JPH05308064A - 'on the spot' elimination method and device of silicon natural oxide film - Google Patents

'on the spot' elimination method and device of silicon natural oxide film

Info

Publication number
JPH05308064A
JPH05308064A JP11159192A JP11159192A JPH05308064A JP H05308064 A JPH05308064 A JP H05308064A JP 11159192 A JP11159192 A JP 11159192A JP 11159192 A JP11159192 A JP 11159192A JP H05308064 A JPH05308064 A JP H05308064A
Authority
JP
Japan
Prior art keywords
silicon substrate
oxide film
temperature
natural oxide
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11159192A
Other languages
Japanese (ja)
Inventor
Hiromi Ito
博巳 伊藤
Takehisa Yamaguchi
偉久 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11159192A priority Critical patent/JPH05308064A/en
Publication of JPH05308064A publication Critical patent/JPH05308064A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a method and device for eliminating 'on the spot' by heating at low temperature a natural film which exists on the surface of a silicon substrate immediately before treatment such as film formation. CONSTITUTION:Hydrogen gas where an extremely small amount of silane gas is added is supplied into an elimination chamber 1 and a silicon substrate 3 is placed on a substrate supporting stand 2. The silicon substrate 3 is heated while light with a wavelength for performing photo chemical decomposition of silane gas is applied from a light source 6 through a light incidence window 7, thus eliminating natural oxide film of the silicon substrate 3 'on the spot' at a lower temperature than before. At this time, heating the light incidence window 7 to nearly the same temperature of heating treatment temperature or higher of the silicon substrate 3 prevents a film from being deposited on the light incidence window 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、シリコン自然酸化膜
の「その場」除去方法及び装置、特に、成膜等の処理直
前のシリコン基板表面に存在する自然酸化膜を低温で加
熱して「その場」除去する方法及び装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for removing "in-situ" a natural oxide film of silicon, in particular, by heating a natural oxide film existing on the surface of a silicon substrate immediately before processing such as film formation at low temperature. In-situ "removal method and apparatus.

【0002】[0002]

【従来の技術】シリコン基板表面に存在する自然酸化膜
を完全に除去した後、外気に触れることなく成膜等以後
の処理を行う自然酸化膜の「その場」除去方法は、従来
からSiエピタキシャル成長プロセスにおける最も重要
な工程とされてきたが、この自然酸化膜除去方法は、微
細化の進展する今後のLSI製造プロセスにおいても決
定的な重要性を持ち始めている。一方、LSI製造プロ
セスでは、デバイスが損傷を受けるのを防止するため
に、同時に低温化が追及されるべきであり、この点に十
分配慮をした自然酸化膜除去プロセスが開発されなけれ
ばならない。
2. Description of the Related Art The "in-situ" removal method of a natural oxide film, in which the natural oxide film existing on the surface of a silicon substrate is completely removed, and thereafter the subsequent processing such as film formation is performed without contact with the outside air, is conventionally performed by Si epitaxial growth. Although it has been regarded as the most important step in the process, this natural oxide film removal method is beginning to have decisive importance also in future LSI manufacturing processes in which miniaturization progresses. On the other hand, in the LSI manufacturing process, in order to prevent the device from being damaged, lowering the temperature should be pursued at the same time, and a natural oxide film removing process must be developed with due consideration to this point.

【0003】従来のSiエピタキシャルプロセスにおけ
る自然酸化膜除去方法としては、水素ベーク法が賞用さ
れている。しかし、この方法では、確実な自然酸化膜の
除去効果は、およそ950℃以上でしか認められず、現
状のLSI製造プロセスにおいてさえ許容することがで
きない。また、上述した低温化の切札として、HF(フ
ッ化水素)蒸気によるエッチング法が期待されている
が、原理的に処理後の半導体表面へのフッ素の残留は不
可避であり、さらに、酸化膜パターン部分の不要な過剰
エッチングの制御の問題も解決されなければならない。
さらに、高温が不要の物理的除去法として、Ar等によ
るスパッタエッチング法があるが、この場合は、スパッ
タダメージの問題と、微細なパターン部分で除去効果が
喪失するという問題点があった。
As a natural oxide film removing method in the conventional Si epitaxial process, a hydrogen baking method has been favored. However, according to this method, the reliable removal effect of the natural oxide film is recognized only at about 950 ° C. or higher, which is unacceptable even in the current LSI manufacturing process. Further, an etching method using HF (hydrogen fluoride) vapor is expected as a trump card for lowering the above-mentioned temperature, but in principle, it is inevitable that fluorine remains on the semiconductor surface after processing, and further, an oxide film pattern is required. The problem of controlling unwanted overetching of the part must also be solved.
Further, as a physical removal method that does not require high temperature, there is a sputter etching method using Ar or the like, but in this case, there are problems of sputter damage and loss of the removal effect in a fine pattern portion.

