JPS6118122A - Semiconductor manufacturing apparatus - Google Patents

Semiconductor manufacturing apparatus

Info

Publication number
JPS6118122A
JPS6118122A JP13714284A JP13714284A JPS6118122A JP S6118122 A JPS6118122 A JP S6118122A JP 13714284 A JP13714284 A JP 13714284A JP 13714284 A JP13714284 A JP 13714284A JP S6118122 A JPS6118122 A JP S6118122A
Authority
JP
Japan
Prior art keywords
hydrogen
substance
film
semiconductor manufacturing
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13714284A
Other languages
Japanese (ja)
Inventor
Hidekazu Okudaira
奥平 秀和
Akira Shintani
新谷 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13714284A priority Critical patent/JPS6118122A/en
Publication of JPS6118122A publication Critical patent/JPS6118122A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To reduce impurity mixing into a film, and to provide a high quality thin film, by introducing another substance reacting with the imprity when forming the film under a reduced pressure condition. CONSTITUTION:When an Si thin film is formed with an optical CVD method using a raw material gas of Si2H6, hydrogen is introduced into the vacuum vessel 5 from a hydrogen gas system 11, and active hydrogen is then produced by irradiating the interior of the vacuum vessel 5, using a light source 3 of a hydrogen discharge lamp with such a wavelength that hydrogen molecules can absorb light to decompose into atoms. In this state, ArF excimer laser light from an optical source 1 which is shaped into wide planar light by an optical system 2, is introduced into the vicinity of the entire surface of a wafer, while Si2H6 gas is introduced from a raw material gas system 10. The Si2H6 gas absorbs the ArF excimer laser light and is decomposed, forming an Si thin film on the substrate 6. Since oxygen remaining in the vessel would couple with active hydrogen atoms and is exhaused out of the vessel 5 by means of a vacuum exhausting system 8, oxygen in the resulted film can be reduced to about 1/20.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体製造装置に係り、特にLSI用の不純
物の少ない高品質半導体材料の製造に好適な半導体製造
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor manufacturing apparatus, and particularly to a semiconductor manufacturing apparatus suitable for manufacturing high quality semiconductor materials with few impurities for LSI.

〔発明の背景〕[Background of the invention]

ArF (波長193 n m)やKrF (249n
m)のエキシマレーザを光源に使った光CVDの報告が
、Jppl、Phys、Lett、旦183 (198
2)(by、R,lf、Andreatta at a
l、)にあり、1a#の領域に多結晶Si薄膜を、Si
H4を原料ガスとして形成している。しかし、真空紫外
ランプを使った光CVDでは、膜中に大量の酸素が混入
してしまった。この原因は、真空紫外ランプを使った場
合の膜形成速度がエキシマレーザを使った場合に比べて
遅いため(1/1000程度)に酸素の混入が顕著にな
る(つまり、気相中で光子吸収により生成される励起S
iH4分子の密度が低くなり、真空容器内に残留する酸
素が無視できなくなる)ものと考えられる。
ArF (wavelength 193 nm) and KrF (249 nm)
JPPL, Phys, Lett, Dan 183 (198
2) (by, R, lf, Andreatta at a
), a polycrystalline Si thin film is placed in the region 1a#, and a Si
It is formed using H4 as a raw material gas. However, in optical CVD using a vacuum ultraviolet lamp, a large amount of oxygen was mixed into the film. The reason for this is that the film formation rate when using a vacuum ultraviolet lamp is slower than when using an excimer laser (about 1/1000), so the contamination of oxygen becomes noticeable (that is, photon absorption in the gas phase). The excitation S generated by
It is thought that the density of iH4 molecules becomes lower and the oxygen remaining in the vacuum container becomes non-negligible.

そこで、A r FやK r F、あるいはF2 レー
ザ光を光学系を用いて拡げ4インチウェファ−全面(約
80d)に照射して光CVDSi膜を形成する場合、基
板上での光強度がAndreattaらの公知例の1/
100程度になることから、膜形成速度(つまり励起S
iH,分子の密度)が減少して膜中に酸素が混入するこ
とが充分者えられ、光CVDをLSIプロセスに適用す
る際に大きな問題となる。
Therefore, when forming an optical CVDSi film by spreading A r F, K r F, or F2 laser light using an optical system and irradiating the entire surface (approximately 80 d) of a 4-inch wafer, the light intensity on the substrate is 1/ of the known examples of et al.
100, the film formation rate (that is, the excitation S
It is well known that the iH (molecular density) is reduced and oxygen is mixed into the film, which poses a major problem when applying photo-CVD to an LSI process.

