JPH01294506A - Production of metallic oxide and thin film thereof with excimer laser - Google Patents

Production of metallic oxide and thin film thereof with excimer laser

Info

Publication number
JPH01294506A
JPH01294506A JP63122895A JP12289588A JPH01294506A JP H01294506 A JPH01294506 A JP H01294506A JP 63122895 A JP63122895 A JP 63122895A JP 12289588 A JP12289588 A JP 12289588A JP H01294506 A JPH01294506 A JP H01294506A
Authority
JP
Japan
Prior art keywords
excimer laser
group
thin film
metal
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63122895A
Other languages
Japanese (ja)
Other versions
JP2759125B2 (en
Inventor
Hiroshi Moriyama
森山 廣思
Takashi Mochizuki
隆 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Nichicon Corp
Original Assignee
Agency of Industrial Science and Technology
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Nichicon Corp filed Critical Agency of Industrial Science and Technology
Priority to JP63122895A priority Critical patent/JP2759125B2/en
Publication of JPH01294506A publication Critical patent/JPH01294506A/en
Application granted granted Critical
Publication of JP2759125B2 publication Critical patent/JP2759125B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/20Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof

Abstract

PURPOSE:To enable production of high-purity metal oxide and a thin film thereof under mild conditions by irradiating a metal salt of an organic acid or organometallic compound with excimer laser in oxygen atmosphere. CONSTITUTION:A metal salt of an organic acid or organometallic compound expressed by the formula MmRn (M is group IVb element of Si, Ge, Sn or Pb; group VIa element of Cr, Mo or W; R is alkyl group, such as methyl, ethyl, propyl or butyl, or carboxyl group, such as acetoxy, propanoyloxy, butyryloxy or valeroyloxy, or carbonyl, m and n are integers) is dissolved in a soluble solvent or, in the case of a liquid, it is directly dispersed, applied to a substrate and irradiated with excimer laser (optimally KrF laser) in oxygen atmosphere to afford the aimed metal oxide or a thin film thereof.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、エキシマレ−ザーによる金属酸化物および金
属酸化物薄膜の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing metal oxides and metal oxide thin films using an excimer laser.

従来の技術 金属酸化物および該薄膜は様々な分野で用いられており
、特に最近のファインセラミックス、あるいは最近の酸
化物高温超伝導電導体に代表される素材そのものの高純
度化、高機能化、高微細化によりその用途は飛躍的に広
まりつつある。
Background Art Metal oxides and their thin films are used in a variety of fields, particularly in recent years in fine ceramics and recent oxide high-temperature superconducting conductors, which have been used to improve the purity and functionality of the materials themselves. Due to the miniaturization, its applications are rapidly expanding.

この金属酸化物の作製方法は、合成技術の改良、化学反
応の精製技術の向上などに代表される技術向上、また加
熱装置、加熱方法など加熱処理による酸化技術の進歩に
よるところが多い。しかしながら、金属酸化物の生成に
は焼結過程などに大量の熱エネルギーが必要であり、ま
たそのため酸化物の組成を正確に制御することは極めて
困難である。
The method for producing metal oxides is largely due to technological improvements such as improvements in synthesis technology and chemical reaction purification technology, as well as advances in oxidation technology using heat treatment, such as heating devices and heating methods. However, the generation of metal oxides requires a large amount of thermal energy during the sintering process, and it is therefore extremely difficult to accurately control the composition of the oxides.

一方、金属酸化物薄膜は、半導体に代表されるエレクト
ロニクスのさまざまな分野で用いられており、その製造
方法はCVDなどのドライプロセス技術に負うところが
多い。しかしながら、CVD法では反応温度も高くまた
毒性ガスの副生がさけられない。薄膜の製造方法として
ほかに真空蒸着法やスパッタリング法もあるが、これら
の方法では高真空、高電圧が必須であり、また気化しに
くい物質は扱いにくかった。
On the other hand, metal oxide thin films are used in various fields of electronics, typified by semiconductors, and their manufacturing methods are largely dependent on dry process techniques such as CVD. However, in the CVD method, the reaction temperature is high and the by-product of toxic gas cannot be avoided. There are other methods for producing thin films, such as vacuum evaporation and sputtering, but these methods require high vacuum and high voltage, and are difficult to handle with substances that are difficult to vaporize.

