JPH0978245A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPH0978245A
JPH0978245A JP23178795A JP23178795A JPH0978245A JP H0978245 A JPH0978245 A JP H0978245A JP 23178795 A JP23178795 A JP 23178795A JP 23178795 A JP23178795 A JP 23178795A JP H0978245 A JPH0978245 A JP H0978245A
Authority
JP
Japan
Prior art keywords
thin film
film
substrate
film forming
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23178795A
Other languages
Japanese (ja)
Inventor
Senichi Hayashi
専一 林
Nobumasa Suzuki
伸昌 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP23178795A priority Critical patent/JPH0978245A/en
Publication of JPH0978245A publication Critical patent/JPH0978245A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form a stable thin film having high performance at a low temp. at high speed by transporting the substrate formed with the thin film in a film forming chamber into a treating chamber and irradiating the thin film surface with UV rays in vacuum. SOLUTION: The substrate 102 is installed onto the anode 104 of the film forming chamber 101 and the inside of the film forming chamber 101 is evacuated. Prescribed gases (for example, SiH4 and H2 ) are introduced from a gas introducing pipe 106 into the film forming chamber 101 and while these gases are kept at a desired pressure, a DC voltage is impressed between an anode 104 and a cathode 103 from a power source 107 to form plasma near the cathode 103 and to form a thin film (for example, silicon nitride film) on the substrate 102 surface. The substrate 102 is then transported into a treating chamber 109 in such a manner that there is no difference pressure between the film forming chamber 101 and a treating chamber 109. The substrate is placed on a susceptor 110. The inside of the treating chamber 109 is held at about 10<-6> Torr via a discharge pipe 111 and UV rays are emitted from a light source 114 (for example, an ultra-high pressure mercury lamp, etc.). The film on the substrate 102 is irradiated with the required quantity of the UV rays through a quartz member 113.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、薄膜形成方法、特
に、低温で高品質な薄膜を形成する薄膜形成方法に関す
る。
TECHNICAL FIELD The present invention relates to a thin film forming method, and more particularly to a thin film forming method for forming a high quality thin film at a low temperature.

【0002】[0002]

【従来の技術】薄膜形成方法の一例であるマイクロ波C
VD方法によるポリカーボネート上への成膜は例えば次
のように行われる。マイクロ波プラズマCVD装置の成
膜室内に原料ガスを導入し、同時にマイクロ波エネルギ
ーを投入して該成膜室内にプラズマを発生させ該ガスを
励起、分解して該成膜室内に配置された基体上に堆積膜
の薄膜を形成する。更に必要な場合には薄膜を形成させ
た基体を処理室に輸送し後処理を行う。
2. Description of the Related Art Microwave C as an example of a thin film forming method
The film formation on the polycarbonate by the VD method is performed as follows, for example. A substrate placed in the film forming chamber by introducing a source gas into the film forming chamber of a microwave plasma CVD apparatus and simultaneously inputting microwave energy to generate plasma in the film forming chamber to excite and decompose the gas. A thin film of the deposited film is formed on top. Further, if necessary, the substrate on which the thin film is formed is transported to the processing chamber for post-treatment.

【0003】後処理方法で一般的なものとしてはアニー
ル法が挙げられる。この方法はまず処理室に成膜後の基
板を配置し、処理室を真空排気もしくは大気雰囲気でヒ
ーターなどにより熱エネルギーを投入して、薄膜を処理
するものである。
A commonly used post-treatment method is an annealing method. In this method, first, a substrate after film formation is placed in a processing chamber, and thermal energy is applied to the processing chamber by evacuation or an air atmosphere with a heater or the like to process a thin film.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来例では、薄膜部分のみならず、基板の方の温度が上昇
し、ポリカーボネートなどのプラスチック基板を用いる
場合基板が熱変形する等の問題があった。
However, in the above-mentioned conventional example, there is a problem that not only the thin film portion but also the temperature of the substrate rises and the substrate is thermally deformed when a plastic substrate such as polycarbonate is used. .

