JPH0394065A - Method and device for producing oxide thin film - Google Patents

Method and device for producing oxide thin film

Info

Publication number
JPH0394065A
JPH0394065A JP23253089A JP23253089A JPH0394065A JP H0394065 A JPH0394065 A JP H0394065A JP 23253089 A JP23253089 A JP 23253089A JP 23253089 A JP23253089 A JP 23253089A JP H0394065 A JPH0394065 A JP H0394065A
Authority
JP
Japan
Prior art keywords
raw material
light
substrate
thin film
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23253089A
Other languages
Japanese (ja)
Inventor
Akira Ueno
明 上野
Yoshio Manabe
由雄 真鍋
Tsuneo Mitsuyu
常男 三露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23253089A priority Critical patent/JPH0394065A/en
Publication of JPH0394065A publication Critical patent/JPH0394065A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain various oxide thin films at low temp. and a high rate with good reproducibility by using an atomic oxygen exciting light source in addition to a raw material decomposing light source. CONSTITUTION:The raw material 20 contg. elemental oxygen is supplied into a vacuum vessel 10 from a raw material inlet 16b, and the raw material 19 contg. the elements constituting the oxide from a raw material inlet 16a. The raw materials 19 and 20 in the vessel 10 are irradiated with >=1 kind of light beam 17 having necessary decomposing energy from a light inlet window 15 and decomposed on the surface of a substrate 12. The decomposition product is irradiated with the light beam 18 having 297.2-636.4nm wavelength in the same way as before, and the generated atomic oxygen is excited.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光CVDを用いた酸化物薄膜の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing an oxide thin film using photo-CVD.

従来の技術 1980年頃から、光化学反応を使って薄膜を堆積させ
る光C V D 41  膜形或プロセスの低温化の要
求と相まって研究が活発に行なわれている。
BACKGROUND OF THE INVENTION Since around the 1980's, research has been actively conducted in conjunction with the demand for lower temperature processes for optical C V D 41 film formation, in which thin films are deposited using photochemical reactions.

特に 半導体分野などで各種酸化膜を低温で形或させる
必要が生じており、光CVDが注目されている。光CV
Dにより酸化物薄膜を製造する暇例えば有機金属と02
といったように複数の原料ガスを使用し 酸化される側
の元素を含む原料(この例で(よ 有機金属)の吸収波
長帯と酸素元素を含む原料(この例で(よ 02)の吸
収波長帯とがクロスオーバーする領域に波長を有する光
源を用いて各々の原料を分焦 反応させ、所望の酸化物
を堆積させる。
Particularly in the semiconductor field, there is a need to form various oxide films at low temperatures, and photo-CVD is attracting attention. optical CV
For example, organic metals and 02
By using multiple raw material gases, such as the absorption wavelength band of the raw material containing the element to be oxidized (in this example, (Y02)) and the absorption wavelength band of the raw material containing the oxygen element (in this example, (Y02)). Using a light source with a wavelength in the region where the

発明が解決しようとする課題 しかし 酸素元素を含む原料を単に分解することによっ
て生或させた原子状酸素○(”P)i;t,酸化される
側の元素を含む原料を分解することによって生戊させた
元素との反応性に乏しく膜形戊速度が極端に遅いという
課題があった 本発明(よ 多種多様の良質な酸化物薄膜を、従来挾術
に比べより低温の条イ/1で商辿で再現性がよい製造方
法と製造装置とを提供することを目的とする。
Problems to be Solved by the Invention However, atomic oxygen ○("P)i;t produced by simply decomposing a raw material containing an oxygen element; The problem with this invention was that the film formation rate was extremely slow due to poor reactivity with the elements being removed. The purpose of the present invention is to provide a manufacturing method and a manufacturing device that have good reproducibility in commercial operations.