発明が解決しようとする問題点 金属酸化物の高純度化を進めるに従い、化学的、熱的な
処理が煩雑になり、また処理回数も増加し、処理コスト
も高価なものとなる。一方高純度化にも限界があり、特
に各種金属酸化物の結晶構造の微妙な制御などにおいて
はかなり厳密な処理が必要となるため、製造過程に多く
の問題点を抱えている。また、金属酸化物薄膜について
は、上記に述べたドライプロセスによる製造では、CV
D装置などの処理装置のコントロールが微妙であり、薄
膜中に多数のボイド、クラックなどが生成しやすく、良
質の薄膜を製造するには技術的にかなり難しい要素があ
る。この方式での連続処理も検討されているが、また十
分なものが得られていないのが現状である。また、電気
化学的に金属酸化物を生成する方法も検討されているが
、アルミニウムなどの弁作用金属以外のものは理論的に
も困難とされている。
Problems to be Solved by the Invention As the purification of metal oxides progresses, chemical and thermal treatments become more complicated, the number of treatments increases, and the treatment cost becomes expensive. On the other hand, there are limits to achieving high purity, and in particular, the delicate control of the crystal structure of various metal oxides requires very strict processing, resulting in many problems in the manufacturing process. In addition, when manufacturing metal oxide thin films using the dry process described above, CV
The control of processing equipment such as D equipment is delicate, and many voids and cracks are likely to be generated in the thin film, making it technically difficult to produce a high-quality thin film. Continuous processing using this method is also being considered, but at present, sufficient results have not been obtained. In addition, a method of electrochemically producing metal oxides has been considered, but it is theoretically difficult to produce metal oxides other than valve metals such as aluminum.

問題点を解決するための手段 本発明者らは上記の問題点を解決するにあたり、創意工
夫を繰り返した結果、以下のような金属酸化物および該
薄膜の製造方法を見出すに至った。
Means for Solving the Problems In order to solve the above-mentioned problems, the inventors of the present invention have repeated their creative efforts, and as a result, they have discovered the following metal oxide and method for producing the thin film.

すなわち、本発明は金属酸化物を作製するにあたり、金
属有機塩のないし有機金属化合物M、R。
That is, in producing a metal oxide, the present invention uses a metal organic salt or an organic metal compound M, R.