【0005】本発明の目的は、従来例の問題点を解決
し、基体の温度上昇を抑えつつ薄膜形成直後の薄膜に処
理を施して低温で高性能かつ安定した薄膜を高速に形成
する薄膜形成方法を提供することにある。
An object of the present invention is to solve the problems of the prior art and to form a thin film which is high in performance and stable at low temperature at high speed by treating the thin film immediately after forming the thin film while suppressing the temperature rise of the substrate. To provide a method.

【0006】[0006]

【課題を解決するための手段】本発明では、薄膜を形成
した基体を低温のままで、薄膜に選択的に吸収される紫
外線を照射することにより、薄膜を構成する分子の電子
状態を励起し例えば水素解離反応等の反応を誘起する。
これにより基板温度上昇を抑えつつ膜質を向上させるこ
とができる。
In the present invention, the electronic state of the molecules forming the thin film is excited by irradiating the thin film-formed substrate at a low temperature with ultraviolet rays selectively absorbed by the thin film. For example, a reaction such as a hydrogen dissociation reaction is induced.
This makes it possible to improve the film quality while suppressing the substrate temperature rise.

【0007】さて、ここで本発明の薄膜形成方法の一般
的な構成を図を参照して示す。図1は成膜室と処理室の
模式的断面図である。101は成膜室、102は基体、
103は陰極、104は基体102の支持体を兼ねた陽
極、105は排気管、106はガス導入管、107は直
流電源、108はゲートバルブ、109は処理室、11
0は基体102の支持体、111は排気管、112はガ
ス導入管、113は石英部材、114は光源である。
Now, a general structure of the thin film forming method of the present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view of a film forming chamber and a processing chamber. 101 is a film forming chamber, 102 is a substrate,
Reference numeral 103 is a cathode, 104 is an anode that also serves as a support for the substrate 102, 105 is an exhaust pipe, 106 is a gas introduction pipe, 107 is a DC power supply, 108 is a gate valve, 109 is a processing chamber, 11
Reference numeral 0 is a support for the base 102, 111 is an exhaust pipe, 112 is a gas introduction pipe, 113 is a quartz member, and 114 is a light source.

【0008】成膜室101内の陽極104上に基体10
2を設置し、成膜室101内を排気する。次にガス導入
管106から目的に応じて特定のガスを成膜室101内
に導入し、成膜室101内の圧力を所望の圧力に保ちな
がら、陽極104と陰極103との間に直流電圧を印加
する。陰極103近傍にプラズマが立ち、基体102の
表面に膜が成膜される。基体に所定の薄膜が形成された
後、さらに成膜室101内及び処理室109内を排気系
(不図示)を介して、10-6Torrの値まで減圧させ
る。成膜室101と処理室109の差圧がないのを確認
しゲートバルブ108を開けて基体102を成膜室10
1から処理室109に輸送し支持体110に設置する。
排気管111側に設けられたコンダクタンスバルブ(不
図示)を全開にし、圧力を10-6Torr程度に保持す
る。次に光源114(例えば超高圧水銀ランプ等)から
紫外線を発射し、石英部材113を通して基体102上
の膜に必要な量照射する。
The substrate 10 is placed on the anode 104 in the film forming chamber 101.
2 is installed and the inside of the film forming chamber 101 is evacuated. Next, a specific gas is introduced into the film forming chamber 101 from the gas introducing pipe 106 according to the purpose, and a DC voltage is applied between the anode 104 and the cathode 103 while maintaining the pressure in the film forming chamber 101 at a desired pressure. Is applied. Plasma is generated in the vicinity of the cathode 103, and a film is formed on the surface of the base 102. After a predetermined thin film is formed on the substrate, the inside of the film forming chamber 101 and the inside of the processing chamber 109 are further decompressed to a value of 10 −6 Torr through an exhaust system (not shown). After confirming that there is no pressure difference between the film forming chamber 101 and the processing chamber 109, the gate valve 108 is opened to deposit the substrate 102 on the film forming chamber 10.
1 to the processing chamber 109 and set on the support 110.
A conductance valve (not shown) provided on the exhaust pipe 111 side is fully opened to maintain the pressure at about 10 -6 Torr. Next, ultraviolet rays are emitted from a light source 114 (for example, an ultra-high pressure mercury lamp or the like), and a necessary amount of light is applied to the film on the substrate 102 through the quartz member 113.

