JPS60128264A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPS60128264A
JPS60128264A JP23551983A JP23551983A JPS60128264A JP S60128264 A JPS60128264 A JP S60128264A JP 23551983 A JP23551983 A JP 23551983A JP 23551983 A JP23551983 A JP 23551983A JP S60128264 A JPS60128264 A JP S60128264A
Authority
JP
Japan
Prior art keywords
light
substrate
thin film
irradiated
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23551983A
Other languages
Japanese (ja)
Inventor
Shunji Kishida
岸田 俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP23551983A priority Critical patent/JPS60128264A/en
Publication of JPS60128264A publication Critical patent/JPS60128264A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent unnecessary atoms of a decomposition product from entering a deposited thin film as an impurity when a gaseous compound is decomposed by irradiating light to form a thin film of a specified substance on the surface of a substrate, by irradiating other light which is absorbed in the unnecessary atoms. CONSTITUTION:A substrate 1 is placed in a deposition chamber 2, and a gaseous mixture of gaseous Mo(CO)3 with Ar, He or other gas is fed to the chamber 2 from a gas feeding source 11. At the same time, ultraviolet rays are irradiated from the 1st light source 4 to decompose the Mo(CO)3 into Mo and CO. This Mo forms a thin film 5 on the substrate 1. When light of specified wavelengths emitted from the 2nd light source 7 is irradiated, the CO moves lively and leaves the Mo deposition region, so it does not enter a thin Mo film, and a thin Mo film 5 of high purity is obtd.

Description

【発明の詳細な説明】 本発明は化合物分子の光解離を利用した薄膜形成方法に
関する〇 従来、光利用の薄膜形成方法として、堆積させる原子を
含む化合物の分子に基板をさらし、その分子の光解離を
生せしめる波長の光を基板に照射して、その基板上の光
の照射部分にその原子を含む堆積膜を生せしめる方法が
知られている。
Detailed Description of the Invention The present invention relates to a method for forming a thin film using photodissociation of compound molecules. Conventionally, as a method for forming a thin film using light, a substrate is exposed to molecules of a compound containing atoms to be deposited, and the molecules are exposed to light. A method is known in which a substrate is irradiated with light having a wavelength that causes dissociation, and a deposited film containing the atoms is formed on the irradiated portion of the substrate.

その際、堆積速度や、堆積の局在性の向上のために光源
としてレーザを用いることが多くなってきた。しかしこ
の場合、一般に堆積膜に不純物を混することが多く、膜
質の点で問題となっている。
At that time, lasers are increasingly being used as light sources in order to improve the deposition rate and localization of deposition. However, in this case, impurities are generally mixed into the deposited film, which poses a problem in terms of film quality.

例えば、有機金属化合物気体から金属を析出、堆積させ
る場合、堆積膜の組成分析からは炭素(C)や酸素(0
)がかなシの濃度で検出され、堆積金属膜の物理的特性
あるいは化学的特性が純金属膜により期待される特性か
らはほど遠い場合が少くない。
For example, when a metal is precipitated and deposited from an organometallic compound gas, compositional analysis of the deposited film reveals that carbon (C) and oxygen (0
) are detected at modest concentrations, and the physical or chemical properties of the deposited metal film are often far from those expected of a pure metal film.

具体的にはLSIの配線や電極用の金属として重要なモ
リブデン(MO)’e堆積させる場合、カルボニル化合
物であるMo(Co)6の蒸気を前記の化合物として用
い、光源としてはA、rレーザの第2高調波やエキシマ
−レーザのごとき紫外光レーザを照射して、光解離を生
せしめる方法が知られているが、多い場合には10%を
越える不純物が堆積膜中に検出されることがある。この
原因としては、大別して、化合物ガス中の不純物ガスが
堆積膜に混入するケース、基板に吸着していた不純物が
混入するケース、化合物の光解離の際に一旦金属原子か
ら離脱した原子団が再び吸着によって、ないしは化合物
として堆積膜に混入するケース、03つの場合がある。
Specifically, when depositing molybdenum (MO), which is important as a metal for LSI wiring and electrodes, vapor of Mo(Co)6, which is a carbonyl compound, is used as the compound, and A and R lasers are used as the light source. A method is known in which photodissociation is caused by irradiation with the second harmonic of or an ultraviolet laser such as an excimer laser, but in many cases more than 10% of impurities are detected in the deposited film. There is. The causes of this can be roughly divided into cases where impurity gas in the compound gas mixes into the deposited film, cases where impurities adsorbed on the substrate mix, and cases where atomic groups that have been separated from metal atoms during photodissociation of the compound mix. There are three cases in which the substance is mixed into the deposited film by adsorption or as a compound.

