preparation method of composite oxide superconducting thin film
JPS63310519A (en) Manufacture of membrane consisting of oxide superconductor material
JPS63257127A (en) Manufacture of thin film superconductor
JPH03162574A (en) Rf sputtering device
JPH01220484A (en) Manufacture of superconducting ceramic thin film
JPH0791151B2 (en) Method for manufacturing superconductor thin film
JPH01172209A (en) Production of superconducting thin film
JPH0292808A (en) Production of thin film of oxide superconductor
JPH0222456A (en) Plasma-assisted vapor deposition method for oxide superconductor thin film
JPH0316915A (en) Production of superconductive thin film