(ただしM =Si、 Gex Sn、、 Pbの4b
族元素、Cr %Mo、 Wの6a族元素、Mn、、T
C% Reの7a族元素:R=CH,、C211いC,
Hッ、C4H9などのアルキル基、あるいはCH3CO
O−、CJsCOO−、C31bCOO−、C4H9C
OO−などのカルボキシル基、あるいはCOのカルボニ
ル基:1.7は整数)に酸素雰囲気下でエキシマレ−ザ
ーを照射することを特徴とする、エキシマレ−ザーによ
る金属酸化物および金属酸化物薄膜の製造方法。また、
上記金属有機塩ないしは有機金属化合物を可溶性溶媒に
溶かし、あるいは液体のものはそのまま、該溶液を基板
上に分散塗布した後、酸素雰囲気下でエキシマレ−ザー
を照射することを特徴とする金属酸化物および金属酸化
物薄膜の製造方法で、近年急速に進歩してきたレーザー
、とりわけエキシマレ−ザーに着目し、レーザー光のも
つ高強度性を有効に利用し、酸素雰囲気下で金属有機塩
ないしは有機金属化合物の光酸化反応によって金属酸化
物および該薄膜を作製するものである。さらに詳しく述
べると金属有機塩ないしは有機金属化合物にエキシマレ
−ザーを照射し、その励起エネルギーにより上記化合物
を分解すると同時に、金属を活性化し、やはり励起活性
化されている気相中の酸素により速やかに酸化反応をお
こさせるものである。エキシマレ−ザーの種類としては
、ArF (193nm)、KrF (248nm)、
XeC1(308na+) 、XeF(351rv+)
などが簡単に使用できるが、この反応を効率よく起こさ
せるためには短波長レーザーはど有利である。しかし、
操作性やガス寿命を考慮すると、好ましくはKrFレー
ザー照射が最適である。例えば金属有機塩として酢酸鉛
を使用した場合、反応は次式に従って進行する。反応は
大気中の酸素で進行するが、レーザー出力が強い場合に
はとりわけ酸素不足になるため、反応部位に酸素を供給
する必要がある。反応の進行は供給酸素量に比例するの
で、反応は好ましくは酸素雰囲気下で行う。
(However, M = Si, Gex Sn, 4b of Pb
Group elements, Cr %Mo, W group 6a elements, Mn,, T
C% Re group 7a element: R=CH,,C211C,
H, an alkyl group such as C4H9, or CH3CO
O-, CJsCOO-, C31bCOO-, C4H9C
Production of metal oxides and metal oxide thin films by excimer laser, characterized by irradiating carboxyl groups such as OO- or carbonyl groups of CO (1.7 is an integer) with excimer laser in an oxygen atmosphere. Method. Also,
A metal oxide characterized by dissolving the metal organic salt or organometallic compound in a soluble solvent, or dispersing the solution as it is on a substrate, and then irradiating it with an excimer laser in an oxygen atmosphere. In addition, we focused on lasers, especially excimer lasers, which have been rapidly progressing in recent years, in the production method of metal oxide thin films, and effectively utilize the high intensity of laser light to produce metal organic salts or organometallic compounds in an oxygen atmosphere. The metal oxide and the thin film are produced by photo-oxidation reaction. More specifically, a metal organic salt or an organometallic compound is irradiated with an excimer laser, and the excitation energy decomposes the compound, at the same time activating the metal, and the oxygen in the gas phase, which is also excited and activated, quickly decomposes the compound. It causes an oxidation reaction. Types of excimer lasers include ArF (193nm), KrF (248nm),
XeC1 (308na+), XeF (351rv+)
can be easily used, but short wavelength lasers are advantageous in order to cause this reaction to occur efficiently. but,
Considering operability and gas life, preferably KrF laser irradiation is optimal. For example, when lead acetate is used as the metal organic salt, the reaction proceeds according to the following formula. The reaction proceeds with oxygen in the atmosphere, but when the laser output is strong, oxygen becomes insufficient, so it is necessary to supply oxygen to the reaction site. Since the progress of the reaction is proportional to the amount of oxygen supplied, the reaction is preferably carried out under an oxygen atmosphere.

h ν Pb (C8:IC0O) z  → PbO□+CO
7↑ +11□0↑温和な条件下、酸化物は瞬時に形成
されるが、反応はレーザーが照射されている部分しか進
行しないため、攪拌等によりまんべんなく照射させる必
要がある。
h ν Pb (C8:IC0O) z → PbO□+CO
7↑ +11□0↑ Under mild conditions, oxides are formed instantly, but since the reaction only progresses in the area that is irradiated with the laser, it is necessary to irradiate it evenly by stirring or the like.

次に、薄膜形成の場合には、金属有機塩ないしは有機金
属化合物を水などの可溶性溶媒に溶かし、基板Eにスプ
レーなどにより分散塗布したのちレーザー照射を行う。
Next, in the case of forming a thin film, the metal organic salt or organometallic compound is dissolved in a soluble solvent such as water, and after being dispersed and coated on the substrate E by spraying or the like, laser irradiation is performed.