【0009】本発明の薄膜形成方法は、使用するガスを
適宜選択することにより窒化シリコン膜、酸化シリコン
膜、酸化タンタル膜、酸化チタン膜、窒化チタン膜、酸
化アルミニウム膜、窒化アルミニウム膜、弗化マグネシ
ウム膜などの絶縁膜、a−Si、poly−Si、Si
C、GaAs等の半導体膜、各種の堆積膜の薄膜を形成
させることが可能である。
In the thin film forming method of the present invention, a silicon nitride film, a silicon oxide film, a tantalum oxide film, a titanium oxide film, a titanium nitride film, an aluminum oxide film, an aluminum nitride film, or a fluoride is selected by appropriately selecting a gas to be used. Insulating film such as magnesium film, a-Si, poly-Si, Si
It is possible to form a semiconductor film of C, GaAs or the like, or a thin film of various deposited films.

【0010】本発明の薄膜形成方法により成膜する基体
は導電性のものであっても、電気絶縁性のものであって
も、半導体であってもよいが、特に耐熱性の低い基板上
への薄膜形成に有効である。
The substrate formed by the thin film forming method of the present invention may be a conductive substance, an electrically insulating substance or a semiconductor, but especially on a substrate having low heat resistance. Is effective for forming a thin film.

【0011】導電性基体としてはFe、Ni、Cr、A
l、Mo、Au、Nb、Ta、V、Ti、Pt、Pbな
どの金属又はこれらの合金、例えば真鍮、ステンレス鋼
等が挙げられる。
As the conductive substrate, Fe, Ni, Cr, A
Examples thereof include metals such as 1, Mo, Au, Nb, Ta, V, Ti, Pt, and Pb or alloys thereof, such as brass and stainless steel.

【0012】絶縁性基体としては、ポリエチレン、ポリ
エステル、ポリカーボネート、セルロースアセテート、
ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデ
ン、ポリスチレン、ポリアミドなどの有機物のフィル
ム、シートなどが挙げられる。基体の耐熱温度が100
℃以下である材質の場合には基板の温度上昇がほとんど
なく変形または溶融しないという理由により特に好まし
く本発明が有効である。
As the insulating substrate, polyethylene, polyester, polycarbonate, cellulose acetate,
Examples thereof include films and sheets of organic materials such as polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene and polyamide. Heat resistant temperature of substrate is 100
In the case of a material having a temperature of ℃ or less, the present invention is particularly preferable because the substrate hardly rises in temperature and is not deformed or melted.