【0004】上述した種々の自然酸化膜除去方法のう
ち、水素ベークによる自然酸化膜除去の低温化を目的と
して、最近、シラン類を極微量添加した水素ベーク法が
注目され、報告が相次いでいる。ここで、水素ベーク法
による自然酸化膜除去の機構を述べる。この場合に重要
なことは、水素は次の(1)式で与えられるような自然酸
化膜を直接還元するのではなく、(2)式で示されるよう
な水素雰囲気を提供したり、触媒としての作用の方が大
きいと考えられていることである。
Among the various natural oxide film removal methods described above, the hydrogen bake method in which a very small amount of silanes is added has recently attracted attention for the purpose of lowering the temperature of the natural oxide film removal by hydrogen bake, and many reports have been made. .. Here, the mechanism of natural oxide film removal by the hydrogen bake method will be described. What is important in this case is that hydrogen does not directly reduce the natural oxide film as given by the following formula (1), but it does not provide a hydrogen atmosphere as shown in formula (2) or as a catalyst. Is considered to be greater in action.

【0005】[0005]

【化1】 [Chemical 1]

【0006】すなわち、水素は、一般に考えられるよう
に直接に自然酸化膜を還元除去するのではなく単に還元
的な雰囲気を与えるだけであり、自然酸化膜(Si
2)は、より還元性の強い(基板)シリコンによって
還元され、揮発性のSiOになることで蒸発除去される
のである。このような機構に基づき、水素ベーク法によ
る自然酸化膜除去の低温化を目的として、極微量のシラ
ン類、例えばモノシラン(SiH4)、ジシラン(Si2
6)等のガスを添加して水素ベークが行われている。
That is, hydrogen does not directly reduce and remove the natural oxide film as generally considered, but merely provides a reducing atmosphere, and the natural oxide film (Si
O 2 ) is reduced by more reducing (substrate) silicon and becomes volatile SiO, which is evaporated and removed. Based on such a mechanism, an extremely small amount of silanes such as monosilane (SiH 4 ) and disilane (Si 2 ) is used for the purpose of lowering the temperature of the natural oxide film removal by the hydrogen bake method.
Hydrogen bake is performed by adding a gas such as H 6 ).

【0007】この方法は、上記(2)式における自然酸化
膜の還元剤として、基板シリコンに加え、極微量添加さ
れたSiH4やSi26が熱分解して発生する極めて還
元性に富むSiHn(シリルラジカル;n=1〜3)
と、同時に自然酸化膜上に発生する極微量のシリコン核
(種、seed)とを利用するものである。すなわち、
気相又は基板表面上で発生したSiHn及び自然酸化膜
上に発生した極微量のシリコン核により、次の(3)式及
び(4)式に示すような機構によっても、自然酸化膜が還
元、蒸発除去される。
In this method, as a reducing agent for the natural oxide film in the above formula (2), SiH 4 and Si 2 H 6 added in an extremely small amount in addition to the substrate silicon are thermally decomposed and are extremely reducible. SiHn (silyl radical; n = 1 to 3)
And a very small amount of silicon nuclei (seed) generated on the natural oxide film at the same time. That is,
Due to SiHn generated in the gas phase or on the substrate surface and a very small amount of silicon nuclei generated on the natural oxide film, the natural oxide film is reduced by the mechanism shown in the following formulas (3) and (4). It is removed by evaporation.