この場合、金属有機塩の溶液)1度は形成される薄膜の
厚みにより決定されるので、一般には薄膜の厚みが薄い
ほど希薄溶液を用いたほうが良好である。また、溶媒に
より上記酸化反応の効率が異なる場合があるので、金属
有機塩の種類により溶媒種を選択する必要がある。使用
するt容器としては、水、メタノール、エタノール、エ
チレングリコール、グリセリンおよびそれらの混合溶媒
を各種試みた結果、水または水とメタノールの混合溶媒
を使用したとき、酸化物が良好に生成した。レー、ザー
照射の繰り返しパルス数は1011z程度が最適である
。また、基板を移動することにより連続的な薄膜形成プ
ロセスが可能である。反応は室温でも進行するが、基板
を100℃程度に加熱すると酸化反応はより効率的に進
行する。
In this case, the degree of solution of the metal organic salt is determined by the thickness of the thin film to be formed, so generally, the thinner the thin film is, the better it is to use a dilute solution. Furthermore, since the efficiency of the oxidation reaction may vary depending on the solvent, it is necessary to select the type of solvent depending on the type of metal organic salt. Various types of water, methanol, ethanol, ethylene glycol, glycerin, and mixed solvents thereof were used as the T-container, and as a result, oxides were produced well when water or a mixed solvent of water and methanol was used. The optimal number of repeated pulses for laser irradiation is about 1011z. Furthermore, by moving the substrate, a continuous thin film formation process is possible. Although the reaction proceeds at room temperature, the oxidation reaction proceeds more efficiently when the substrate is heated to about 100°C.

作用 本発明の基本的反応は上記に示した通りであるが、その
原理は金属有機塩ないしは有機金属化合物の結合エネル
ギー以上のエネルギーを有する波長を照射し、結合を解
離させラジカル状態になった金属元素を酸素と再結合さ
せて酸化物を生成させるものであるが、ここでエキシマ
レ−ザーを用いたのは単に結合を解離するだけでなく、
基板表面に高温プラズマ状態を現出させることによって
、表面のアニーリングも同時に可能となるからである。
Function The basic reaction of the present invention is as shown above, and its principle is to irradiate the metal with a wavelength having an energy higher than the binding energy of the metal organic salt or organic metal compound, dissociate the bond, and transform the metal into a radical state. It recombines elements with oxygen to produce oxides, but the excimer laser used here not only dissociates bonds, but also
This is because by creating a high-temperature plasma state on the substrate surface, surface annealing becomes possible at the same time.

 (酸化アニーリング) 波長の選定はレーザーを発生させる希ガスおよびハロゲ
ンガスの組み合わせによって決定される。
(Oxidation Annealing) The selection of wavelength is determined by the combination of rare gas and halogen gas that generate the laser.

現在用いられている代表的なエキシマレ−ザー用ガスと
波長は、ArF (193nm)、KrF (248n
m)、XeC1(308nm) 、XeF(351nm
)などがあるが、酸化アニーリング作用は短波長はど有
利である。しかしながら、上記したようにArF (1
930m)はガス寿命が短い欠点があるので、実際的に
はKrF (248nm)の照射がとりわけ有効である
。またガスの安定性が最も高いXeC1(308nm)
  レーザーも好ましく使用される。
Typical excimer laser gases and wavelengths currently used are ArF (193nm), KrF (248nm), and KrF (248nm).
m), XeC1 (308 nm), XeF (351 nm)
), but short wavelengths are more advantageous for oxidative annealing. However, as mentioned above, ArF (1
Since KrF (248 nm) irradiation is particularly effective in practice, KrF (248 nm) irradiation is particularly effective. Also, XeC1 (308 nm) has the highest gas stability.
Lasers are also preferably used.

エキシマレ−ザー光量子のもつ高強度性・高密度性を有
効に利用することによって、均一清浄な表面のみならず
、多孔性の基板でも基板表面の形状にかかわらず均一な
薄膜が形成されることが特長であり、電子材料への応用
などに多くの用途が見込まれる。また、パルス繰り返し
、数を変えることにより形成される酸化物薄膜の厚さを
調節できるので、膜厚制御に有効な手段となる。さらに
基板上に高分解能で酸化物皮膜のパターンをもたらすよ
うに集束することもできる。
By effectively utilizing the high intensity and high density of excimer laser photons, it is possible to form a uniform thin film not only on a uniformly clean surface but also on a porous substrate regardless of the shape of the substrate surface. This feature is expected to find many uses in electronic materials. Furthermore, since the thickness of the formed oxide thin film can be adjusted by changing the number of pulse repetitions, it is an effective means for controlling the film thickness. It can also be focused to provide a pattern of oxide films with high resolution on the substrate.

