JPS59163831A - Manufacture of semiconductor device and manufacturing apparatus therefor - Google Patents

Manufacture of semiconductor device and manufacturing apparatus therefor

Info

Publication number
JPS59163831A
JPS59163831A JP3844083A JP3844083A JPS59163831A JP S59163831 A JPS59163831 A JP S59163831A JP 3844083 A JP3844083 A JP 3844083A JP 3844083 A JP3844083 A JP 3844083A JP S59163831 A JPS59163831 A JP S59163831A
Authority
JP
Japan
Prior art keywords
substrate
source gas
reaction chamber
light
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3844083A
Other languages
Japanese (ja)
Inventor
Toshihiro Sugii
寿博 杉井
Takashi Ito
隆司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3844083A priority Critical patent/JPS59163831A/en
Publication of JPS59163831A publication Critical patent/JPS59163831A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To enhance the degree of vacuum in a reaction chamber fixing the depositing speed of a reaction product on a substrate as it is by a method wherein the temperature of the substrate is held lower as compared with another part in the reaction chamber. CONSTITUTION:A substrate 8 is set in a light CVD device. The inside of a reaction chamber 1 is drawn a vacuum through an exhaust system 3. After then, a cooler 5 is operated to start cooling of the substrate 8. At the point in time when the substrate 8 reaches the prescribed temperature, source gas is sent in the reaction chamber 1 from a source gas leading-in system 2. Irradiation of an ArF excimer laser beam radiated from an ultraviolet light source 7 is performed transferring the substrate 8 in the X-Y directions. Source gas molecules adsorbed to the surface of the substrate 8 and source gas molecules existing in the neighborhood of the surface of the substrate 8 are dissolved according to the excimer laser beam to deposite silicon on the substrate 8.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、基板上に所定物質を堆積させて薄膜を形成す
る工程を必要とする半導体装置を製造す(1) る方法及びその製造装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method for manufacturing a semiconductor device that requires a step of depositing a predetermined substance on a substrate to form a thin film (1) and an improvement in the manufacturing apparatus thereof. .

従来技術と問題点 一般に、半導体装置を製造する際、基板上に所定物質の
薄膜を形成することが必要とされる場合は多い。
Prior Art and Problems Generally, when manufacturing semiconductor devices, it is often necessary to form a thin film of a predetermined material on a substrate.

現在、これを化学反応で行なう方法は大別して次の二つ
が中心となっている。
Currently, there are two main ways to accomplish this using chemical reactions:

その一つは、加熱された基板上に、堆積させる物質を含
むソース・ガスを導入し、該ソース・ガスを熱分解して
基板上に希望する物質の薄膜を形成するものであり、所
謂、CVD (chemical  vapour  
depositton)法と呼ばれる技術である。
One method is to introduce a source gas containing a substance to be deposited onto a heated substrate and thermally decompose the source gas to form a thin film of the desired substance on the substrate. CVD (chemical vapor)
This technique is called the depositon method.

もう一つは、加熱された基板上に、堆積させる物質を含
むソース・ガスを導入し、高周波電力を加えてソース・
ガスを解離することに依りプラズマ状態となし、基板上
に希望する物質の薄膜を形成するものであり、所謂、プ
ラズマCVD法と呼ばれる技術である。
The other method involves introducing a source gas containing the material to be deposited onto a heated substrate and applying radio frequency power to the source gas.
This is a technique called plasma CVD, which creates a plasma state by dissociating gas and forms a thin film of a desired substance on a substrate.

ところで、半導体装置の微細化を実現する為に(2) は、不純物拡散の抑制、プロセス誘起欠陥の抑制等が必
要であり、その面から、プロセスは低温化しなければな
らない。
By the way, in order to realize miniaturization of semiconductor devices, it is necessary to suppress impurity diffusion and process-induced defects, etc. in order to realize miniaturization of semiconductor devices, and from this point of view, the temperature of the process must be lowered.