このうち前の2つのケースについては、それぞれ、原料
ガスの高純度化と、基板洗浄により対処することができ
るが、第3のケースについては、従来有効な対策が打た
れないでいたうえ、不純物混入の有力な原因とし、て推
定されている。
The first two cases can be dealt with by increasing the purity of the raw material gas and cleaning the substrate, respectively, but in the third case, no effective measures have been taken to date, and impurity It is assumed that this is a strong cause of contamination.

本発明の目的は、この第3の原因を除去して、純度の高
い堆積膜を得ることにある。
An object of the present invention is to eliminate this third cause and obtain a deposited film with high purity.

本発明は、化合物の気体にさらされた基板上に、前記化
、金物全光解離せしめる波長の第1の光を照射し、前記
基板上の前記光の照射部分に前記光解離による堆積膜を
形成する薄膜形成方法において、前記化合物から前記光
解離によ部分離し、かつ前記堆積膜への堆積には寄与せ
しめない原子団が吸収する第2の光を、前記第1の光と
同時に前記照射部分に照射することを特徴としている。
The present invention irradiates a substrate exposed to a compound gas with a first light having a wavelength that causes total photodissociation of the metal, and deposits a deposited film by the photodissociation on a portion of the substrate irradiated with the light. In the method for forming a thin film, the second light absorbed by an atomic group that is separated from the compound by the photodissociation and does not contribute to deposition on the deposited film is irradiated simultaneously with the first light. It is characterized by irradiating the area.

以下図面を用いて、本発明による薄膜形成方法を具体的
に説明する〇 図は、本発明に基づく薄膜堆積装置の一実施例の概念図
である。基板]が堆積室2の中に装着されている。堆積
用の光は堆積室2の窓を兼ねるレンズ3全通して基板l
l上に集光される。原料ガス供給系11からコック12
を通してMo(Co)sガスと、 ArやHeのごとき
稀ガスであるバッファーガスとが供給される。このとき
堆積室2の排気に供されるコック13が而いた、いわゆ
るフローの状態で動作させても良いし、閉じた刺じ切シ
の状態でも良い。次いでNo(CO)60光解敵用の第
1の光源4であるArレーザの第2高調波発生装置から
の紫外光を基板に照射すると、基板上に局所的なMoの
薄膜5〃凡形成される。このとき本発明ではさらに、合
波器6を介して別の第2の光源7からの光も同時に基板
1上の堆積部分を照射するこの場合、Mo(CO)eF
i光解離によp MoとCOガスに分解するので、第2
の光源7としては、00分子の吸収する波長の光を放射
するもの、具体的には波長する、波長4.7μm付近の
波長可変光臨を用いる〇具体的には、波長1.06μm
のYAGレーザ光を基本波としたLiNbO5結晶によ
るパラメトリック発振器、もしくは、2波長発振アレキ
サンドライトレーザや2波長発振色累レーザや色素レー
ザ光とその励起光等の2波長光源とLiNbO3等を組
み合わせた差周波発生器が用いうる〇 又、Mo堆積用の別の化合物であるビスベンゼンモリブ
デンMo(CaHa)t k用いる場合、第2の光源7
としては、ベンゼンC,H,の吸収する波長3.26μ
m、6.75μm、9.64μm等の光を出射する同様
の光源を用いれば良い〇 以上、本発明によって第2の光を同時に照射することに
よシ、不要の分子等の運動が活発になシ、この不要の分
子等が堆積領域からすみやかに離脱するため、得られた
局所的な金属のN膜5の中の不純物が大幅に下がシ、膜
質の改善は顕著でありr 0 なお、第2の光は多くの場合基板1や堆積した薄膜5に
も吸収されるので、全9強い照度で照射すると熱効果に
より堆積面積の拡大をもたらし微細パターンの形成がで
きなくなるOそこで適当な照度で照射することが大切で
ある0 以上、本発明による薄膜形成法を適用した一実施例を説
明したが、本発明の趣旨を逸脱しない範囲で、いくつか
の変形が可能なことは言うまでもないO 例えば、第2の光は、第1の光源4からの光と同軸上に
配置する必要はなく、基板1の上の薄膜5の部分を同時
に照射すれば良い。また基板1の吸収がなければ一方、
もしくけ両方の光を基板1を逆して裏側から照射しても
良い0 また、本実施例では金属堆積を例にとって説明したが、
本発明は半導体や誘電体の堆積にも適用可能なことは言
うまでもない。
The thin film forming method according to the present invention will be specifically explained below with reference to the drawings. Figure ○ is a conceptual diagram of one embodiment of the thin film deposition apparatus based on the present invention. A substrate] is mounted in the deposition chamber 2. The light for deposition passes through the lens 3 which also serves as the window of the deposition chamber 2, and the substrate l.
The light is focused on l. From the raw material gas supply system 11 to the cock 12
Mo(Co)s gas and buffer gas, which is a rare gas such as Ar or He, are supplied through the tube. At this time, it may be operated in a so-called flow state with a cock 13 provided for evacuation of the deposition chamber 2, or it may be operated in a closed state. Next, when the substrate is irradiated with ultraviolet light from the second harmonic generator of an Ar laser, which is the first light source 4 for No(CO)60 photolysis, a local Mo thin film 5 is formed on the substrate. be done. At this time, in the present invention, the deposited portion on the substrate 1 is also irradiated with light from another second light source 7 via the multiplexer 6. In this case, Mo(CO)eF
Since it decomposes into p Mo and CO gas by photodissociation, the second
As the light source 7, we use one that emits light with a wavelength that is absorbed by molecules, specifically, a variable wavelength light source with a wavelength of around 4.7 μm.
A parametric oscillator using a LiNbO5 crystal with YAG laser light as the fundamental wave, or a difference frequency oscillator that combines a two-wavelength light source such as a two-wavelength alexandrite laser, a two-wavelength chromatic laser, a dye laser light and its excitation light, and LiNbO3, etc. A second light source 7 can also be used if another compound for Mo deposition, bisbenzene molybdenum Mo(CaHa), is used.
As, the wavelength absorbed by benzene C, H, 3.26μ
It is sufficient to use a similar light source that emits light of m, 6.75 μm, 9.64 μm, etc. As described above, by simultaneously irradiating the second light according to the present invention, the movement of unnecessary molecules etc. is activated. However, since these unnecessary molecules quickly leave the deposition region, the impurities in the obtained local metallic N film 5 are significantly reduced, and the film quality is significantly improved. In many cases, the second light is also absorbed by the substrate 1 and the deposited thin film 5, so if it is irradiated with a strong illumination intensity, the deposition area will expand due to the thermal effect, making it impossible to form a fine pattern. It is important to irradiate at a certain illumination intensity.0 Although one embodiment in which the thin film forming method according to the present invention is applied has been described above, it goes without saying that several modifications are possible without departing from the spirit of the present invention. O For example, the second light does not need to be placed coaxially with the light from the first light source 4, and it is sufficient to irradiate the thin film 5 on the substrate 1 at the same time. On the other hand, if there is no absorption by the substrate 1,
Alternatively, both lights may be irradiated from the back side by turning the substrate 1 upside down.Also, in this embodiment, metal deposition was explained as an example.
It goes without saying that the present invention is also applicable to the deposition of semiconductors and dielectrics.

【図面の簡単な説明】[Brief explanation of the drawing]

図線本発明に基づく薄膜形成装置の一実施例の概念図で
あり、各構成要素は、 l・・・基板、2・・・堆積室、3・・・レンズ、4・
・・第1の光源、訃・・薄膜、6・・・合波器、7・・
・81.52の光源、11・・・原料ガス供給系、12
・・・コック、I3・・・排気に供されるコック、 である。
Fig. 1 is a conceptual diagram of an embodiment of a thin film forming apparatus based on the present invention, and each component is as follows: 1...Substrate, 2...Deposition chamber, 3...Lens, 4...
・First light source, ・Thin film, 6... Multiplexer, 7...
・81.52 light source, 11... Raw material gas supply system, 12
...Cock, I3...Cock used for exhaust.