【0008】[0008]

【化2】 [Chemical 2]

【0009】この方法を用いることにより、単純な水素
ベークに比べ、同等の自然酸化膜除去効果がおよそ10
0℃〜150℃低い温度、すなわち800℃〜850℃
程度の温度でも得られている。この方法において重要な
ことは、添加するシラン類ガスの濃度を実質的なシリコ
ン堆積が起こらないように、十分に希薄にすることであ
る。すなわち、もしシラン類ガスの添加量が過剰で濃度
が高すぎる場合には、シリコン核の発生が過剰になり、
結果として上記(3)式及び(4)式の機構により自然酸化
膜が除去されるよりは自然酸化膜上にシリコンが堆積す
る状態となる。換言すれば、添加するシラン類ガスはそ
の濃度によりシリコンの堆積用のソースガスにもなり
(これが一般的な用途である)、一方、シリコン酸化膜
のエッチングガスにもなるが、自然酸化膜の除去は後者
の性質を利用したものである。このような用途としての
シラン類ガスの添加量は、実際には数ppmから数十p
pmの濃度が一般的である。
By using this method, an equivalent natural oxide film removing effect is about 10 as compared with a simple hydrogen baking.
0 ° C to 150 ° C lower temperature, namely 800 ° C to 850 ° C
It is obtained even at a moderate temperature. What is important in this method is that the concentration of the added silane gas is sufficiently diluted so that substantial silicon deposition does not occur. That is, if the amount of silane gas added is excessive and the concentration is too high, the generation of silicon nuclei becomes excessive,
As a result, silicon is deposited on the natural oxide film rather than the natural oxide film being removed by the mechanisms of the above formulas (3) and (4). In other words, the added silane gas also serves as a source gas for depositing silicon depending on its concentration (this is a general application), while it also serves as an etching gas for the silicon oxide film. The removal utilizes the latter property. The amount of silane gas added for such applications is actually several ppm to several tens of p
Concentrations of pm are common.

【0010】[0010]

【発明が解決しようとする課題】上述したようなシリコ
ン自然酸化膜の「その場」除去方法では、シラン類ガス
を添加して熱分解を行うため、水素ベークの低温化に有
効であるが、それでもなお800℃〜850℃程度の温
度が必要であり、LSIプロセスへの適用にはさらに一
層の低温化が要求されているという問題点があった。こ
の発明は、このような問題点を解決するためになされた
もので、従来のシラン類ガスの添加による水素ベークよ
りもさらに低温で自然酸化膜の除去が可能であり、LS
Iプロセスへも適用することができるシリコン自然酸化
膜の「その場」除去方法及びその装置を得ることを目的
とする。
In the "in-situ" removal method of the silicon natural oxide film as described above, since silane gases are added for thermal decomposition, it is effective for lowering the temperature of hydrogen bake. Nevertheless, a temperature of about 800 ° C. to 850 ° C. is still required, and there is a problem that further lowering of the temperature is required for application to the LSI process. The present invention has been made in order to solve such a problem, and it is possible to remove a natural oxide film at a lower temperature than the conventional hydrogen bake by adding a silane gas.
It is an object of the present invention to provide a “situ” removal method and apparatus for a native silicon oxide film that can be applied to the I process.

【0011】[0011]

【課題を解決するための手段】この発明の請求項第1項
に係るシリコン自然酸化膜の「その場」除去方法は、極
微量のシラン類ガスを添加した水素雰囲気中で、このシ
ラン類ガスを光化学分解する波長の光を照射しながら、
以後の処理直前のシリコン基板を加熱処理するものであ
る。
According to a first aspect of the present invention, a method for "in-situ" removal of a silicon native oxide film is performed by using a silane gas in a hydrogen atmosphere containing a very small amount of silane gas. While irradiating light with a wavelength that photochemically decomposes
The silicon substrate immediately before the subsequent processing is heat-treated.

【0012】この発明の請求項第2項に係るシリコン自
然酸化膜の「その場」除去装置は、シリコン基板が内部
に配置され、極微量のシラン類ガスが添加された水素ガ
スが供給されるチャンバに設けられ、かつ、このチャン
バ外部に設けられた光源からの光をチャンバ内に入射す
る光入射窓を、上記シリコン基板の加熱処理温度と同程
度以上に加熱して、以後の処理直前のシリコン基板を加
熱処理するものである。
In the "in-situ" removal apparatus for a silicon native oxide film according to the second aspect of the present invention, a silicon substrate is arranged inside and hydrogen gas to which an extremely small amount of silane gas is added is supplied. A light incident window provided in the chamber and for allowing light from a light source provided outside the chamber to enter the chamber is heated to a temperature approximately equal to or higher than the heat treatment temperature of the silicon substrate, and then immediately before the subsequent treatment. A silicon substrate is heat-treated.