前記CVD法では、例えば多結晶シリコン(St)膜を
モノシラン(SiH+)ガスの熱分解を利用して製造す
る場合、基板温度を600(’C)程度にしなければな
らず、また、例えば窒化シリコン(Si3N+)Ili
jiをSiH4ガス及びアンモニア(NH3)ガスから
得る場合には900〔℃〕の高温プロセスになる。
In the CVD method, for example, when producing a polycrystalline silicon (St) film using thermal decomposition of monosilane (SiH+) gas, the substrate temperature must be about 600 ('C), and, (Si3N+)Ili
When ji is obtained from SiH4 gas and ammonia (NH3) gas, a high temperature process of 900 [° C.] is required.

プラズマCVD法にて513N+llf’を形成する場
合には、熱エネルギの代りに電磁界からエネルギを受は
取るので、基板温度は400(’C)程度となる。然し
乍ら、この場合、電磁界に依り加速されたイオン或いは
電子に依り、基板表面が損傷されることがある。
When forming 513N+llf' by plasma CVD, energy is received from an electromagnetic field instead of thermal energy, so the substrate temperature is about 400 ('C). However, in this case, the substrate surface may be damaged by ions or electrons accelerated by the electromagnetic field.

そこで、前記CVD法或いはプラズマCVD法等の問題
を解消する為、光化学反応を利用したCVD法、即ち、
光CVD法が注目されるようになった。
Therefore, in order to solve the problems of the CVD method, plasma CVD method, etc., a CVD method using a photochemical reaction, that is,
Photo-CVD method has started to attract attention.

(3) この技術は、ソース・ガスを解離させるエネルギとして
光エネルギを使用するものである。このエネルギEの大
きさは、光量子1個について次式%式% (1) hニブランク定数 C:光速 λ:光の波長 この式(1)に於いて、h及びCば定数であるから、光
の波長が短いほど光量子1個当りのエネルギは大きい。
(3) This technique uses light energy as the energy to dissociate the source gas. The magnitude of this energy E is determined by the following formula for one photon: (1) h blank constant C: speed of light λ: wavelength of light In this formula (1), h and C are constants, so the light The shorter the wavelength, the greater the energy per photon.

従って、充分に波長が短い紫外光を用いれば、ソース・
ガスを解離するのに必要なエネルギをソース・ガス分子
に与えることが可能になる。そして、紫外光を適用する
場合には、基板を加熱する必要はないのでプロセスを低
温化することができ、また、プラズマCVD法などに於
けるような高エネルギのイオンや電子の発生がないから
基板の損傷はない。
Therefore, if ultraviolet light with a sufficiently short wavelength is used, the source
It becomes possible to provide the source gas molecules with the energy necessary to dissociate the gas. When using ultraviolet light, there is no need to heat the substrate, so the process can be made at a lower temperature, and there is no generation of high-energy ions or electrons as in plasma CVD methods. There is no damage to the board.

前記した理由から、光CVD法はこれからのCVDプロ
セスの主力技術となる可能性が大きいの(4) であるが、未だ、解決されていない問題も多い。
For the reasons mentioned above, there is a high possibility that the photo-CVD method will become the main technology for CVD processes in the future (4), but there are still many unresolved problems.