〔発明の目的〕 本発明の目的は、上記した問題点を解決し、不純物混入
の少ない高品質半導体材料を効率よく膜形成できる方法
と、そのための半導体製造装置を提供することにある。
[Object of the Invention] An object of the present invention is to solve the above-mentioned problems and provide a method for efficiently forming a film of a high-quality semiconductor material containing few impurities, and a semiconductor manufacturing apparatus for the method.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するため、真空容器内に残留する所望
しない第1の物質と化学反応する第2の物質を導入する
。第1の物質と第2の物質の化学反応により、第1の物
質を含む揮発性の物質が形成され、所望しない第1の物
質は、所望する膜形成のための化学反応から除去される
。これにより形成膜中の不純物混入を抑制することがで
きる。
To achieve the above objective, a second substance is introduced which chemically reacts with the undesired first substance remaining in the vacuum vessel. The chemical reaction between the first substance and the second substance forms a volatile substance containing the first substance, and the undesired first substance is removed from the chemical reaction for forming the desired film. This makes it possible to suppress the incorporation of impurities into the formed film.

また、第1の物質と第2の物質の化学反応がそのままで
は生じない時、あるいは化学反応の進行が遅いときは、
反応に必要なエネルギーの供給を行なう。
In addition, when the chemical reaction between the first substance and the second substance does not occur as it is, or when the chemical reaction progresses slowly,
Provides the energy necessary for the reaction.

今、第2の物質を水素とする。水素は紫外線照射や放電
などにより、他の物質と化学反応しやすい活性水素とな
る。そして、この活性水素は所望しない第1の物質、例
えば酸素と結合してその水素化物を形成する。この水素
化物は排気装置により真空容器内から取り除かれる。そ
の他、ヒ素、リン、ハロゲン、アンチモン、スズ等に対
しても同様の効果がある。
Now let us assume that the second substance is hydrogen. When hydrogen is exposed to ultraviolet rays or discharged, it becomes active hydrogen that easily reacts chemically with other substances. This active hydrogen then combines with an undesired first substance, such as oxygen, to form its hydride. This hydride is removed from the vacuum vessel by an exhaust system. Similar effects can also be achieved on arsenic, phosphorus, halogen, antimony, tin, etc.

活性水素を作る光源としては、水素放電ランプ、希ガス
共鳴ランプ、エキシマレーザの第2高調波が適している
。また、Hgランプを用いたHg光増感作用も活性水素
を作る方法に適用できる。
Suitable light sources for producing active hydrogen include hydrogen discharge lamps, rare gas resonance lamps, and second harmonics of excimer lasers. Furthermore, Hg photosensitization using an Hg lamp can also be applied to the method of producing active hydrogen.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図により説明する。 Embodiments of the present invention will be described below with reference to FIG.

本実施例では、Si、HGを原料ガスとして、光CVD
法によりSi薄膜を形成する。
In this example, photo-CVD is performed using Si and HG as raw material gases.
A Si thin film is formed by the method.

本実施例で使用した装置は、真空容器5.原料ガス系1
0.水素ガス系11、真空排気系8、原料ガス反応用の
光源1、活性水素生成用の光源3で構成されている。
The device used in this example is a vacuum container5. Raw material gas system 1
0. It is composed of a hydrogen gas system 11, a vacuum evacuation system 8, a light source 1 for raw material gas reaction, and a light source 3 for active hydrogen generation.

基板6として4インチSiウェファを従来の方法で洗浄
して使用した。真空容器5内を真空排気系8で10−”
Torrまで排気した後、ヒータ7により基板6を20
0℃まで加熱した。そして、水素ガス系11より水素を
真空容器5内へ10Torrまで導入した。その後、水
素分子が光吸収して原子に分解する波長の水素放電ラン
プを光源3に使って真空容器5内に上記の光を照射する
ことにより、真空容器5内に活性水素を生成した。この
状態で、光源1としてA r Fエキシマレーザ光を光
学系2により、幅広い平面状に整形し、4インチウェフ
ァ全面上近傍に導入しく第2図参照)、同時に原料ガス
系10よりSi、H,を10Torr (真空容器5内
の全圧は20 Torr)まで導入した。このようにす
ると、Si、H,がA r Fエキシマレーザ光を吸収
して分解し、基板6上にSi薄膜が形成された。この時
の膜形成速度は約0.1μm/分であった。
A 4-inch Si wafer was used as the substrate 6 after being cleaned using a conventional method. The inside of the vacuum container 5 is evacuated by the vacuum evacuation system 8.
After exhausting the air to Torr, the substrate 6 is heated to 20°C by the heater 7.
Heated to 0°C. Then, hydrogen was introduced into the vacuum container 5 from the hydrogen gas system 11 to a pressure of 10 Torr. Thereafter, active hydrogen was generated in the vacuum container 5 by irradiating the vacuum container 5 with the above light using a hydrogen discharge lamp with a wavelength at which hydrogen molecules absorb light and decompose into atoms as the light source 3. In this state, an A r F excimer laser beam as a light source 1 is shaped into a wide planar shape by an optical system 2 and introduced near the entire surface of the 4-inch wafer (see Fig. 2), and at the same time Si, H , was introduced up to 10 Torr (the total pressure inside the vacuum vessel 5 was 20 Torr). In this way, Si, H, absorbed the A r F excimer laser beam and decomposed, and a Si thin film was formed on the substrate 6 . The film formation rate at this time was about 0.1 μm/min.