【0013】[0013]

【作用】この発明の請求項第1項においては、温度と無
関係にSiHnラジカルとシリコン核を供給できる光化
学分解を採用することによって、極微量シラン類ガス添
加水素ベーク法における有効下限温度の一層の低温化を
図ったものである。
According to the first aspect of the present invention, by adopting photochemical decomposition capable of supplying SiHn radicals and silicon nuclei regardless of temperature, it is possible to further reduce the effective lower limit temperature in the hydrogen bake method with addition of a trace amount of silanes. This is intended to lower the temperature.

【0014】この発明の請求項第2項においては、光入
射窓をシリコン基板の加熱温度と同程度以上に加熱する
ので、光入射窓に膜堆積が起こるのを防止し、入射光が
阻害されるのを回避できる。
According to the second aspect of the present invention, since the light incident window is heated to a temperature equal to or higher than the heating temperature of the silicon substrate, film deposition is prevented from occurring in the light incident window and the incident light is blocked. Can be avoided.

【0015】[0015]

【実施例】従来の極微量シラン類ガスを添加した水素ベ
ーク法において、ある程度の低温化が達成できるのは、
上述のように、熱分解して発生するSiHnラジカル
と、臨界核以下の大きさのシリコンの自然酸化膜還元効
果によるものであるが、この熱分解効率が従来法の適用
下限温度を決めていた要因の一つであった。そこで、こ
の発明では、温度と無関係に上記SiHnラジカルとシ
リコン核を供給できる光化学分解を採用することによっ
て、極微量シラン類ガス添加水素ベーク法における有効
下限温度の一層の低温化を達成したものである。また、
この発明の特徴は、添加シラン類ガスの濃度を極微量と
することで、この添加シラン類ガスを通常の用途である
シリコンの堆積に用いるのではなく、逆に酸化シリコン
膜のエッチング除去に用いることにある。
[Example] In the conventional hydrogen baking method in which a very small amount of silane gas is added, it is possible to achieve a certain temperature reduction.
As described above, this is due to the SiHn radicals generated by thermal decomposition and the natural oxide film reduction effect of silicon having a size equal to or less than the critical nucleus. The thermal decomposition efficiency determines the lower limit temperature to which the conventional method is applied. It was one of the factors. Therefore, in the present invention, by further utilizing the photochemical decomposition capable of supplying the SiHn radicals and the silicon nuclei regardless of the temperature, the effective lower limit temperature in the ultra-trace amount silane gas-added hydrogen baking method is further lowered. is there. Also,
The feature of the present invention is that the concentration of the added silane gas is set to an extremely small amount, so that the added silane gas is not used for usual deposition of silicon but is used for etching removal of the silicon oxide film. Especially.

【0016】図1は、この発明の一実施例によるシリコ
ン自然酸化膜の「その場」除去装置を示す概略構成図で
ある。図において、自然酸化膜の「その場」除去室1内
には、加熱装置2aを備えた基板支持台2に載置された
シリコン基板3が収容されている。また、除去室1に
は、極微量のシラン類ガスが添加された水素ガスを供給
するガス供給管4及び除去室1内を排気する真空排気管
5が設けられている。さらに、除去室1の外部には、シ
ラン類ガスを光化学分解する光を発生する光源6が設け
られている。この光源6は、シラン類ガスを光化学分解
する放射線波長を有するものであれば、レーザでもラン
プでもよく、例えばArFエキシマレーザ(例えば19
30Å)、低圧水銀ランプ(例えば2537Å、184
9Å)又は重水素ランプ等が好適に使用できる。
FIG. 1 is a schematic diagram showing an "in-situ" removal apparatus for a silicon native oxide film according to an embodiment of the present invention. In the figure, a silicon oxide substrate 3 mounted on a substrate support 2 having a heating device 2a is accommodated in an "in-situ" removal chamber 1 for a natural oxide film. Further, the removal chamber 1 is provided with a gas supply pipe 4 for supplying hydrogen gas to which an extremely small amount of silane gas has been added and a vacuum exhaust pipe 5 for exhausting the inside of the removal chamber 1. Further, outside the removal chamber 1, there is provided a light source 6 that generates light that photochemically decomposes the silane gas. The light source 6 may be a laser or a lamp as long as it has a radiation wavelength that photochemically decomposes a silane gas, and for example, an ArF excimer laser (for example, 19
30 Å), low-pressure mercury lamp (eg 2537 Å, 184
9Å) or deuterium lamp can be preferably used.