そのうちの一つとして、反応生成物の光源への付着が挙
げられる。即ち、基板が配置された反応室にソース・ガ
スを導入し、紫外光に対して透過性である窓を介して紫
外光を入射させたり、反応室内に紫外光の光源を配置し
て光化学反応を発生させると、それに依り生成される物
質が基板上のみならず反応室内の様々な場所に付着する
。その付着量としては、光強度が大である窓或いは光源
自体に対するものが多くなることは当然であり、堆積時
間が長くなるにつれ、その不要な堆積物の膜厚も大にな
って、そこでの光の吸収が起り、実際にソース・ガスに
照射される光の強度を低下させることになる。従って、
前記従来の光CVD法に依ると、ある程度以上の膜厚を
有する薄膜は得られないか、大出力の光源が必要になる
などの問題がある。
One of them is the adhesion of reaction products to the light source. That is, a source gas is introduced into a reaction chamber in which a substrate is placed, and ultraviolet light is introduced through a window that is transparent to ultraviolet light, or a light source of ultraviolet light is placed inside the reaction chamber to initiate a photochemical reaction. When this occurs, the resulting substances adhere not only to the substrate but also to various locations within the reaction chamber. Naturally, the amount of deposits increases on the windows or the light source itself where the light intensity is high, and as the deposition time increases, the thickness of the unnecessary deposits also increases. Light absorption occurs and actually reduces the intensity of light that is irradiated to the source gas. Therefore,
According to the conventional photo-CVD method, there are problems such as not being able to obtain a thin film having a thickness exceeding a certain level, or requiring a high-output light source.

このような問題の外に、光CVD法を実施する際の基本
的問題として、その効率の悪さが挙げられる。即ち、ソ
ース・ガスに紫外光を照射した場(5) 合、紫外光が基板に到達するまでに、その光エネルギの
一部は途中のソース・ガスに吸収されてしまい、基板へ
の物質堆積に関係する基板表面或いはその近傍でのソー
ス・ガスの分解は発生し難くなり、従って、実用的に充
分な堆積速度を得るには大出力の光源を必要とするので
ある。尚、反応室を高真空、即ち、ソース・ガス分子密
度を低くしておけば、紫外光を照射しても光を取り入れ
る窓或いは光源或いは反応室壁面等に反応生成物が堆積
することは低真空にした場合よりも遥かに少なくなるが
、基板上への堆積も低減されてしまうから、いずれにせ
よ不都合である。
In addition to these problems, a fundamental problem in implementing the photoCVD method is its inefficiency. In other words, when the source gas is irradiated with ultraviolet light (5), by the time the ultraviolet light reaches the substrate, part of the light energy is absorbed by the source gas, causing material deposition on the substrate. Decomposition of the source gas at or near the substrate surface is less likely to occur, and therefore a high power light source is required to obtain a practically sufficient deposition rate. Furthermore, if the reaction chamber is kept in a high vacuum, that is, the source gas molecular density is kept low, it is unlikely that reaction products will accumulate on the window, light source, or reaction chamber walls that take in the light even when irradiated with ultraviolet light. This is much less than in the case of a vacuum, but the deposition on the substrate is also reduced, which is a disadvantage in any case.

発明の目的 本発明は、光CVD法にて所要物質の薄膜を成長させる
に際し、反応室に配置された基板上にのみ充分な堆積速
度で薄膜を成長させるようにしようとするものである。
OBJECTS OF THE INVENTION The present invention aims to grow a thin film of a desired substance at a sufficient deposition rate only on a substrate placed in a reaction chamber when growing a thin film of a desired substance by photo-CVD.

発明の構成 一般に、ガス分子の固体表面への吸着に関しては、吸着
に要するエネルギが小さい場合、吸着速(6) 度r adsは次式で表わされる。
Structure of the Invention In general, regarding the adsorption of gas molecules onto a solid surface, when the energy required for adsorption is small, the adsorption rate (6) degrees rads is expressed by the following equation.

T:基板温度 C:定数 式(2)から明らかなように、基板温度を低下させるこ
とは、反応室内圧力を上昇させることと等価である。
T: Substrate temperature C: Constant As is clear from equation (2), lowering the substrate temperature is equivalent to increasing the pressure inside the reaction chamber.