実施例 以下に本発明を具体的実施例について述べる。Example The present invention will be described below with reference to specific examples.

(実施例1) 市販の試薬特級酢酸鉛40mgをめのう製攪拌装置を内
蔵した反応容器に入れ攪拌し、過剰の酸素ガスを供給し
なからKrF (248nm)エキシマレ−ザーを20
0mJ/pulse−、1011zで180秒照射した
。生成した黒色の反応生成物を、xps、X線解析およ
びESCAで分析することにより100%のpbo、の
生成が確認された。
(Example 1) 40 mg of commercially available reagent grade lead acetate was placed in a reaction vessel equipped with an agate stirrer, stirred, and then heated with a KrF (248 nm) excimer laser for 20 mg without supplying excess oxygen gas.
Irradiation was performed at 0 mJ/pulse-, 1011z for 180 seconds. The generation of 100% pbo was confirmed by analyzing the generated black reaction product by xps, x-ray analysis, and ESCA.

(実施例2) 実施例1で用いた酢酸鉛を純水に飽和溶解させ、アルミ
ナ基板上にスプレー塗布し、酸素ガスを供給しながら上
記の条件でエキシマレ−ザーを照射した。生成した薄膜
を同じく、xps、xvA解析、ESCAで分析するこ
とにより100%のpbo、の生成を確認した。xps
の結果を図2にしめす。
(Example 2) Lead acetate used in Example 1 was saturatedly dissolved in pure water, sprayed onto an alumina substrate, and irradiated with an excimer laser under the above conditions while supplying oxygen gas. The production of 100% pbo was confirmed by analyzing the produced thin film using xps, xvA analysis, and ESCA. xps
The results are shown in Figure 2.

PbO□の4f5/2および′1/2に起因するピーク
が出現し、基板のAIに起因するピークが消失している
ことから、表面がすべて酸化鉛薄膜で覆われたことが明
らかである。
Since peaks due to 4f5/2 and '1/2 of PbO□ appeared, and peaks due to AI of the substrate disappeared, it is clear that the entire surface was covered with a lead oxide thin film.

なお、上記実施例は金属有機塩の酢酸鉛について述べた
が金属有機塩ないし有機金属化合物Mffit?。
In addition, although the above-mentioned example described lead acetate as a metal organic salt, a metal organic salt or an organic metal compound Mffit? .

とじてM =Sis G8% Sn、、Pbの4b族元
素、Crs Mo、Wの6a族元素、Mn5TC% R
eの7a族元素:R=C1h、C、H、、C2I+ ?
 、 Ca If qなどのアルキル基、あるいはCH
3COO−、CzHsCOO−、C3H?COO−、C
4)1.COO−などのカルボキシル基、あるいはCO
のカルボニル基も同様な効果が得られる。
M = Sis G8% Sn, Pb group 4b element, Crs Mo, W group 6a element, Mn5TC% R
Group 7a element of e: R=C1h, C, H,, C2I+?
, an alkyl group such as Ca If q, or CH
3COO-, CzHsCOO-, C3H? COO-,C
4)1. Carboxyl group such as COO-, or CO
A similar effect can be obtained with the carbonyl group of .