【0017】光源6からの光は、例えば石英で造られた
光入射窓7を介して除去室1内のシリコン基板3に照射
される。この光入射窓7は、加熱装置8によりシリコン
基板3と同程度又はそれ以上の温度に加熱されている。
除去室1には、ゲートバルブ9を介して成膜室10が隣
接して配置されている。この成膜室10は、除去室1で
自然酸化膜が除去されたシリコン基板3を、外気に接触
することなく気密下でゲートバルブ9を通過し、成膜室
10内に搬送され、シリコン基板3の成膜処理を行うも
のである。成膜室10内には、加熱装置11aを備えシ
リコン基板3を載置する基板支持台11が配置され、成
膜反応用ガスを成膜室10内に供給する成膜反応用のガ
ス供給管12、及び成膜室10内を真空排気する真空排
気管13が設けられている。
Light from the light source 6 is applied to the silicon substrate 3 in the removal chamber 1 through a light incident window 7 made of, for example, quartz. The light incident window 7 is heated by the heating device 8 to the same temperature as the silicon substrate 3 or higher.
A film formation chamber 10 is arranged adjacent to the removal chamber 1 via a gate valve 9. In this film forming chamber 10, the silicon substrate 3 from which the natural oxide film has been removed in the removing chamber 1 passes through the gate valve 9 in an airtight manner without coming into contact with the outside air, and is transported into the film forming chamber 10 to be transferred to the silicon substrate. The film forming process of No. 3 is performed. A substrate support 11 having a heating device 11a for mounting a silicon substrate 3 is arranged in the film forming chamber 10, and a gas supply pipe for film forming reaction for supplying a film forming reaction gas into the film forming chamber 10. 12 and a vacuum exhaust pipe 13 for exhausting the inside of the film forming chamber 10 are provided.

【0018】上述したように構成された自然酸化膜の
「その場」除去装置においては、まず、除去室1内を真
空排気管13を介して図示しない真空排気手段により真
空排気した後、1ppm〜100ppm程度の極微量の
シラン類ガスが添加された水素ガスをガス供給管4から
除去室1内に供給する。加熱手段2a及び8によりそれ
ぞれシリコン基板3及び光入射窓7を500℃〜600
℃程度に加熱する。シリコン基板3と同程度の温度に加
熱された光入射窓7を介して、シラン類ガスを光化学分
解する波長の光を光源6から除去室1内のシリコン基板
3に照射する。従来に比べてより低温に加熱されたシリ
コン基板3は、極微量シラン類ガスの添加された水素ガ
ス中で光照射を受けながら、ベークされてシリコン基板
3表面の自然酸化膜が除去される。
In the "in-situ" removal apparatus for the natural oxide film constructed as described above, first, the inside of the removal chamber 1 is evacuated by the vacuum evacuation means (not shown) through the evacuation tube 13, and then 1 ppm- Hydrogen gas to which an extremely small amount of silane gas of about 100 ppm is added is supplied from the gas supply pipe 4 into the removal chamber 1. The silicon substrate 3 and the light incident window 7 are respectively heated by the heating means 2a and 8 from 500 ° C to 600 ° C.
Heat to about ℃. Light having a wavelength that photochemically decomposes the silane gas is irradiated from the light source 6 to the silicon substrate 3 in the removal chamber 1 through the light incident window 7 that is heated to the same temperature as the silicon substrate 3. The silicon substrate 3 heated to a temperature lower than that of the conventional one is baked while being irradiated with light in a hydrogen gas containing an extremely small amount of silane gas, and the natural oxide film on the surface of the silicon substrate 3 is removed.

【0019】この時、光入射窓7はシリコン基板3の加
熱処理温度と同程度以上の温度に加熱されているため、
光入射窓7に堆積しようとするシリコンは、上記(4)式
に類似する機構によりSiOに変換されて蒸発し、結果
として光入射窓7は清浄なままに保持されることにな
る。このように、従来の光エネルギーを利用するプロセ
スにおいて最も厄介な問題の一つであった光入射窓7へ
の膜堆積に起因する励起光入射の阻害は、光入射窓7を
上述のように加熱することにより完全に回避することが
できる。
At this time, since the light incident window 7 is heated to a temperature equal to or higher than the heat treatment temperature of the silicon substrate 3,
The silicon to be deposited on the light incident window 7 is converted to SiO by a mechanism similar to the above formula (4) and evaporated, and as a result, the light incident window 7 is kept clean. As described above, the inhibition of the excitation light incidence due to the film deposition on the light incident window 7, which is one of the most troublesome problems in the conventional process utilizing the light energy, causes the light incident window 7 to be blocked as described above. It can be completely avoided by heating.

【0020】自然酸化膜が除去されたシリコン基板3
は、外気に触れることなくゲートバルブ9を介して成膜
室10に搬送される。この成膜室10内は、予め真空排
気管13による真空排気した後、成膜反応用ガスがガス
供給管12から供給されている。基板支持台11に載置
されたシリコン基板3は、所定の成膜処理が行われる。
Silicon substrate 3 from which the natural oxide film has been removed
Are transferred to the film forming chamber 10 through the gate valve 9 without being exposed to the outside air. The inside of the film forming chamber 10 is evacuated by a vacuum exhaust pipe 13 in advance, and then a film forming reaction gas is supplied from a gas supply pipe 12. The silicon substrate 3 placed on the substrate support 11 is subjected to a predetermined film forming process.

【0021】なお、上述した実施例における成膜室10
での成膜処理は、光化学反応的に実施する必要はなく、
熱CVDやプラズマCVDその他の処理方法であっても
よい。また、自然酸化膜除去以後の工程では、成膜以外
の種々の処理を行うことができる。
Incidentally, the film forming chamber 10 in the above-mentioned embodiment.
It is not necessary to carry out the film formation process in
A thermal CVD method, a plasma CVD method, or another processing method may be used. Further, in the steps after the removal of the natural oxide film, various kinds of processing other than film formation can be performed.

【0022】[0022]

【発明の効果】以上説明したとおり、この発明の請求項
第1項に係る発明は、極微量のシラン類ガスを添加した
水素雰囲気中で、このシラン類ガスの光化学分解する波
長の光を照射しながら、以後の処理直前のシリコン基板
を加熱処理するので、ベークによるシリコン自然酸化膜
の「その場」除去に必要な温度を大幅に低下させること
ができ、LSIプロセスへも適用可能であるという効果
を奏する。
As described above, the invention according to claim 1 of the present invention irradiates with light having a wavelength that photochemically decomposes this silane gas in a hydrogen atmosphere to which an extremely small amount of silane gas is added. However, since the silicon substrate immediately before the subsequent processing is heat-treated, the temperature required for the "in-situ" removal of the native silicon oxide film by baking can be significantly reduced, and it is also applicable to the LSI process. Produce an effect.