【0013】本発明の薄膜形成方法に用いる好ましい紫
外線の波長は400nm以下で、薄膜で吸収され、薄膜
を構成する分子の電子状態を励起するのに最も有効な波
長領域を選択する。薄膜が窒化シリコン膜で屈折率が
2.1〜2.4の範囲であれば、この範囲外である場合
に比較して照射する紫外線の波長が300〜400nm
であるメリットがあって本発明の目的が一層好ましく達
成される。例えば屈折率2.1〜2.4の窒化シリコン
膜の場合では透過率が5〜70%になる300〜400
nmの波長の紫外線を照射することで、水素含有率の少
ない良質な膜が形成される。透過率が5%未満では紫外
線が膜表面でほとんど反射しその照射効果が不十分とな
り、70%を越えると膜中を紫外線が7割以上透過する
ので、十分な反応が進まなくなる。波長が300nm未
満の紫外線を照射した場合は、紫外線は薄膜のごく表面
付近で吸収されてしまい薄膜全体については十分な反応
が進まず膜質の改善が全体としては観られない。波長4
00nmより長い波長では膜中を透過するので、反応が
ほとんど進まない。
The wavelength of ultraviolet rays preferably used in the thin film forming method of the present invention is 400 nm or less, and the wavelength region which is absorbed by the thin film and excites the electronic state of the molecules constituting the thin film is selected. If the thin film is a silicon nitride film and the refractive index is in the range of 2.1 to 2.4, the wavelength of ultraviolet rays to be irradiated is 300 to 400 nm, as compared with the case where the refractive index is out of this range.
Therefore, the object of the present invention can be achieved more preferably. For example, in the case of a silicon nitride film having a refractive index of 2.1 to 2.4, the transmittance is 300 to 400, which is 5 to 70%.
By irradiation with ultraviolet rays having a wavelength of nm, a high-quality film having a low hydrogen content is formed. If the transmittance is less than 5%, most of the ultraviolet rays are reflected on the surface of the film and the irradiation effect becomes insufficient, and if it exceeds 70%, 70% or more of the ultraviolet rays pass through the film, and a sufficient reaction cannot proceed. When ultraviolet rays having a wavelength of less than 300 nm are irradiated, the ultraviolet rays are absorbed near the surface of the thin film, the reaction of the entire thin film does not proceed, and the improvement of the film quality cannot be seen as a whole. Wavelength 4
Since the light having a wavelength longer than 00 nm penetrates through the film, the reaction hardly progresses.

【0014】また紫外線を放出する光源としてはキセノ
ンランプ、水銀ランプ、ハロゲンランプ等のランプやA
rレーザー、He−Neレーザー、N2 レーザー等のレ
ーザーが挙げられる。さらにパルスレーザー、フラッシ
ュランプなどのパルス発振の光源を用いると光エネルギ
ーが短時間に集中して薄膜の反応を促進させるため膜質
改善の効果をより大きく発揮する。
As a light source for emitting ultraviolet rays, a lamp such as a xenon lamp, a mercury lamp, a halogen lamp, or A
Lasers such as r lasers, He-Ne lasers, N 2 lasers and the like can be mentioned. Furthermore, when a pulsed light source such as a pulse laser or a flash lamp is used, the light energy is concentrated in a short time to promote the reaction of the thin film, and thus the effect of improving the film quality is exerted more effectively.

【0015】本発明の薄膜形成方法は薄膜に吸収される
紫外線の作用によるため、基板を低温に保ったままで効
果を得ることができる。
Since the thin film forming method of the present invention is based on the action of ultraviolet rays absorbed by the thin film, the effect can be obtained while keeping the substrate at a low temperature.

【0016】また、本発明の薄膜形成方法は処理室内で
紫外線を照射することを特徴としているが処理室内を真
空にして行なう場合とガスを導入しそのガス雰囲気中で
行なう場合がある。例えば、窒化シリコン膜を形成する
場合には窒素ガス雰囲気で紫外線を照射することにより
真空中で行なうよりも水素含有率が少ない良質な膜が形
成される。
Further, the thin film forming method of the present invention is characterized by irradiating ultraviolet rays in the processing chamber, but it may be performed in a vacuum atmosphere in the processing chamber or in a gas atmosphere in which gas is introduced. For example, when a silicon nitride film is formed, by irradiating ultraviolet rays in a nitrogen gas atmosphere, a high-quality film having a lower hydrogen content than that in vacuum is formed.

【0017】以下実施例を挙げて本発明を具体的に説明
するが、本発明はこれら実施例に限定されるものではな
い。
The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0018】[0018]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施例1 本発明の薄膜形成方法を光磁気ディスク用窒化シリコン
膜形成に応用した実施例を図1を用いて説明する。図1
は成膜室及び処理室の断面図である。
Example 1 An example in which the thin film forming method of the present invention is applied to the formation of a silicon nitride film for a magneto-optical disk will be described with reference to FIG. FIG.
FIG. 3 is a cross-sectional view of a film forming chamber and a processing chamber.

【0019】基体102としては、ポリカーボネート
(PC)基板[φ3.5インチ、耐熱温度60℃]を使
用した。まず基体102を陽極104に設置し、成膜室
101内を排気した。次にガス導入管106からSiH
4 とN2 を成膜室101内に導入し、成膜室101内の
圧力を1〜20Torrの範囲に保ちながら、陽極10
4と陰極103との間に直流電圧を印加した。陰極10
3近傍にプラズマが立ち、基体102の表面に窒化シリ
コン膜が成膜された。さらに成膜室101内及び処理室
109内を排気系(不図示)を介して、10-6Torr
の値まで減圧させた。成膜室101と処理室109の差
圧がないのを確認しゲートバルブ108を開けて基体1
02を成膜室101から処理室109に輸送し支持体1
10に設置した。排気管111側に設けられたコンダク
タンスバルブ(不図示)を全開にし、圧力を10-6To
rrに保持した。次に超高圧水銀ランプ114から紫外
線を発射し、石英部材113を通して基体102上の窒
化シリコン膜に照射した。
As the base 102, a polycarbonate (PC) substrate [φ3.5 inch, heat resistant temperature 60 ° C.] was used. First, the substrate 102 was placed on the anode 104, and the inside of the film forming chamber 101 was evacuated. Next, from the gas introduction pipe 106, SiH
4 and N 2 are introduced into the film forming chamber 101, and the pressure in the film forming chamber 101 is kept in the range of 1 to 20 Torr while the anode 10
A DC voltage was applied between 4 and the cathode 103. Cathode 10
Plasma was generated in the vicinity of 3 and a silicon nitride film was formed on the surface of the substrate 102. Further, the inside of the film forming chamber 101 and the inside of the processing chamber 109 are passed through an exhaust system (not shown) to 10 −6 Torr.
The pressure was reduced to the value of. After confirming that there is no pressure difference between the film forming chamber 101 and the processing chamber 109, the gate valve 108 is opened to open the substrate 1.
02 is transported from the film forming chamber 101 to the processing chamber 109 and the support 1
It was installed at 10. Fully open a conductance valve (not shown) provided on the exhaust pipe 111 side to adjust the pressure to 10 -6 To.
rr. Next, ultraviolet rays were emitted from the ultra-high pressure mercury lamp 114 to irradiate the silicon nitride film on the substrate 102 through the quartz member 113.

【0020】次に示す表1にSi−NとSi−Hの吸収
係数(吸光度を膜厚で割った値、単位:μm-1)を示し
た。紫外線処理なしのものと今回の真空中で紫外線処理
をしたものとを比べるとSi−Nの吸収係数は変わらず
Si−Hの吸収係数が13%減りその分水素含有率が減
ったことが確認できた。よって紫外線がSi−Hの結合
を切り、切り放された水素原子が脱離されたものと考え
られる。低温(PC基板に変形が観られないことから6
0℃以下)で膜中の水素含有率が少ない良質な窒化シリ
コン膜を成膜することができた。
The following Table 1 shows the absorption coefficients of Si-N and Si-H (the value obtained by dividing the absorbance by the film thickness, unit: μm -1 ). It was confirmed that the absorption coefficient of Si-N did not change and the absorption coefficient of Si-H decreased by 13%, and the hydrogen content decreased correspondingly when comparing the one without ultraviolet treatment with the one treated with ultraviolet light in this vacuum. did it. Therefore, it is considered that the ultraviolet rays cut the Si—H bond and the released hydrogen atoms were released. Low temperature (6 because no deformation is seen on the PC board
At 0 ° C. or lower), a high-quality silicon nitride film having a low hydrogen content in the film could be formed.

【0021】[0021]

【表1】 実施例2 本発明の薄膜形成方法を光磁気ディスク用窒化シリコン
膜に応用した実施例を図1・表2を用いて説明する。図
1は処理室の断面図である。
[Table 1] Example 2 An example in which the thin film forming method of the present invention is applied to a silicon nitride film for a magneto-optical disk will be described with reference to FIGS. FIG. 1 is a sectional view of a processing chamber.

【0022】基体102としては、ポリカーボネート
(PC)基板[φ3.5インチ、耐熱温度60℃]を使
用した。まず基体102を陽極104に設置し、成膜室
101内を排気した。次にガス導入管106からSiH
4 とN2 を成膜室101内に導入し、成膜室101内の
圧力を1〜20Torrの範囲に保ちながら、陽極10
4と陰極103との間に直流電圧を印加した。陰極10
3近傍にプラズマが立ち、基体102の表面に窒化シリ
コン膜が成膜された。さらに成膜室101内及び処理室
109内を排気系(不図示)を介して、10-6Torr
の値まで減圧させた。成膜室101と処理室109の差
圧がないのを確認しゲートバルブ108を開けて基体1
02を成膜室101から処理室109に輸送し支持体1
10に設置した。排気管111側に設けられたコンダク
タンスバルブ(不図示)を全開にし、圧力を10-6To
rrまで減圧させた。次にガス導入管112より窒素ガ
スを導入し排気管111側に設けられたコンダクタンス
バルブ(不図示)を調整し、圧力を760Torrに保
持した。次に光源114から紫外線を発射し、石英部材
113を通して基体102上の窒化シリコン膜に照射し
た。
As the base 102, a polycarbonate (PC) substrate [φ3.5 inch, heat resistant temperature 60 ° C.] was used. First, the substrate 102 was placed on the anode 104, and the inside of the film forming chamber 101 was evacuated. Next, from the gas introduction pipe 106, SiH
4 and N 2 are introduced into the film forming chamber 101, and the pressure in the film forming chamber 101 is kept in the range of 1 to 20 Torr while the anode 10
A DC voltage was applied between 4 and the cathode 103. Cathode 10
Plasma was generated in the vicinity of 3 and a silicon nitride film was formed on the surface of the substrate 102. Further, the inside of the film forming chamber 101 and the inside of the processing chamber 109 are passed through an exhaust system (not shown) to 10 −6 Torr.
The pressure was reduced to the value of. After confirming that there is no pressure difference between the film forming chamber 101 and the processing chamber 109, the gate valve 108 is opened to open the substrate 1.
02 is transported from the film forming chamber 101 to the processing chamber 109 and the support 1
It was installed at 10. Fully open a conductance valve (not shown) provided on the exhaust pipe 111 side to adjust the pressure to 10 -6 To.
The pressure was reduced to rr. Next, nitrogen gas was introduced from the gas introduction pipe 112 and a conductance valve (not shown) provided on the exhaust pipe 111 side was adjusted to maintain the pressure at 760 Torr. Next, ultraviolet rays were emitted from the light source 114, and the silicon nitride film on the substrate 102 was irradiated through the quartz member 113.

【0023】また、表2にSi−NとSi−Hの吸収係
数を示した。紫外線処理なしのものと今回の窒素雰囲気
で紫外線処理をしたものとを比べると、Si−Nの吸収
係数は変わらずSi−Hの吸収係数が26%減りその分
水素含有率が減ったことが確認できた。
Table 2 shows absorption coefficients of Si-N and Si-H. Comparing the one without UV treatment and the one with UV treatment in the nitrogen atmosphere this time, the absorption coefficient of Si-N did not change, the absorption coefficient of Si-H decreased by 26%, and the hydrogen content decreased by that amount. It could be confirmed.

【0024】[0024]

【表2】 実施例3 本発明の薄膜形成方法をプラスチックレンズ反射防止用
窒化シリコン膜及び酸化シリコン膜の形成に応用した実
施例を図2を用いて説明する。
[Table 2] Example 3 An example in which the thin film forming method of the present invention is applied to the formation of a plastic lens antireflection silicon nitride film and a silicon oxide film will be described with reference to FIG.