発明の効果 以上のように、本発明により製作した金属酸化物および
該薄膜はきわめて高純度であり、エキシマレ−ザーを用
いることによって温和な条件で、しかも短時間で酸化物
皮膜を作製できるので、従来法に比べて大幅に省エネル
ギーとなり、生産性の向上、プロセスのコストダウンが
可能となり、工業的かつ実用的価値の大なるものである
Effects of the Invention As described above, the metal oxide and thin film produced according to the present invention have extremely high purity, and by using an excimer laser, the oxide film can be produced under mild conditions and in a short time. Compared to conventional methods, this method significantly saves energy, improves productivity, and reduces process costs, and has great industrial and practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエキシマレ−ザーによる金属酸化物および金属
酸化物薄膜の製造装置の概要図、第2図はxps測定に
よる結合エネルギー(Eb(100eV/div))−
強度(%)特性図で、aは反応前のアルミ基板、bは酸
化アニーリング後を示し、Cは酸化鉛部分の拡大図であ
る。 特許出願人  ニチコン株式会社
Fig. 1 is a schematic diagram of the production equipment for metal oxides and metal oxide thin films using excimer laser, and Fig. 2 is the binding energy (Eb (100 eV/div)) measured by XPS.
In the strength (%) characteristic diagram, a shows the aluminum substrate before reaction, b shows the state after oxidation annealing, and C shows an enlarged view of the lead oxide part. Patent applicant Nichicon Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)金属酸化物を作製するにあたり、金属有機塩のな
いし有機金属化合物M_mR_n(ただしM=Si、G
e、Sn、Pbの4b族元素、Cr、Mo、Wの6a族
元素、Mn、Tc、Reの7a族元素:R=CH_3、
C_2H_5、C_3H_7、C_4H_9などのアル
キル基、あるいはCH_3COO^−C_2H_5CO
O^−、C_3H_7COO^−、C_4H_9COO
^−などのカルのカルボキシル基、あるいはCOのカル
ボニル基:m、nは整数)に酸素雰囲気下でエキシマレ
−ザーを照射することを特徴とする、エキシマレ−ザー
による金属酸化物および金属酸化物薄膜の製造方法。
(1) When producing a metal oxide, a metal organic salt or an organometallic compound M_mR_n (where M=Si, G
Group 4b elements such as e, Sn, and Pb, Group 6a elements such as Cr, Mo, and W, Group 7a elements such as Mn, Tc, and Re: R=CH_3,
Alkyl groups such as C_2H_5, C_3H_7, C_4H_9, or CH_3COO^-C_2H_5CO
O^-, C_3H_7COO^-, C_4H_9COO
Metal oxides and metal oxide thin films produced by excimer laser, characterized by irradiating the carboxyl group of Cal such as ^- or the carbonyl group of CO (m and n are integers) with excimer laser in an oxygen atmosphere. manufacturing method.
(2)上記金属有機塩ないしは有機金属化合物を可溶性
溶媒に溶かし、あるいは液体のものはそのまま、該溶液
を基板上に分散塗布した後、酸素雰面気下でエキシマレ
−ザーを照射することを特徴とする特許請求の範囲第1
項記載のエキシマレ−ザーによる金属酸化物および金属
酸化物薄膜の製造方法。
(2) The metal organic salt or organometallic compound is dissolved in a soluble solvent, or in the case of a liquid solution, the solution is dispersed and coated on a substrate, and then irradiated with an excimer laser in an oxygen atmosphere. Claim No. 1
A method for producing metal oxides and metal oxide thin films using an excimer laser as described in 1.
JP63122895A 1988-05-19 1988-05-19 Method for producing metal oxide and metal oxide thin film by excimer laser Expired - Fee Related JP2759125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63122895A JP2759125B2 (en) 1988-05-19 1988-05-19 Method for producing metal oxide and metal oxide thin film by excimer laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63122895A JP2759125B2 (en) 1988-05-19 1988-05-19 Method for producing metal oxide and metal oxide thin film by excimer laser

Publications (2)

Publication Number Publication Date
JPH01294506A true JPH01294506A (en) 1989-11-28
JP2759125B2 JP2759125B2 (en) 1998-05-28

Family

ID=14847287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63122895A Expired - Fee Related JP2759125B2 (en) 1988-05-19 1988-05-19 Method for producing metal oxide and metal oxide thin film by excimer laser

Country Status (1)