【0023】この発明の請求項第2項に係る発明は、シ
リコン基板が内部に配置され、極微量のシラン類ガスが
添加された水素ガスが供給されるチャンバに設けられ、
かつ、このチャンバ外部に設けられた光源からの光をチ
ャンバ内に入射する光入射窓を、上記シリコン基板の加
熱処理温度と同程度以上に加熱して、以後の処理直前の
シリコン基板を加熱処理するので、光入射窓に膜堆積が
起こるのを防止し、入射光が阻害されるのを回避できる
という効果を奏する。
The invention according to claim 2 of the present invention is provided in a chamber in which a silicon substrate is disposed inside and a hydrogen gas to which an extremely small amount of silane gas is added is supplied.
Moreover, the light incident window for entering the light from the light source provided outside the chamber into the chamber is heated to a temperature equal to or higher than the heat treatment temperature of the silicon substrate, and the silicon substrate immediately before the heat treatment is heat treated. Therefore, it is possible to prevent the film from being deposited on the light incident window and prevent the incident light from being obstructed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例によるシリコン自然酸化膜
の「その場」除去装置を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an “in-situ” removal apparatus for a silicon native oxide film according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 除去室 2、11 基板支持台 2a、8、11a 加熱装置 3 シリコン基板 4、12 ガス供給管 5、13 真空排気管 6 光源 7 光入射窓 9 ゲートバルブ 10 成膜室 12 ガス供給管 1 Removal chamber 2, 11 Substrate support 2a, 8, 11a Heating device 3 Silicon substrate 4, 12 Gas supply pipe 5, 13 Vacuum exhaust pipe 6 Light source 7 Light entrance window 9 Gate valve 10 Film formation chamber 12 Gas supply pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 極微量のシラン類ガスを添加した水素雰
囲気中で、このシラン類ガスを光化学分解する波長の光
を照射しながら、以後の処理直前のシリコン基板を加熱
処理することを特徴とするシリコン自然酸化膜の「その
場」除去方法。
1. A silicon substrate immediately before the subsequent treatment is heat-treated while irradiating light having a wavelength that photochemically decomposes the silane gas in a hydrogen atmosphere to which an extremely small amount of silane gas is added. "In-situ" removal method of native silicon oxide film.
【請求項2】 シリコン基板が内部に配置され、極微量
のシラン類ガスが添加された水素ガスが供給されるチャ
ンバに設けられ、かつ、このチャンバ外部に設けられた
光源からの光をチャンバ内に入射する光入射窓を、上記
シリコン基板の加熱処理温度と同程度以上に加熱して、
以後の処理直前のシリコン基板を加熱処理することを特
徴とするシリコン自然酸化膜の「その場」除去装置。
2. A silicon substrate is provided inside a chamber provided with a hydrogen gas to which an extremely small amount of silane gas is added, and light from a light source provided outside this chamber is introduced into the chamber. The light incident window incident on is heated to a temperature equal to or higher than the heat treatment temperature of the silicon substrate,
An "in-situ" removal apparatus for a natural silicon oxide film, which is characterized by heat-treating a silicon substrate immediately before the subsequent processing.
JP11159192A 1992-04-30 1992-04-30 'on the spot' elimination method and device of silicon natural oxide film Pending JPH05308064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11159192A JPH05308064A (en) 1992-04-30 1992-04-30 'on the spot' elimination method and device of silicon natural oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11159192A JPH05308064A (en) 1992-04-30 1992-04-30 'on the spot' elimination method and device of silicon natural oxide film

Publications (1)

Publication Number Publication Date
JPH05308064A true JPH05308064A (en) 1993-11-19

Family

ID=14565250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11159192A Pending JPH05308064A (en) 1992-04-30 1992-04-30 'on the spot' elimination method and device of silicon natural oxide film

Country Status (1)

Country Link
JP (1) JPH05308064A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147267A (en) * 1993-11-24 1995-06-06 Nec Corp Fine wiring formation device
JPH07176627A (en) * 1993-12-17 1995-07-14 Nec Corp Fabrication of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147267A (en) * 1993-11-24 1995-06-06 Nec Corp Fine wiring formation device
JPH07176627A (en) * 1993-12-17 1995-07-14 Nec Corp Fabrication of semiconductor device

Similar Documents

Publication Publication Date Title
US4940505A (en) Method for growing single crystalline silicon with intermediate bonding agent and combined thermal and photolytic activation
US6150265A (en) Apparatus for forming materials
US8309440B2 (en) Method and apparatus for cleaning a substrate surface
US5490896A (en) Photomask or a light shielding member having a light transmitting portion and a light shielding portion
JP3048749B2 (en) Thin film formation method
WO2004093175A1 (en) Hydrogen plasma downflow processing method and hydrogen plasma downflow processing apparatus
JPS61117822A (en) Equipment for manufacturing semiconductor device
JPH07321046A (en) Device and method for thin film formation
JPH0496226A (en) Manufacture of semiconductor device
JPH05308064A (en) 'on the spot' elimination method and device of silicon natural oxide film
JP2771472B2 (en) Method for manufacturing semiconductor device
US6281122B1 (en) Method for forming materials
JP3240305B2 (en) Solid growth method
JPH0630354B2 (en) Drying method for Si surface
JPS59163831A (en) Manufacture of semiconductor device and manufacturing apparatus therefor
JPS61247035A (en) Surface treating device
JPH0978245A (en) Formation of thin film
JPH0517291A (en) Treatment of substrate for deposition of diamond thin film
JPS6276632A (en) Surface treatment device
JPH0294430A (en) Photo-assisted cvd apparatus
JPH0689455B2 (en) Thin film formation method
JPH04247620A (en) Method for removing silicon oxide film
JPH1012580A (en) Cleaning method of silicon substrate surface and equipment therefor
JPH04214626A (en) Method of removing the oxide film from silicon substrate
JPH03255628A (en) Surface cleaning device and process