課題を解決するための手段 本発明では前記課題を解決するために 基体表面に酸素
元素を含む原料A及び酸化物を構成する元素を含む原料
Bを供給しつつ、前記原料A及び前記原料Bを分解する
ために必要なエネルギを有する1種類以上の光と、 2
97.2〜636.4nm間に波長を有する光とを前記
基体表面または前記基体表面上部の前記原料A,  B
もしくは前記原料の分解生戒物に照射して酸化物薄膜を
製造する。
Means for Solving the Problems In the present invention, in order to solve the above problems, the raw material A and the raw material B are supplied while supplying the raw material A containing the oxygen element and the raw material B containing the elements constituting the oxide to the surface of the substrate. one or more types of light having the energy necessary to decompose; and 2
Light having a wavelength between 97.2 and 636.4 nm is applied to the substrate surface or the raw materials A and B on the substrate surface.
Alternatively, an oxide thin film is produced by irradiating the decomposed raw material of the raw material.

また 本発明では前記酸化物薄膜製造方法を実現するた
めに 真空権及び少なくとも前記真空槽を排気する排気
機構を有し さらに酸素元素を含む原料A及び酸化物を
構成する元素を含む原料Bを前記真空槽内に導入する原
料導入機楓 前記原料A,  Bを分解させるための1
種類以上の光源a、297.2〜636.4nm間に波
長を有する光源b、前記光源a,  bから発せられた
光を前記真空槽に導入する光導入機構、 膜を堆積させ
る基体の基体加熱機構を有する酸化物薄膜製造装置を提
供する。
In addition, in the present invention, in order to realize the method for producing an oxide thin film, a vacuum power and an exhaust mechanism for evacuating at least the vacuum chamber are provided, and the raw material A containing an oxygen element and the raw material B containing an element constituting the oxide are Raw material introduction machine Kaede introduced into the vacuum chamber 1 for decomposing the raw materials A and B
A light source a of at least one type, a light source b having a wavelength between 297.2 and 636.4 nm, a light introduction mechanism for introducing the light emitted from the light sources a and b into the vacuum chamber, and substrate heating of a substrate on which a film is deposited. Provided is an oxide thin film manufacturing apparatus having a mechanism.

作用 酸素元素を含む原料を分解させて生或した原子状酸素に
は 基底状態0 (”P )、基底状態より1.96e
V高いエネルギ準位の第1励起状態0(’D2)、O 
(’Da)のさらに2.22eV高い準位に2g2励起
状11jfio(’Ss)が存在する。これらの原子状
酸素の他の粒子との反応速度の順位Cヨ○(’D2) 
>o (’S++) >o (’P )であり、O (
3P )の反応速度を1とすると、およそO (’Da
)は106、○(’ S @)は10”である。よって
、効率的に酸化物を製造するためには多量にO (’D
2)を生或させればよいことになる。
Atomic oxygen produced by decomposing raw materials containing active oxygen elements has a ground state of 0 ("P"), and 1.96e from the ground state.
V the first excited state 0 ('D2) of the higher energy level, O
2g2 excited 11jfio ('Ss) exists at a level 2.22 eV higher than ('Da). Rank of reaction rate of these atomic oxygen with other particles Cyo○ ('D2)
>o ('S++) >o ('P ), and O (
If the reaction rate of 3P ) is 1, then approximately O ('Da
) is 106, and ○('S @) is 10". Therefore, in order to efficiently produce oxides, a large amount of O ('D
2) should be produced.

?ころ玄 一般に酸素元素を含む原料を光照射により分
解させて直接0 (’Da)を生或ずるには非常に短波
長の光源が必要で(02の場合、 133〜175nm
)、酸化される側の元素を含む原料の吸収波長がこの波
長に一致しない等の問題が生じる場合がある。また こ
の光は明らかに空気中で吸収されるた取 光の経路を真
空にしなければならず 装置的に困難が生じる場合が多
(1以上の理由から、本発明では原料を分解するための
光■源とは別に 分解によって生戒した○(”P)を○
(’ D2)に励起するための光源を用いる。
? In general, to directly produce 0 ('Da) by decomposing a raw material containing oxygen element by light irradiation, a light source with a very short wavelength is required (in the case of 02, it is 133 to 175 nm).
), problems may arise such as the absorption wavelength of the raw material containing the element to be oxidized does not match this wavelength. Also, this light is obviously absorbed in the air, so the path of the light must be created in a vacuum, which often creates difficulties in terms of equipment (for one or more reasons, in the present invention, the light path for decomposing the raw material is ■ Separately from the source, ○ (”P) that was recovered by decomposition is ○
('D2) using a light source for excitation.

第2図に示したように O (”P  )を○(’D2
)に励起するためには297.2〜636.4nmの波
長を有する光を照射すればよ1,4297.2nm以下
の波長の光源を用いるとO (”P )は0(’ S 
s)に励起され 逆に反応速度をか低下してしまう。こ
のように 本発明者らは297.2〜636.4nmの
波長を有する光を酸素元素を含む原料を光分解により生
或させたO (2F  )に照射して○(’D2)を生
戒させるという2段階の方法が酸素元素を含む原料に短
波長の光を照射して直接○(’D2)を生戒させる方法
より簡単かつ効率的な方法であることを見いだした 実施例 以下に具体的実施例を示し 本発明をより詳細に説明す
る。
As shown in Figure 2, O (”P ) is changed to ○('D2
) should be irradiated with light having a wavelength of 297.2 to 636.4 nm. If a light source with a wavelength of 1,4297.2 nm or less is used, O ("P ) becomes 0 (' S
s), which on the contrary slows down the reaction rate. In this way, the present inventors irradiated light with a wavelength of 297.2 to 636.4 nm to O (2F) produced by photodecomposition of a raw material containing oxygen element to produce ○('D2). The two-step method of irradiating short-wavelength light to the raw material containing oxygen element was found to be easier and more efficient than the method of directly causing ○ ('D2). The present invention will be explained in more detail by way of specific examples.

具体的実施例 第1図に本発明の酸化物薄膜製造装置の一実施例を示し
 この装置を用いた本発明の酸化物薄膜製造方法の一実
施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the oxide thin film production apparatus of the present invention, and an embodiment of the oxide thin film production method of the present invention using this apparatus will be described.

第1図において、 10は真空4t 11は真空ポンプ
、 12は基坂 13は基板ホルダ、 l4はヒー久 
l5は光導入it6a,bは原料導入口17はArFエ
キシマレーザ、 18はArレーザ、19は02、20
はTiCl4である。真空槽lOを真空ボンプ11によ
り10−’Torr程度に排気し 基板ホルダl3上に
設置した基板(MgO(100))12をヒータl4に
より350tに加熱し1,  その後、反応槽lO内に
ガス導入口16aよりTiCIa  20をガス導入口
16bより02 19を導入し 反応槽l内のガス圧を
6×10−’Torrにした(真空槽10内の分圧比は
TiCl4:02=1:2)。真空槽10内のTIC1
4分子と02分子は基板12表面上への吸着、脱離を繰
り返す。次いで、光導入窓l5からArFエキシマレー
ザ17光及びArレーザ18光を真空槽10内に導入し
 基板12表面に照射した(A r Fエキシマレーザ
17先の繰り返し周波数6 0 H z,  強度40
W/cm2 Arレーザ18光(連続光)の強度80W
/cm2、照射時間ともにlhour)。TiCInの
吸収波長帯は400nm以下であるたぬ 基板12表面
に吸着したTiC14分子へのArFエキシマレーザl
7光(波長193nm)の照射により以下に示すように
分解されて、金属T1が生或される。
In Fig. 1, 10 is a vacuum 4t, 11 is a vacuum pump, 12 is a base, 13 is a substrate holder, and l4 is a heater.
15 is a light introduction port 6a, b is a raw material inlet 17 is an ArF excimer laser, 18 is an Ar laser, 19 is 02, 20
is TiCl4. The vacuum chamber IO is evacuated to about 10-' Torr with a vacuum pump 11, and the substrate (MgO (100)) 12 placed on the substrate holder 13 is heated to 350 t with a heater 14. After that, gas is introduced into the reaction chamber IO. TiCIa 20 was introduced through the port 16a, and 0219 was introduced through the gas inlet 16b, and the gas pressure in the reaction tank 1 was set to 6×10 Torr (the partial pressure ratio in the vacuum tank 10 was TiCl4:02=1:2). TIC1 in vacuum chamber 10
The 4 molecules and the 02 molecules repeat adsorption and desorption onto the surface of the substrate 12. Next, ArF excimer laser 17 light and Ar laser 18 light were introduced into the vacuum chamber 10 through the light introduction window 15 and irradiated onto the surface of the substrate 12 (the repetition frequency of the ArF excimer laser 17 was 60 Hz, the intensity was 40
W/cm2 Ar laser 18 light (continuous light) intensity 80W
/cm2, irradiation time is lhour). The absorption wavelength band of TiCIn is 400 nm or less.
By irradiation with light (wavelength: 193 nm), the metal T1 is decomposed as shown below, and metal T1 is produced.

h ν1@3nl1 ↓ T’  i  C  I a  →T  i+2c  
Iaまた 02の吸収波長帯は2 4 0 nm以下で
あるために 02もArFエキシマレーザl7光により
以下に示すように分解されて原子状酸素○(”P)を生
戊される。
h ν1@3nl1 ↓ T' i C I a →T i+2c
Since the absorption wavelength band of Ia and 02 is 240 nm or less, 02 is also decomposed by the ArF excimer laser 17 light as shown below to generate atomic oxygen ○ ("P).

h νlQ3nm ↓ ○2→20 (3P ) この○(3P)はArレーザl8光(波長514nm)
により以下に示すように○(’D2)に励起される。
h νlQ3nm ↓ ○2→20 (3P) This ○(3P) is Ar laser l8 light (wavelength 514nm)
is excited to ○('D2) as shown below.

h ν614ns ↓ ○ (3P )→○ (’D2) この○(’D2)は金属Tiと容易に反応して以下に示
ずようにTiO2生或される。
h ν614ns ↓ ○ (3P)→○ ('D2) This ○ ('D2) easily reacts with metal Ti to generate TiO2 as shown below.

Ti+20  (’D2)  →T1 02このように
して、膜形戊時間1hourで膜厚2.5μmのTi○
2薄膜が基板12表面上のレーザ17、 18光が照射
された部分に形或できた この膜の結晶構造をX線回折
により調べたところ、第3図に示すごとく基板方位に強
く配向したアナターゼ型のTi○2であった 基板温度
を550℃とし 他の条件は同一で膜形或を行なったと
こ水 ルチル型のTiO2も形戒できtラな耘 ここで
は越板としてMg○(1 0 0)を用いた力<  S
i、サファイヤ、ガラス等他の基板を用いても結晶性の
良好なT102薄膜が形或でき1,  また 基板温度
は200℃以上で結晶性の良好なTi○2薄膜が形或で
き氾 また ここでは光源としてArFエキシマレーザとAr
レーザを用いた力文 前者は低圧水銀ランブ(波長18
5nm)等の光源を用いてもよく、後者i:LHe−N
eレーザ(633nm)等の光源をを用いてもよ鶏 また ここではTi○2薄膜形戒用の原料としてT i
 C l 4と02を用いた力交 前者はTi元素を含
む有機金属等他の原料を用いてもよく、後者はN20 
やC○2等を用いてもよ賎 その場合、用いた原料の吸
収波長に応じた光源を用いればよく、前者の吸収波長と
後者のそれが異なる場合には各々別々の光源を用いれば
よL〜 また ここでは酸化物薄膜の一例としてTi○2の形或
に次いて述べた力<  TiOやTinO6等他のチタ
ン酸化物やPb○、ZnO等の酸化糎PbTiOsや酸
化物超電導等の複合酸6化物も形戒でいることを確認し
tも  複合酸化物の場合3種類以上の原料を用いたた
吹 光源も各々の原料の吸収波長に応じた2種類以上の
光源とO (’Da)生或用の光源との併せて3種類以
上の光源を用いた −9− −10− 発明の効果 以」二のように 原料分解用の光源とは別に原子状酸素
励起用の光源を追加した本発明の酸化物薄膜の製造方法
及び製造装置によって、多種多様の良質な酸化物薄膜が
従来の方法に比べてより低温下の条件において高速かつ
再現性よく製造でき、本発明の工業的価値は極めて高(
Ti+20 ('D2) →T1 02 In this way, Ti○ with a film thickness of 2.5 μm is formed in a film forming time of 1 hour.
2 thin film was formed on the surface of the substrate 12 where the laser beams 17 and 18 were irradiated. The crystal structure of this film was examined by X-ray diffraction, and as shown in Figure 3, anatase was strongly oriented in the direction of the substrate. The substrate temperature was 550℃, and other conditions were the same. 0) using force < S
A T102 thin film with good crystallinity can be formed even if other substrates such as i, sapphire, or glass are used1, and a Ti2 thin film with good crystallinity can be formed at a substrate temperature of 200°C or higher. Now, we use ArF excimer laser and Ar as light sources.
The former uses a low-pressure mercury lamp (wavelength 18
5 nm) may be used, the latter i: LHe-N
A light source such as an e-laser (633 nm) can also be used. Here, Ti is used as a raw material for Ti○2 thin film.
Force exchange using C l 4 and 02 The former may use other raw materials such as organometallic containing Ti element, and the latter may use N20
In that case, it is sufficient to use a light source according to the absorption wavelength of the raw materials used. If the absorption wavelength of the former and the latter are different, separate light sources may be used for each. L ~ In addition, as an example of an oxide thin film, we will use the form of Ti○2 or the following force < other titanium oxides such as TiO and TinO6, oxides such as Pb○ and ZnO, composites such as PbTiOs and oxide superconductors. It was confirmed that the acid hexide also has the same shape.In the case of composite oxides, three or more types of raw materials are used.The light source is also O ('Da )Using three or more types of light sources in addition to the light source for raw material -9- -10- Effects of the invention As shown in 2. In addition to the light source for raw material decomposition, a light source for excitation of atomic oxygen is added. By means of the method and apparatus for producing oxide thin films of the present invention, a wide variety of high-quality oxide thin films can be produced at higher speed and with better reproducibility at lower temperatures than with conventional methods, and the industrial value of the present invention is is extremely high (
1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の酸化物薄膜製造装置の一実施例を説明
する概念ブロック阻 第2図は原子状酸素のエネルギ準
位を表した阻 第3図は本発明の一実施例として製造し
たTi○2薄膜のX線回折強度図である。 10・・・真空Fi.11・・・真空ポンプ、 l2・
・・基楓 13・・・基板ホルダ、 l4・・・ヒー久
 15・・・光導入?i3−  1 6 a−  b・
・・原料導入n  17・・・ArFエキシマレーザ光
 18・・・Arレーザ光 19・・・02、20・・
・TiCla
Fig. 1 shows a conceptual block diagram for explaining one embodiment of the oxide thin film manufacturing apparatus of the present invention. Fig. 2 shows a conceptual block diagram showing the energy level of atomic oxygen. It is an X-ray diffraction intensity diagram of a Ti○2 thin film. 10...Vacuum Fi. 11...Vacuum pump, l2.
...Moto Kaede 13...Substrate holder, l4...Hikyu 15...Light introduction? i3- 1 6 a- b・
...Raw material introduction n 17...ArF excimer laser light 18...Ar laser light 19...02, 20...
・TiCla

Claims (2)

【特許請求の範囲】[Claims] (1) 基体表面に酸素元素を含む原料A及び酸化物を
構成する元素を含む原料Bを供給しつつ、前記原料A及
び前記原料Bを分解するために必要なエネルギを有する
1種類以上の光と、297.2〜636.4nm間に波
長を有する光とを前記基体表面または前記基体表面上部
の前記原料A、Bもしくは前記原料A、Bの分解生成物
に照射することを特徴とする酸化物薄膜製造方法。
(1) One or more types of light having the energy necessary to decompose the raw material A and the raw material B while supplying the raw material A containing an oxygen element and the raw material B containing an element constituting an oxide to the surface of the substrate. and irradiating the substrate surface or the raw materials A, B or the decomposition products of the raw materials A, B on the substrate surface with light having a wavelength between 297.2 and 636.4 nm. Thin film manufacturing method.
(2) 真空槽及び少なくとも前記真空槽を排気する排
気機構を有し、さらに酸素元素を含む原料A及び酸化物
を構成する元素を含む原料Bを前記真空槽内に導入する
原料導入機構、前記原料A、Bを分解させるための1種
類以上の光源a、297.2〜636.4nm間に波長
を有する光源b、前記光源a、bから発せられた光を前
記真空槽に導入する光導入機構、膜を堆積させる基体の
基体加熱機構を有することを特徴とする酸化物薄膜製造
装置。
(2) A raw material introduction mechanism having a vacuum chamber and at least an exhaust mechanism for evacuating the vacuum chamber, and further introducing raw material A containing an oxygen element and raw material B containing an element constituting an oxide into the vacuum chamber; one or more types of light sources a for decomposing raw materials A and B; a light source b having a wavelength between 297.2 and 636.4 nm; light introduction for introducing light emitted from the light sources a and b into the vacuum chamber; 1. An oxide thin film manufacturing apparatus characterized by having a substrate heating mechanism for a substrate on which a film is deposited.
JP23253089A 1989-09-07 1989-09-07 Method and device for producing oxide thin film Pending JPH0394065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23253089A JPH0394065A (en) 1989-09-07 1989-09-07 Method and device for producing oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23253089A JPH0394065A (en) 1989-09-07 1989-09-07 Method and device for producing oxide thin film

Publications (1)

Publication Number Publication Date
JPH0394065A true JPH0394065A (en) 1991-04-18

Family

ID=16940783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23253089A Pending JPH0394065A (en) 1989-09-07 1989-09-07 Method and device for producing oxide thin film

Country Status (1)

Country Link
JP (1) JPH0394065A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044577A (en) * 2009-08-21 2011-03-03 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044577A (en) * 2009-08-21 2011-03-03 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US5154945A (en) Methods using lasers to produce deposition of diamond thin films on substrates
US4668528A (en) Method and apparatus for photodeposition of films on surfaces
US5308651A (en) Photochemical vapor deposition process
JPH01500444A (en) Photochemical vapor deposition method with increased oxide layer growth rate
JPH0394065A (en) Method and device for producing oxide thin film
JPH0421540A (en) Synthetic silica glass and production thereof
JPH01294506A (en) Production of metallic oxide and thin film thereof with excimer laser
JPH02298272A (en) Manufacture of oxide thin film and device therefor
JP3550658B2 (en) Method for producing titanium dioxide-based thin film with controlled crystal structure
JPH0351675B2 (en)
JPS60128264A (en) Formation of thin film
JPH02200782A (en) Formation of lead titanate thin film
JPH02194176A (en) Formation of thin oxide superconducting film
JP4590580B2 (en) Titanium oxide mixed type highly active photocatalytic thin film and method for producing the same
JP2003063892A (en) Method for periodically arranging titanium dioxide particle on sapphire
JPS62126628A (en) Manufacture of semiconductor device
JPS62126638A (en) Preprocessing method for semiconductor substrate
JPS6161665B2 (en)
JPH08134654A (en) Formation of thin film of metallic compound and method for patterning same
JPS63147314A (en) Cvd method
JPH1018040A (en) Production of carbon nitride and carbon nitride obtained by same method
JPS61251506A (en) Production of diamond powder
JPH07258851A (en) Method for patterning metal compound thin film
JPH0987848A (en) Production of bismuth layer ferroelectric thin film
JPS63312978A (en) Thin film forming device