Country Link
JP (1) JP2759125B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578128A (en) * 1991-09-19 1993-03-30 Agency Of Ind Science & Technol Production of piezoelectric ceramic thin film element
JP2001261346A (en) * 2000-03-21 2001-09-26 Zenhachi Okumi Method of producing oxide precursor and oxide
JP2004253680A (en) * 2003-02-21 2004-09-09 Hitachi Ltd Metal oxide precursor solution, precursor thin film, method for forming the thin film, and capacitor using it
WO2008018314A1 (en) * 2006-08-10 2008-02-14 National Institute Of Advanced Industrial Science And Technology Process for producing superconducting oxide material
JP2009072694A (en) * 2007-09-20 2009-04-09 Technical Research & Development Institute Ministry Of Defence High-density oxidation method and device for material
JP2011073912A (en) * 2009-09-30 2011-04-14 National Institute Of Advanced Industrial Science & Technology Method for forming nanostructure
US8716189B2 (en) * 2007-02-08 2014-05-06 National Institute Of Advanced Industrial Science And Technology Method of producing superconductive oxide material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148798A (en) * 1987-12-07 1989-06-12 Matsushita Electric Ind Co Ltd Production of superconducting thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148798A (en) * 1987-12-07 1989-06-12 Matsushita Electric Ind Co Ltd Production of superconducting thin film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578128A (en) * 1991-09-19 1993-03-30 Agency Of Ind Science & Technol Production of piezoelectric ceramic thin film element
JP2001261346A (en) * 2000-03-21 2001-09-26 Zenhachi Okumi Method of producing oxide precursor and oxide
JP2004253680A (en) * 2003-02-21 2004-09-09 Hitachi Ltd Metal oxide precursor solution, precursor thin film, method for forming the thin film, and capacitor using it
WO2008018314A1 (en) * 2006-08-10 2008-02-14 National Institute Of Advanced Industrial Science And Technology Process for producing superconducting oxide material
JP2008037726A (en) * 2006-08-10 2008-02-21 National Institute Of Advanced Industrial & Technology Process for producing superconducting oxide material
DE112007000115B4 (en) * 2006-08-10 2011-01-05 National Institute Of Advanced Industrial Science And Technology Method for producing oxide superconducting material
JP4729766B2 (en) * 2006-08-10 2011-07-20 独立行政法人産業技術総合研究所 Method for producing superconducting oxide material
US9096440B2 (en) 2006-08-10 2015-08-04 National Institute Of Advanced Industrial Science And Technology Method of producing superconductive oxide material
US8716189B2 (en) * 2007-02-08 2014-05-06 National Institute Of Advanced Industrial Science And Technology Method of producing superconductive oxide material
JP2009072694A (en) * 2007-09-20 2009-04-09 Technical Research & Development Institute Ministry Of Defence High-density oxidation method and device for material
JP2011073912A (en) * 2009-09-30 2011-04-14 National Institute Of Advanced Industrial Science & Technology Method for forming nanostructure

Also Published As

Publication number Publication date
JP2759125B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
US5429708A (en) Molecular layers covalently bonded to silicon surfaces
JP4125820B2 (en) Method for producing a catalyst for producing vinyl acetate
US20040191423A1 (en) Methods for the deposition of silver and silver oxide films and patterned films
JPH01294506A (en) Production of metallic oxide and thin film thereof with excimer laser
JP3293912B2 (en) Method of forming oxide thin film
JP2003024792A (en) PHOSPHATE PHOTOCATALYST CONTAINING METAL ION IN d10 AND d0 ELECTRON STATE
JPS58156594A (en) Preparation of hard coating film
JPH0691112B2 (en) Deposited film formation method
JP3846817B2 (en) Method for producing calcium phosphate coating
JP3446765B2 (en) Method and apparatus for producing oxide thin film
JPS594848B2 (en) Photoetching method using amorphous chalcogenide glass thin film
JPS632327A (en) Etching of fine pattern
JP3846182B2 (en) Composition for metal oxide thin film and method for producing patterned metal oxide thin film
JP3432013B2 (en) Method of forming oxide film
JPS6451326A (en) Production of superconducting material
JP2718092B2 (en) Ashing apparatus and method for manufacturing semiconductor device
JPH0394065A (en) Method and device for producing oxide thin film
JPH0821569B2 (en) Dry etching method
JPS6365077A (en) Laser cvd device
JPH06248455A (en) Production of zro2 film
JPH03240000A (en) Spectroscopic element and production thereof
JPH02194176A (en) Formation of thin oxide superconducting film
JPH08134654A (en) Formation of thin film of metallic compound and method for patterning same
JPH06199595A (en) Method for synthesizing diamond
JPH0660409B2 (en) Method of forming metal film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees