JPH02298272A - Manufacture of oxide thin film and device therefor - Google Patents

Manufacture of oxide thin film and device therefor

Info

Publication number
JPH02298272A
JPH02298272A JP11897089A JP11897089A JPH02298272A JP H02298272 A JPH02298272 A JP H02298272A JP 11897089 A JP11897089 A JP 11897089A JP 11897089 A JP11897089 A JP 11897089A JP H02298272 A JPH02298272 A JP H02298272A
Authority
JP
Japan
Prior art keywords
substrate
thin film
gas
oxide thin
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11897089A
Other languages
Japanese (ja)
Inventor
Akira Ueno
明 上野
Tsuneo Mitsuyu
常男 三露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11897089A priority Critical patent/JPH02298272A/en
Publication of JPH02298272A publication Critical patent/JPH02298272A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To manufacture a great variety of good quality oxide thin films with high efficiency and good reproducibility by irradiating a gas on the surface of a substrate or above that with plural light beams of different wavelength while plural raw materials are fed onto the surface of the substrate. CONSTITUTION:The inside of a reaction vessel 11 is exhausted and a substrate 13 is heated by a heater 15. A gas 17a such as TiCl4 is introduced into the reaction vessel 11 from a gas introducing port 15 and a gas 17b such as O2 from a gas introducing port 16. For example, a KrF excimer laser beam 18a and an F2 excimer laser beam 18b of different wavelength are introduced into the reaction vessel 11 from a light beam introducing window 19 and the gas on the surface of the substrate 13 or directly above that is irradiated therewith. TiCl4 adsorbed on the substrate 13 is decomposed to form Ti, and O2 is decomposed to form atomic oxygen; they are brought into reaction to form a TiO2 thin film. By this method, the multi component oxide films of oxides and oxide superconductors in addition to TiO2 can be formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光CVDを用いた酸化物薄膜の製造方法及び製
造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method and apparatus for producing an oxide thin film using photo-CVD.

従来の技術 1980年頃から、光化学反応を使って薄膜を堆積させ
る光CVDは、膜形成プロセスの低温化の要求と相まっ
て研究が活発に行なわれている。
2. Description of the Related Art Since around 1980, optical CVD, which deposits thin films using photochemical reactions, has been actively researched in conjunction with the demand for lower temperatures in the film formation process.

特に、半導体分野などで各種酸化膜を低温で形成させる
必要が生じており、光CVDが注目されている。光CV
Dにより酸化物薄膜を製造する際、例えば有機金属と0
2といったように複数の原料ガスが使用され1通常、酸
化される側の元素を含む原料ガス(この例では、有機金
*)の吸収波長に応じて選択された単一の光源が用いら
れてきた。
In particular, in the semiconductor field, etc., there is a need to form various oxide films at low temperatures, and photo-CVD is attracting attention. optical CV
When producing an oxide thin film by D, for example, organic metal and O
Usually, a single light source is used, which is selected according to the absorption wavelength of the source gas containing the element to be oxidized (in this example, organic gold*). Ta.

発明が解決しようとする課題 しかし、単一の光源で吸収波長が大きく異なる原料ガス
を用いた場合、酸化される側の元素を含む原料ガスは効
率的に分解されるが、酸化させる側の原料ガス(上の例
では場合、02)はあまり分解されないことになる。酸
化反応を効率的に行なうためには、原子状酸素(特に、
励起状態の原子状酸素)を多量に生成させることが必要
であり、この場合、酸化させる側の原料ガスを多量に供
給するか、もしくは基体温度を高温にして酸化させる側
の原料ガスの分解を促進させるといった操作が必要とな
る。前者は非効率的であるし、後者はプロセスの低温化
という光CVDの特長を生かせない。以上の理由により
、単一の光源では使用できる原料ガスはできる限りその
吸収波長が近いものを選択する必要があり、このため、
原料ガスの種類が制約されるといった課題があった。
Problems to be Solved by the Invention However, when a single light source uses source gases with significantly different absorption wavelengths, the source gas containing the element to be oxidized is efficiently decomposed, but the source gas containing the element to be oxidized is The gas (in case 02 in the above example) will not be decomposed much. In order to carry out the oxidation reaction efficiently, atomic oxygen (especially
It is necessary to generate a large amount of oxidized atomic oxygen (excited state atomic oxygen), and in this case, either a large amount of the raw material gas to be oxidized is supplied, or the substrate temperature is raised to a high temperature to decompose the raw material gas to be oxidized. Operations such as promotion are required. The former is inefficient, and the latter cannot take advantage of the advantage of photoCVD, which is low process temperatures. For the above reasons, for a single light source, it is necessary to select raw material gases whose absorption wavelengths are as close as possible.
There was a problem in that the type of raw material gas was restricted.

本発明は、このような従来技術の課題を解決することを
目的とする。
The present invention aims to solve the problems of the prior art.

課題を解決するための手段 本発明は、基体表面に複数の原料ガスを供給しつつ、異
なる波長を有する複数の光を前記基体表面または前記基
体表面直上の前記ガスに照射して酸化物薄膜を製造する
方法と、この製造方法を実現するために、真空槽及び少
なくとも前記真空槽を排気する排気機構を有し、さらに
前記真空槽に導入する複数の原料の原料供給機構、前記
原料を分解または反応させるための光の複数の光源、前
記光を前記真空槽に導入する光導入機構、酸化物薄膜を
形成させる基体を支持する基体支持機構、前記基体の基
体加熱機構を有する酸化物薄膜の製造装置を提供しよう
とするものである。
Means for Solving the Problems The present invention provides a method for forming an oxide thin film by supplying a plurality of raw material gases to the surface of a substrate and irradiating a plurality of lights having different wavelengths to the surface of the substrate or to the gas immediately above the surface of the substrate. In order to realize this manufacturing method, the method includes a vacuum chamber and at least an exhaust mechanism for evacuating the vacuum chamber, a raw material supply mechanism for introducing a plurality of raw materials into the vacuum chamber, and a raw material supply mechanism for decomposing or decomposing the raw materials. Production of an oxide thin film having a plurality of light sources for causing a reaction, a light introduction mechanism for introducing the light into the vacuum chamber, a substrate support mechanism for supporting a substrate on which an oxide thin film is to be formed, and a substrate heating mechanism for the substrate. The aim is to provide equipment.

作用 本発明においては、原料ガスの吸収波長に応じて複数の
光源を用いることにより、使用できる原料ガスの種類は
多くなり、前記課題を一挙に解決できる。さらに、各々
の原料ガスの分解を光の強度や照射時間等の条件により
それぞれ独立して制御できるという特長もある。
Effect In the present invention, by using a plurality of light sources according to the absorption wavelength of the raw material gas, the types of usable raw material gases are increased, and the above-mentioned problems can be solved at once. Another advantage is that the decomposition of each source gas can be independently controlled by conditions such as light intensity and irradiation time.

実施例 以下に、本発明の実施例について図面を参照しながら説
明する。
Examples Examples of the present invention will be described below with reference to the drawings.

本発明の一実施例の製造装置を第1図に示し、本発明の
一実施例の製造方法を説明する。
A manufacturing apparatus according to an embodiment of the present invention is shown in FIG. 1, and a manufacturing method according to an embodiment of the present invention will be explained.

第1図において、11は反応槽、12は真空ポンプ、1
3は基板、14は基板ホルダ、15はヒータ、16..
18bはガス導入口、17.はTiC+4.17bはO
t、1B−はKrF−cキシマレーザ、18bはF2エ
キシマレーザ、19は光導入窓である。反応槽11を真
空ポンプ12により10”Torr程度に排気し、基板
ホルダ14上に設置した基板(MgO(100))13
をヒータ15により350℃に加熱した。その後、反応
槽11内にガス導入口15よりTlC1117gをガス
導入口16より0217bを導入し、反応槽11内のガ
ス圧を3X1 (1’To r rにした(反応槽11
内の分圧比はTiC1i:CL = 1 :2)。反応
槽11内のTlC14分子と02分子は基板13表面上
にごく短時間吸着し、再び脱離する。次いで、光導入窓
19からKrFエキシマレーザ18.光及びFeエキシ
マレーザ18b光を反応槽11内に導入し、基板13表
面に照射した(KrFエキシマレーザ18゜光の繰り返
し周波数60 HZN  強度40W/cm2、F2エ
キシマレーザ18b先の繰り返し周波数1008Z% 
 強度80W/cm”、照射時間ともに1hour)。
In FIG. 1, 11 is a reaction tank, 12 is a vacuum pump, 1
3 is a substrate, 14 is a substrate holder, 15 is a heater, 16. ..
18b is a gas inlet; 17. is TiC+4.17b is O
t, 1B- is a KrF-c excimer laser, 18b is an F2 excimer laser, and 19 is a light introduction window. The reaction tank 11 was evacuated to about 10” Torr by a vacuum pump 12, and a substrate (MgO (100)) 13 was placed on a substrate holder 14.
was heated to 350°C using a heater 15. Thereafter, 1117g of TLC was introduced into the reaction tank 11 through the gas inlet 15 and 0217b was introduced through the gas inlet 16, and the gas pressure inside the reaction tank 11 was set to 3X1 (1'Torr).
The partial pressure ratio within is TiC1i:CL = 1:2). TlC14 molecules and 02 molecules in the reaction tank 11 are adsorbed onto the surface of the substrate 13 for a very short time and then desorbed again. Next, a KrF excimer laser 18. Light and Fe excimer laser 18b light were introduced into the reaction tank 11 and irradiated onto the surface of the substrate 13 (KrF excimer laser 18° light repetition frequency 60 HZN intensity 40 W/cm2, F2 excimer laser 18b front repetition frequency 1008Z%)
Intensity: 80 W/cm'', irradiation time: 1 hour).

TlCl4の吸収波長のピーク値は250gm近辺であ
るため、基板13表面に吸着したTlC14分子へのK
rF:cキシマレーザ18.光(波長248nm)の照
射により以下に示すように分解されて、金属TIが生成
される。
Since the peak value of the absorption wavelength of TlCl4 is around 250 gm, the K to the TlC14 molecules adsorbed on the surface of the substrate 13 is
rF:c ximer laser 18. When irradiated with light (wavelength: 248 nm), it is decomposed as shown below, and metal TI is produced.

T+C+a→7’ I+ 2 CIa また、02の吸収波長帯は1100n 〜220nmに
であるために、F2 エキシマレーザ18.光(波長1
57nm)により以下に示すように分解されて原子状酸
素を生成される。
T+C+a→7' I+ 2 CIa Also, since the absorption wavelength band of 02 is from 1100n to 220nm, F2 excimer laser 18. Light (wavelength 1
57 nm) to produce atomic oxygen as shown below.

02→20 この原子状酸素が金属T1と反応して以下に示すように
T 102生成される。
02→20 This atomic oxygen reacts with metal T1 to generate T 102 as shown below.

TI+20→TlO2 このようにして膜形成時間1 hourで膜厚1.5μ
mのT IQ 2薄膜が、基板13表面上のレーザ18
a1.の光が照4′1・1された部分に形成できた。こ
の膜の結晶+f4造をX線回4j]により調べたところ
、第2図に示すごとく基板方位に強く配向したアナター
ゼ型のT 102であった。1人板温度を650°Cと
し、他の条件は同一・で膜形成を行なったところ、ルー
ダル型のTlO2も形成できた。
TI+20→TlO2 In this way, the film formation time is 1 hour, and the film thickness is 1.5μ.
A T IQ 2 thin film of m is applied to the laser 18 on the surface of the substrate 13.
a1. The light was formed in the area illuminated by 4'1.1. When the crystal +f4 structure of this film was examined using X-ray radiation (4j), it was found to be anatase-type T102 strongly oriented in the substrate direction, as shown in FIG. When film formation was carried out at a single plate temperature of 650°C and other conditions being the same, Rudal type TlO2 was also formed.

なお、ここeは基板としてMg0(100)を用いたが
、Sl、サファイヤ、ガラス等信の基板を用いても結晶
性の良好なTlO2薄膜が形成できた。
Although Mg0 (100) was used as the substrate in e here, a TlO2 thin film with good crystallinity could also be formed using a substrate made of thin film such as Sl, sapphire, or glass.

また、基板温度は200°C以」−で結晶性の良好なT
lO2薄膜が形成できた。
In addition, when the substrate temperature is 200°C or higher, T
A lO2 thin film was formed.

また、ここでは光源とし°’CK r l’;’エキシ
マレーザとF2′11−1シマレーザを用いたが、前者
はArレーザの第2高調波(波長257nm)や低圧水
銀ランプ(波長25Jnm)等の他の光源を用いてもよ
く、後者は、低圧水銀ランプ(波長185nIn)等を
用いてもよいが、F2 エキシマレーザは02の吸収波
長のピーク値により近いのでO1!分解用光諒としてよ
り有効である。
In addition, here we used an excimer laser and an F2'11-1 simmer laser as light sources, but the former uses the second harmonic of an Ar laser (wavelength 257 nm), a low-pressure mercury lamp (wavelength 25 Jnm), etc. Other light sources may be used, and the latter may be a low-pressure mercury lamp (wavelength: 185nIn), but since the F2 excimer laser is closer to the peak absorption wavelength of O2, O1! It is more effective as a light for decomposition.

また、ここではTlO2薄膜形成用の原料とじてTlC
14と02を用いたが、前者はT1元素を含む有機金属
等地の原料を用いてもよく、後者はN 20やCO2等
を用いてもよい。その場合、用いた原木1の吸収波長に
応じた光源を用いればよい。
In addition, here, TlC is used as a raw material for forming TlO2 thin film.
14 and 02 were used, however, the former may use an organometallic raw material containing the T1 element, and the latter may use N20, CO2, etc. In that case, a light source may be used that corresponds to the absorption wavelength of the log 1 used.

また、ここでは酸化物薄膜の一例としてT 102の形
成に次いて述べたが、T 10やT +30 a等地の
チタン酸化物やPbO,ZnO等の酸化物、PbTlO
3や酸化物超電導等の複合酸化物も形成出来ることを確
認し、た。複合酸化物の場合3種類以1′の原料を用い
たため、光源も各々の原料の吸収波長に合わせて2種類
以1.の光源を用いた。
In addition, although the formation of T 102 was described here as an example of an oxide thin film, titanium oxides such as T 10 and T +30a, oxides such as PbO and ZnO, and PbTlO
It was confirmed that composite oxides such as 3 and oxide superconductors could also be formed. In the case of composite oxides, three or more types of raw materials were used, so two or more types of light sources were used depending on the absorption wavelength of each raw material. A light source was used.

発明の効果 息子のように、原料の吸収波長に応じた複数の光源を用
いた本発明の酸化物薄膜の製造力性及び製造装置によっ
て、多種多様の良質な酸化物薄膜が原料の制限なく高効
率かつ再現性よく製造でき、本発明の工業的価値は極め
て高い。
Effects of the Invention Like my son, the ability to manufacture oxide thin films and the manufacturing equipment of the present invention using multiple light sources according to the absorption wavelength of the raw materials makes it possible to produce a wide variety of high-quality oxide thin films without any limitations on raw materials. It can be produced efficiently and reproducibly, and the industrial value of the present invention is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の酸化物薄膜の製造装[Nの1実施例を
示す略示図、第2図は同実施例において製造したT;0
2薄膜のX線回折図である。 1t−−@反応槽、12番・会真空ポンプ、13壷・拳
基板、 14拳・拳基板ホルダ、 15・m−ヒータ、
1 (3,,1(3b−・・ガス導入口、17゜”  
”  ’  T  lc  +4 、17b”  ” 
 ”Os   、18.”  ”  ”KrFエキシマ
レーザ、18 b@ 會@ F 2 エキシマレーザ、
 19番骨 ・光導入窓。 代理人の氏名 弁理士 栗野重孝 はか1名第1図 KrFI干ンマレープ′ N2rl!J
FIG. 1 is a schematic diagram showing one embodiment of the production apparatus for the oxide thin film of the present invention [N], and FIG.
2 is an X-ray diffraction diagram of a thin film. 1t--@Reaction tank, No. 12 vacuum pump, 13 pot/fist board, 14 fist/fist board holder, 15/m-heater,
1 (3,,1(3b-...Gas inlet, 17゜"
"' T lc +4, 17b""
"Os,18.""KrF excimer laser, 18 b@kai@F2 excimer laser,
Bone 19 - Light introduction window. Name of agent: Patent attorney Shigetaka Kurino (1 person) J

Claims (4)

【特許請求の範囲】[Claims] (1)基体表面に複数の原料ガスを供給しつつ、異なる
波長を有する複数の光を前記基体表面または前記基体表
面直上の前記原料ガスに照射することを特徴とする酸化
物薄膜の製造方法。
(1) A method for producing an oxide thin film, which comprises supplying a plurality of source gases to the substrate surface and irradiating the substrate surface or the source gas directly above the substrate surface with a plurality of lights having different wavelengths.
(2)複数の光のうち少なくとも1つは100nmから
220nmの範囲に波長を有する光であることを特徴と
する請求項1記載の酸化物薄膜の製造方法。
(2) The method for producing an oxide thin film according to claim 1, wherein at least one of the plurality of lights has a wavelength in the range of 100 nm to 220 nm.
(3)100nmから220nmの範囲に波長を有する
光としてF_2エキシマレーザ光を用いたことを特徴と
する請求項2記載の酸化物薄膜の製造方法。
(3) The method for manufacturing an oxide thin film according to claim 2, characterized in that F_2 excimer laser light is used as the light having a wavelength in the range of 100 nm to 220 nm.
(4)真空槽及び少なくとも前記真空槽を排気する排気
機構を有し、さらに前記真空槽に導入する複数の原料の
原料供給機構、前記原料を分解または反応させるための
光の複数の光源、前記光を前記真空槽に導入する光導入
機構、酸化物薄膜を形成させる基体を支持する基体支持
機構、前記基体の基体加熱機構を有することを特徴とす
る酸化物薄膜の製造装置。
(4) a vacuum chamber and at least an exhaust mechanism for evacuating the vacuum chamber, a raw material supply mechanism for a plurality of raw materials to be introduced into the vacuum chamber, a plurality of light sources for decomposing or reacting the raw materials; An apparatus for producing an oxide thin film, comprising a light introduction mechanism for introducing light into the vacuum chamber, a substrate support mechanism for supporting a substrate on which an oxide thin film is to be formed, and a substrate heating mechanism for the substrate.
JP11897089A 1989-05-12 1989-05-12 Manufacture of oxide thin film and device therefor Pending JPH02298272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11897089A JPH02298272A (en) 1989-05-12 1989-05-12 Manufacture of oxide thin film and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11897089A JPH02298272A (en) 1989-05-12 1989-05-12 Manufacture of oxide thin film and device therefor

Publications (1)

Publication Number Publication Date
JPH02298272A true JPH02298272A (en) 1990-12-10

Family

ID=14749790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11897089A Pending JPH02298272A (en) 1989-05-12 1989-05-12 Manufacture of oxide thin film and device therefor

Country Status (1)

Country Link
JP (1) JPH02298272A (en)

Similar Documents

Publication Publication Date Title
JPH0471575B2 (en)
JPH01244623A (en) Manufacture of oxide film
US4668528A (en) Method and apparatus for photodeposition of films on surfaces
JPS5982732A (en) Manufacture for semiconductor device
JPH02298272A (en) Manufacture of oxide thin film and device therefor
JPS60128264A (en) Formation of thin film
JPH0394065A (en) Method and device for producing oxide thin film
JPH0351675B2 (en)
JPS61216449A (en) Method and apparatus for forming pattern thin-film
JPH1018040A (en) Production of carbon nitride and carbon nitride obtained by same method
JPS60241219A (en) Method for forming thin film by utilizing laser
JP2789922B2 (en) Method of forming gold film by CVD method
JPH02194176A (en) Formation of thin oxide superconducting film
JP2002206164A (en) Method for manufacturing titanium-dioxide-type thin film having controlled crystal structure
JPH0987848A (en) Production of bismuth layer ferroelectric thin film
JPS61251506A (en) Production of diamond powder
JPS61119028A (en) Photo-chemical vapor deposition equipment
JPS6118122A (en) Semiconductor manufacturing apparatus
JP2606063B2 (en) Method of forming gold film with organic gold complex
JPH04372126A (en) Thin film formation
JPH02220436A (en) Dry etching
JPH03159237A (en) Cleaning device
JPS62126638A (en) Preprocessing method for semiconductor substrate
JPS6153734A (en) Formation of silicon nitride thin film and apparatus for the same
JPS6128443A (en) Photochemical gaseous phase growing apparatus