ところで、温度は基板のみ低下させることは容易である
から、選択的に基板に於+する吸着速度を大にすること
が可能である。また、基板温度を低下させ且つ反応室内
圧力も低下させることに依り、基板上へのソース・ガス
の吸着速度を一定に維持したまま基板以外の部分への吸
着速度を低下させることも可能である。
By the way, since it is easy to lower the temperature only on the substrate, it is possible to selectively increase the adsorption speed on the substrate. Furthermore, by lowering the substrate temperature and the reaction chamber pressure, it is also possible to reduce the rate of adsorption to parts other than the substrate while keeping the rate of source gas adsorption onto the substrate constant. .

さて、ガス分子の吸着速度とは単位時間内に単位面積に
吸着される粒子の数であるから、吸着速度が大であるこ
とは、一定時間内に基板表面に吸着する粒子数が多いこ
とになる。そのような状態、即ち、吸着速度が大きい状
態にある雰囲気で紫(7) 外光を照射すると、基板上での光化学反応に依る反応生
成物の堆積速度は大きくなる。
Now, the adsorption rate of gas molecules is the number of particles adsorbed to a unit area within a unit time, so a high adsorption rate means that a large number of particles are adsorbed to the substrate surface within a certain amount of time. Become. If violet (7) external light is irradiated in such a state, that is, in an atmosphere where the adsorption rate is high, the deposition rate of reaction products due to photochemical reactions on the substrate will increase.

前記したところを纏めると、基板温度を反応室内の他の
部分と比べて低く維持することに依り、基板上の反応生
成物の堆積速度を一定に保持したまま、反応室内の真空
度を高めることが可能であることが理解されよう。そし
て、反応室内が高真空になる結果、紫外光取り入れ窓或
いは光源等、反応生成物の付着が不要な部分には該反応
生成物の付着量が低減される。しかも、反応室内が高真
空である為、基板に到達する迄に紫外光が吸収される割
合も低下し、光源の出力が小さくても短時間で充分な堆
積が得られる。
To summarize the above, by maintaining the substrate temperature lower than other parts of the reaction chamber, the degree of vacuum inside the reaction chamber can be increased while keeping the deposition rate of reaction products on the substrate constant. It will be understood that this is possible. As a result of the high vacuum inside the reaction chamber, the amount of reaction products deposited on portions where the reaction products do not need to be deposited, such as the ultraviolet light intake window or the light source, is reduced. Moreover, since the inside of the reaction chamber is in a high vacuum, the proportion of ultraviolet light absorbed before reaching the substrate is reduced, and sufficient deposition can be obtained in a short time even if the output of the light source is small.

発明の実施例 図は本発明を実施する光化学気相堆積装置(光CVD装
置)の−例を表わす要部切断側面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The drawings are cross-sectional side views of essential parts of an example of a photochemical vapor deposition apparatus (photo-CVD apparatus) for carrying out the present invention.

図に於いて、1は反応室、2はソース・ガス導入系、3
は排気系、4はX−Yステージ、5は基板冷却装置、6
は紫外光取り入れ窓、7は紫外光(8) 光源、8は基板をそれぞれ示している。尚、紫外光光源
としては、紫外波長領域に於いて高出力が得られるAr
Fエキシマ・レーザを用いることが好ましい。
In the figure, 1 is the reaction chamber, 2 is the source gas introduction system, and 3 is the reaction chamber.
is an exhaust system, 4 is an X-Y stage, 5 is a substrate cooling device, 6
7 indicates an ultraviolet light intake window, 7 indicates an ultraviolet light (8) light source, and 8 indicates a substrate. In addition, as the ultraviolet light source, Ar is used because it can obtain high output in the ultraviolet wavelength region.
Preferably, an F excimer laser is used.

この光CVD装置を用い、シリコン・ウェハ上に二酸化
シリコン膜が形成されてなる基板8に非晶質或いは多結
晶のシリコン膜を成長させる場合について説明する。
A case will be described in which this photo-CVD apparatus is used to grow an amorphous or polycrystalline silicon film on a substrate 8 in which a silicon dioxide film is formed on a silicon wafer.