本Si薄膜の赤外吸収スペクトルを測定したところ、水
素ガスの導入、水素放電ランプの光照射なしで形成した
膜に比べ、膜中の酸素が1/20(約0.Qlat、%
)程度に減少した。これは、容器内に残留していた酸素
が活性水素原子と結合したことにより、真空排気系8に
より真空容器5外に排気されやすくなったためである。
When we measured the infrared absorption spectrum of this Si thin film, we found that the amount of oxygen in the film was 1/20 (approximately 0.Qlat, %
) decreased to a degree. This is because the oxygen remaining in the container combined with active hydrogen atoms, making it easier to be evacuated to the outside of the vacuum container 5 by the vacuum evacuation system 8.

本実施例では、ArFエキシマレーザを使ったSiの光
CVDにおいて、水素ガスの導入、水素放電ランプの照
射により、Si膜中への酸素混入が減少する効果があっ
た。この手段は、減圧状態での膜形成金てに適用できる
。また活性水素を生成する手法も水素放電ランプの光照
射に限定されず、希ガスの無電極放電ランプ、ArFエ
キシマレーザの第2高調波等も有効である。
In this example, in the photo-CVD of Si using an ArF excimer laser, introduction of hydrogen gas and irradiation with a hydrogen discharge lamp had the effect of reducing oxygen contamination into the Si film. This method can be applied to film formation under reduced pressure. Furthermore, the method for generating active hydrogen is not limited to light irradiation from a hydrogen discharge lamp, and a rare gas electrodeless discharge lamp, the second harmonic of an ArF excimer laser, etc. are also effective.

〔発明の効果〕〔Effect of the invention〕

上記の説明から明らかなように、本発明によれば、減圧
状態での膜形成において、膜中の不純物混入を減少させ
ることができる。そのため、高品質の薄膜を得ることが
でき、半導体装置の性能や信頼性が向上する。
As is clear from the above description, according to the present invention, when forming a film under reduced pressure, it is possible to reduce the amount of impurities mixed into the film. Therefore, a high quality thin film can be obtained, and the performance and reliability of the semiconductor device can be improved.

また、真空容器内の背圧もlO−”〜lO−”Torr
程度でよいので、排気が短時間でもよく、排気系の容量
も小さいものでよい。そのため、量産性が向上し、装置
全体を小型化できる。
Also, the back pressure inside the vacuum container is 1O-”~1O-”Torr.
Therefore, the exhaust only needs to be exhausted for a short time, and the capacity of the exhaust system can be small. Therefore, mass productivity is improved and the entire device can be downsized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例になる装置構成の概略図、第
2図は、光源1からの光が光学系2で整形され基板に導
びかれる様子を示した平面図である。 1・・・原料ガス反応用光源、2・・・光学系、3・・
・活性水素生成用の光源、4・・・光入射窓、5・・・
真空容器。 6・・・基板、7・・・ヒータ、8・・・真空排気系、
9・・・光入射窓、10・・・原料ガス系、11・・・
水素ガス系。
FIG. 1 is a schematic diagram of an apparatus configuration according to an embodiment of the present invention, and FIG. 2 is a plan view showing how light from a light source 1 is shaped by an optical system 2 and guided to a substrate. 1...Light source for raw material gas reaction, 2...Optical system, 3...
・Light source for active hydrogen generation, 4... Light incidence window, 5...
vacuum container. 6... Board, 7... Heater, 8... Vacuum exhaust system,
9... Light incidence window, 10... Source gas system, 11...
Hydrogen gas system.

Claims (1)

【特許請求の範囲】 1、真空容器、基板を加熱する手段、真空容器内で基板
上に所望の膜を形成する手段、真空容器内を減圧状態に
保つための排気手段より構成された装置において、該真
空容器内に残留する所望しない第1の物質と化学反応し
て該排気手段により排気されやすい物質を形成する第2
の物質を導入する手段、を有することを特徴とする半導
体製造装置。 2、膜を形成する手段が、容器内に導入された原料用ガ
スの化学反応である特許請求の範囲第1項記載の半導体
製造装置。 3、上記第1の物質と第2の物質の化学反応を促進する
手段を有する特許請求の範囲第1項記載の半導体製造装
置。 4、第1の物質が酸素、第2の物質が水素であつて、水
素放電ランプ光を両者の化学反応を促進する手段とした
ことを特徴とする特許請求の範囲第3項記載の半導体製
造装置。 5、第1の物質が酸素、第2の物質が水素であつて、両
者間の化学反応を促進する手段がHgの光増感作用を利
用することである特許請求の範囲第3項記載の半導体製
造装置。
[Claims] 1. An apparatus comprising a vacuum container, a means for heating a substrate, a means for forming a desired film on the substrate in the vacuum container, and an exhaust means for maintaining the inside of the vacuum container in a reduced pressure state. , a second substance that chemically reacts with the undesired first substance remaining in the vacuum container to form a substance that is easily evacuated by the exhaust means.
1. A semiconductor manufacturing apparatus comprising: means for introducing a substance. 2. The semiconductor manufacturing apparatus according to claim 1, wherein the means for forming the film is a chemical reaction of a raw material gas introduced into the container. 3. The semiconductor manufacturing apparatus according to claim 1, further comprising means for promoting a chemical reaction between the first substance and the second substance. 4. Semiconductor manufacturing according to claim 3, wherein the first substance is oxygen, the second substance is hydrogen, and hydrogen discharge lamp light is used as a means for promoting the chemical reaction between the two. Device. 5. The method according to claim 3, wherein the first substance is oxygen and the second substance is hydrogen, and the means for promoting the chemical reaction between them is to utilize the photosensitizing effect of Hg. Semiconductor manufacturing equipment.
JP13714284A 1984-07-04 1984-07-04 Semiconductor manufacturing apparatus Pending JPS6118122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13714284A JPS6118122A (en) 1984-07-04 1984-07-04 Semiconductor manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13714284A JPS6118122A (en) 1984-07-04 1984-07-04 Semiconductor manufacturing apparatus

Publications (1)

Publication Number Publication Date
JPS6118122A true JPS6118122A (en) 1986-01-27

Family

ID=15191796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13714284A Pending JPS6118122A (en) 1984-07-04 1984-07-04 Semiconductor manufacturing apparatus

Country Status (1)

Country Link
JP (1) JPS6118122A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139824A (en) * 1989-10-25 1991-06-14 Agency Of Ind Science & Technol Depositing method for semiconductor device
RU2606248C2 (en) * 2015-05-14 2017-01-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) Method of making a semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139824A (en) * 1989-10-25 1991-06-14 Agency Of Ind Science & Technol Depositing method for semiconductor device
JPH0587171B2 (en) * 1989-10-25 1993-12-15 Kogyo Gijutsuin
RU2606248C2 (en) * 2015-05-14 2017-01-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) Method of making a semiconductor device

Similar Documents

Publication Publication Date Title
JPH049369B2 (en)
JPH05117061A (en) Surface treatment
JPH0496226A (en) Manufacture of semiconductor device
JPS5982732A (en) Manufacture for semiconductor device
JPS6118122A (en) Semiconductor manufacturing apparatus
US5112647A (en) Apparatus for the preparation of a functional deposited film by means of photochemical vapor deposition process
JPS6187338A (en) Method of dry cleaning silicon surface irradiated with multiple beams
JPH0351675B2 (en)
JPS5940525A (en) Growth of film
JPS61216449A (en) Method and apparatus for forming pattern thin-film
JPS60202928A (en) Optical pumping reaction device
JP3432013B2 (en) Method of forming oxide film
JPS6034012A (en) Manufacture of solid thin film
JP2522050B2 (en) Atomic layer dry etching method
JPS59163831A (en) Manufacture of semiconductor device and manufacturing apparatus therefor
JPS58119334A (en) Apparatus for vapor deposition by photochemical reaction
JPH0136694B2 (en)
JPS62288194A (en) Epitaxy
JPS61119028A (en) Photo-chemical vapor deposition equipment
JPS6365077A (en) Laser cvd device
JPH06158327A (en) Thin film depositing method
JPH0294430A (en) Photo-assisted cvd apparatus
JPS6216512A (en) Manufacture of semiconductor thin film
JPH04110471A (en) Formation of thin film
JPH02234429A (en) Manufacture of silicon nitride film