Claims (1)

【特許請求の範囲】[Claims] 化合物の気体にさらされた基板上に、前記化合物を光解
離せしめる波長の第1の光を照射し、前記基板上の前記
光の照射部分に前記光解離による堆積膜を形成する薄膜
形成方法において、前記化合物から前記光解離により分
離し、かつ前記堆積膜への堆積には寄与せしめない原子
団が吸収する第2の光を、前記第1の光と同時に前記照
射部分に照射すること’t%徴とする薄膜形成方法〇
In a thin film forming method, a substrate exposed to a compound gas is irradiated with first light having a wavelength that photodissociates the compound, and a deposited film is formed by the photodissociation on a portion of the substrate irradiated with the light. , simultaneously irradiating the irradiated portion with a second light that is absorbed by an atomic group that is separated from the compound by the photodissociation and does not contribute to the deposition on the deposited film; Thin film formation method with percentage characteristics〇
JP23551983A 1983-12-14 1983-12-14 Formation of thin film Pending JPS60128264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23551983A JPS60128264A (en) 1983-12-14 1983-12-14 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23551983A JPS60128264A (en) 1983-12-14 1983-12-14 Formation of thin film

Publications (1)

Publication Number Publication Date
JPS60128264A true JPS60128264A (en) 1985-07-09

Family

ID=16987177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23551983A Pending JPS60128264A (en) 1983-12-14 1983-12-14 Formation of thin film

Country Status (1)

Country Link
JP (1) JPS60128264A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990007390A1 (en) * 1988-12-27 1990-07-12 Symetrix Corporation Methods and apparatus for material deposition
US5138520A (en) * 1988-12-27 1992-08-11 Symetrix Corporation Methods and apparatus for material deposition
US5223039A (en) * 1991-04-02 1993-06-29 Canon Kabushiki Kaisha Illuminating apparatus and photo-excited process apparatus using same
US5614252A (en) * 1988-12-27 1997-03-25 Symetrix Corporation Method of fabricating barium strontium titanate
US5962085A (en) * 1991-02-25 1999-10-05 Symetrix Corporation Misted precursor deposition apparatus and method with improved mist and mist flow
US5965219A (en) * 1988-12-27 1999-10-12 Symetrix Corporation Misted deposition method with applied UV radiation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990007390A1 (en) * 1988-12-27 1990-07-12 Symetrix Corporation Methods and apparatus for material deposition
US5138520A (en) * 1988-12-27 1992-08-11 Symetrix Corporation Methods and apparatus for material deposition
US5614252A (en) * 1988-12-27 1997-03-25 Symetrix Corporation Method of fabricating barium strontium titanate
US5965219A (en) * 1988-12-27 1999-10-12 Symetrix Corporation Misted deposition method with applied UV radiation
US5962085A (en) * 1991-02-25 1999-10-05 Symetrix Corporation Misted precursor deposition apparatus and method with improved mist and mist flow
US5223039A (en) * 1991-04-02 1993-06-29 Canon Kabushiki Kaisha Illuminating apparatus and photo-excited process apparatus using same

Similar Documents

Publication Publication Date Title
JPS6218035A (en) Etching method
Donnelly et al. Excimer laser induced deposition of InP and indium‐oxide films
JPS60128264A (en) Formation of thin film
Bu et al. Nitridation of GaAs single crystal surfaces using hydrazoic acid and 308 nm photon beams
JPH0351675B2 (en)
Crozet et al. The A2E–X2A1 system of CaOCH3
JPS595621A (en) Forming method for thin-film
Larciprete Photoprocesses in organometallics
JPS59208065A (en) Depositing method of metal by laser
JPS63288993A (en) Method for synthesizing diamond in gaseous phase
RU1793335C (en) Method of studying interaction of monatomic oxygen with surface of material
JP2789922B2 (en) Method of forming gold film by CVD method
JPH01273687A (en) Decomposition/removing apparatus
JP2841694B2 (en) Photo CVD method
JPS6365077A (en) Laser cvd device
JPS5961919A (en) Manufacture of thin film
JP2840419B2 (en) Light treatment method and light treatment device
JPH02298272A (en) Manufacture of oxide thin film and device therefor
Roop The Photochemistry of Methyl Halides Adsorbed on Pt (111) B. Roop, SA Costello, Z.-M. Liu, and JM White Department of Chemistry, University of Texas, Austin, TX 78712, USA
JP3024712B2 (en) Al-on-based composite material and method for synthesizing the same
JPH03166376A (en) Laser cvd method
JPS63112497A (en) Photochemical synthetic method for diamond
JPS6118122A (en) Semiconductor manufacturing apparatus
JPS6229131A (en) Thin film formation
JPS6345377A (en) Film forming device