先ず、化学洗滌を行なった基板8を光CVD装置にセン
トする。
First, the substrate 8 that has been chemically cleaned is placed in a photo-CVD apparatus.

残留ガスの影響を低減させる為、排気系3を介し反応室
1内を約5X]0−6(:Torr)まで真空引きを行
なう。
In order to reduce the influence of residual gas, the inside of the reaction chamber 1 is evacuated to approximately 5X]0-6 (Torr) via the exhaust system 3.

真空引き完了後、冷却装置5を作動させ基板8の冷却を
開始する。尚、冷却装置5は種々の温度を設定できるも
のであることが好ましい。
After the evacuation is completed, the cooling device 5 is activated to start cooling the substrate 8. Note that it is preferable that the cooling device 5 is capable of setting various temperatures.

基板温度としては、例えばシリコン膜を光c■Dで形成
するのに好適な条件である室温(293(’ K) )
、圧力100(Torr〕を採るよりも、紫外光光源或
いは紫外光取り入れ窓に付着す(9) るシリコンの堆積レートを基板8上に付着するシリコン
の堆積レートの約1/10に低減することを目標として
設定する方が好ましく、その為には、式(2)から基板
温度63(’K)、圧力10(Torr)とすると良い
The substrate temperature is, for example, room temperature (293 ('K)), which is a suitable condition for forming a silicon film with optical CCD.
, rather than using a pressure of 100 Torr, the deposition rate of silicon that adheres to the ultraviolet light source or the ultraviolet light intake window (9) is reduced to approximately 1/10 of the deposition rate of silicon that adheres to the substrate 8. It is preferable to set this as a target, and for that purpose, it is preferable to set the substrate temperature to 63 ('K) and the pressure to 10 (Torr) from equation (2).

基板8が所定温度に到達した時点で、ソース・ガス導入
系2から反応室1内にソース・ガスを送入する。ソース
・ガスとしてはSiH4ガス、キャリヤ・ガスとしては
アルゴン(Ar)ガスが適当である。
When the substrate 8 reaches a predetermined temperature, a source gas is introduced into the reaction chamber 1 from the source gas introduction system 2. SiH4 gas is suitable as the source gas, and argon (Ar) gas is suitable as the carrier gas.

紫外光光源7からArFエキシマ・レーザ光(波長:]
93(nm))を照射しつつX−Yステージ4を先ずX
方向に速度約1 〔龍/秒〕で移動させ、前記エキシマ
・レーザ光が基板8を横切った後、該エキシマ・レーザ
光のスポットが約50(%〕程度重複するようにY方向
にステージ4を移動してから再び前記と同様にX方向の
移動を行なう。このようにして、基板8をX−Y方向に
移動させながら紫外光光源7からのArFエキシマ・レ
ーザ光の照射を行なう。尚、その場合のレー(10) ザ光のパワー密度は5 (M W / cn+2〕程度
としてよい。
ArF excimer laser light (wavelength:] from ultraviolet light source 7
93 (nm)) while irradiating the X-Y stage 4 with
After the excimer laser beam crosses the substrate 8, the stage 4 is moved in the Y direction so that the spots of the excimer laser beam overlap by about 50%. After moving the substrate 8, the substrate 8 is moved in the X direction again in the same manner as described above.In this way, the substrate 8 is irradiated with ArF excimer laser light from the ultraviolet light source 7 while being moved in the XY direction. In that case, the power density of the (10) laser light may be about 5 (M W /cn+2).

基板8の表面に吸着されたソース・ガス分子及び基板8
の表面近傍に存在するソース・ガス分子はエキシマ・レ
ーザ光に依り次式に示す過稈で分解され、シリコンが基
板8上に堆積することになる。
Source gas molecules adsorbed on the surface of the substrate 8 and the substrate 8
The source gas molecules existing near the surface of are decomposed by the excimer laser beam in a manner expressed by the following equation, and silicon is deposited on the substrate 8.

光 ↓ SiH4→Si →−2H2↑  ・ ・ ・ ・ (
3)尚、シリコン膜を希望する膜厚にする為には、レー
ザ光に対する基板8の走査回数を選択すれば良い。
Light↓ SiH4→Si →-2H2↑ ・ ・ ・ ・ (
3) In order to make the silicon film a desired thickness, the number of times the substrate 8 is scanned by the laser beam may be selected.

発明の効果 本発明に依れば、光化学反応に依りソース・ガスの分解
を行なって基板上に所定物質の薄膜を形成するに際し、
基板を冷却することに依り、基板上の反応生成物の堆積
速度を一定に保持したままで反応室内の真空度を高める
ことができるので、光取り入れ窓或いは光源等、反応生
成物の付着が好ましくない部分に対しては該反応住成物
の44着量を低下させるごとが可能となり、また、反応
室内を高真空にすることが出来ることから、基板に到達
する迄に光が吸収される割合も低減され、光源の出力が
小さくても短時間で充分な堆積が得られる。
Effects of the Invention According to the present invention, when a source gas is decomposed by a photochemical reaction to form a thin film of a predetermined substance on a substrate,
By cooling the substrate, it is possible to increase the degree of vacuum in the reaction chamber while keeping the deposition rate of the reaction products on the substrate constant, so it is preferable to attach the reaction products to a light intake window or a light source. It is possible to reduce the amount of the reaction product in areas where there is no light, and it is also possible to create a high vacuum in the reaction chamber, which reduces the proportion of light that is absorbed before reaching the substrate. Even if the output of the light source is small, sufficient deposition can be obtained in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例である半導体装置の製造装置(光
化学気相堆積装置)を表わす要部切断側面図である。 図に於いて、1は反応室、2はソース・ガス導入系、3
は排気系、4はX−Yステージ、5は基板冷却装置、6
は紫外光取り入れ窓、7は紫外光光源、8は基板である
。 特許出願人   富士通株式会社 代理人弁理士  玉蟲 久五部 (外3名)
The figure is a cutaway side view of essential parts showing a semiconductor device manufacturing apparatus (photochemical vapor deposition apparatus) which is an embodiment of the present invention. In the figure, 1 is the reaction chamber, 2 is the source gas introduction system, and 3 is the reaction chamber.
is an exhaust system, 4 is an X-Y stage, 5 is a substrate cooling device, 6
1 is an ultraviolet light intake window, 7 is an ultraviolet light source, and 8 is a substrate. Patent applicant: Fujitsu Ltd. Representative Patent Attorney: Kugobe Tamamushi (3 others)

Claims (3)

【特許請求の範囲】[Claims] (1)反応室内に配置された基板を冷却した状態で光化
学反応に依りソース・ガスの分解を行なって前記基板上
に所定物質の薄膜を形成する工程が含まれることを特徴
とする半導体装置の製造方法。
(1) A semiconductor device characterized by including the step of forming a thin film of a predetermined substance on the substrate by decomposing a source gas by a photochemical reaction while the substrate placed in a reaction chamber is cooled. Production method.
(2)前記冷却は光照射で高温化した部分以外の部分が
室温以下に維持されるものであることを特徴とする特許
請求の範囲第1項記載の半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the cooling is performed so that a portion other than a portion heated to a temperature by light irradiation is maintained at a temperature below room temperature.
(3)光化学反応でソース・ガスを分解する為の光が照
射され得る状態に配置された基板を冷却する基板冷却装
置が組込まれてなることを特徴とする半導体装置の製造
装置。
(3) A semiconductor device manufacturing apparatus characterized in that it incorporates a substrate cooling device that cools a substrate placed in a state where it can be irradiated with light for decomposing a source gas by a photochemical reaction.
JP3844083A 1983-03-09 1983-03-09 Manufacture of semiconductor device and manufacturing apparatus therefor Pending JPS59163831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3844083A JPS59163831A (en) 1983-03-09 1983-03-09 Manufacture of semiconductor device and manufacturing apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3844083A JPS59163831A (en) 1983-03-09 1983-03-09 Manufacture of semiconductor device and manufacturing apparatus therefor

Publications (1)

Publication Number Publication Date
JPS59163831A true JPS59163831A (en) 1984-09-14

Family

ID=12525359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3844083A Pending JPS59163831A (en) 1983-03-09 1983-03-09 Manufacture of semiconductor device and manufacturing apparatus therefor

Country Status (1)

Country Link
JP (1) JPS59163831A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207121A (en) * 1987-02-23 1988-08-26 Nikon Corp Method and apparatus for manufacturing thin film by photo-cvd
US5010036A (en) * 1990-04-20 1991-04-23 Eaton Corporation Low temperature semiconductor bonding process with chemical vapor reaction
US5385763A (en) * 1987-03-18 1995-01-31 Kabushiki Kaisha Toshiba Method for forming a film on a substrate by activating a reactive gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565428A (en) * 1978-11-10 1980-05-16 Tdk Corp Direct formation of thin film pattern
JPS5994829A (en) * 1982-11-22 1984-05-31 Nec Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565428A (en) * 1978-11-10 1980-05-16 Tdk Corp Direct formation of thin film pattern
JPS5994829A (en) * 1982-11-22 1984-05-31 Nec Corp Manufacture of semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207121A (en) * 1987-02-23 1988-08-26 Nikon Corp Method and apparatus for manufacturing thin film by photo-cvd
US5385763A (en) * 1987-03-18 1995-01-31 Kabushiki Kaisha Toshiba Method for forming a film on a substrate by activating a reactive gas
US5458919A (en) * 1987-03-18 1995-10-17 Kabushiki Kaisha Toshiba Method for forming a film on a substrate by activating a reactive gas
US5591486A (en) * 1987-03-18 1997-01-07 Kabushiki Kaisha Toshiba Method for forming a film on a substrate by activating a reactive gas
US5776557A (en) * 1987-03-18 1998-07-07 Kabushiki Kaisha Toshiba Method for forming a film on a substrate by activating a reactive gas
US5010036A (en) * 1990-04-20 1991-04-23 Eaton Corporation Low temperature semiconductor bonding process with chemical vapor reaction

Similar Documents

Publication Publication Date Title
US4509451A (en) Electron beam induced chemical vapor deposition
US5154945A (en) Methods using lasers to produce deposition of diamond thin films on substrates
JPH0752718B2 (en) Thin film formation method
WO2000044033A1 (en) Method and apparatus for film deposition
JPS631097B2 (en)
JPS61117822A (en) Equipment for manufacturing semiconductor device
JPS5982732A (en) Manufacture for semiconductor device
JPS59163831A (en) Manufacture of semiconductor device and manufacturing apparatus therefor
JP2002110551A (en) Method and apparatus for forming semiconductor thin film
US5817559A (en) Production method for a semiconductor device
JP2726149B2 (en) Thin film forming equipment
JPH0648716A (en) Method for removing defect of diamond
JPS62128528A (en) Laser surface treating device
JPH0778759A (en) Method and device of manufacturing semiconductor material
JPH0689455B2 (en) Thin film formation method
JPS61288431A (en) Manufacture of insulating layer
JPH05308064A (en) 'on the spot' elimination method and device of silicon natural oxide film
JPH0517291A (en) Treatment of substrate for deposition of diamond thin film
JPS6034012A (en) Manufacture of solid thin film
JPS62240766A (en) Formation of deposited film
JPS63308910A (en) Manufacture of thin film applying energy beam irradiation and its equipment
JPH04219924A (en) Method for growing semiconductor crystal
JPS60167316A (en) Formation of film
JPH01173616A (en) Film formation device
JPS61183920A (en) Apparatus for treating semiconductor or metal with laser beam or light