【0025】基体202としては、直径50mmプラス
チック凸レンズを使用した。まず支持体203上に基体
202を配置し、排気管204より成膜室201内を排
気し、10-6Torrの値まで減圧させた。次に、第1
のガス導入管205からSiH4 を100sccm、第
2のガス導入管206からN2 を150sccm、第3
のガス導入管207からArを2slmの流量で成膜室
201内に導入し、排気管204側に設けられたコンダ
クタンスバルブ(不図示)により1mTorrの圧力に
保持する。更に、2.45GHzのマイクロ波電源(不
図示)より発振した1kWの電力をスロット付環状導波
管208を介して成膜室201に導入しプラズマを発生
させた。この際、第2のガス導入管206を介して導入
された窒素ガスは成膜室201内で励起、分解されて窒
素原子などの活性種となり、基体202の方向に輸送さ
れ、第1のガス導入管205を介して導入されたモノシ
ランガスと反応し、窒化シリコン膜が基体202上に2
1nmの厚さで形成された。さらに成膜室201内及び
処理室215内を排気系(不図示)を介して、10 -6
orrの値まで減圧させた。成膜室201と処理室21
5の差圧がないのを確認しゲートバルブ210を開けて
基体202を成膜室201から処理室215に輸送し支
持体216に設置した。排気管211側に設けられたコ
ンダクタンスバルブ(不図示)を全開にし、圧力を10
-6Torrまで減圧させた。次にガス導入管212より
窒素ガスを導入し排気管211側に設けられたコンダク
タンスバルブ(不図示)を調整し、圧力を760Tor
rに保持した。次に光源214から紫外線を発射し、石
英部材213を通して基体202上の窒化シリコン膜に
照射した。
The substrate 202 has a diameter of 50 mm plus
A tic convex lens was used. First, the base body on the support 203
202 is disposed, and the inside of the film forming chamber 201 is exhausted from the exhaust pipe 204.
I feel like 10-6The pressure was reduced to the value of Torr. Then the first
From the gas introduction pipe 205 of SiHFour 100 sccm, first
2 gas introduction pipe 206 to N2 150 sccm, third
Deposition chamber for Ar at a flow rate of 2 slm from the gas introduction pipe 207 of
A connector installed in the exhaust pipe 204 on the exhaust pipe 204 side.
The pressure of 1 mTorr is set by the cactance valve (not shown).
Hold. In addition, a 2.45 GHz microwave power source (not
1kW electric power oscillated from
Plasma is generated by introducing it into the film forming chamber 201 through a tube 208.
I let it. At this time, it is introduced through the second gas introduction pipe 206.
The generated nitrogen gas is excited and decomposed in the film forming chamber 201, and is decomposed.
It becomes an active species such as an elementary atom and is transported toward the substrate 202.
Is introduced through the first gas introduction pipe 205.
The silicon nitride film reacts with the run gas to form 2 on the substrate 202.
It was formed with a thickness of 1 nm. Further, in the film forming chamber 201 and
The inside of the processing chamber 215 is exhausted through an exhaust system (not shown) for 10 -6T
The pressure was reduced to the value of orr. Film forming chamber 201 and processing chamber 21
Check that there is no differential pressure of 5 and open the gate valve 210.
The substrate 202 is transported from the film forming chamber 201 to the processing chamber 215 and supported.
It was installed on the holding body 216. A connector provided on the exhaust pipe 211 side
Fully open the inductance valve (not shown) and set the pressure to 10
-6The pressure was reduced to Torr. Next, from the gas introduction pipe 212
Conductor installed on the exhaust pipe 211 side by introducing nitrogen gas
Adjust the chest valve (not shown) to adjust the pressure to 760 Torr.
held at r. Next, the light source 214 emits ultraviolet rays,
To the silicon nitride film on the substrate 202 through the English member 213.
Irradiated.

【0026】またさらに成膜室201内及び処理室21
5内を排気系(不図示)を介して、10-6Torrの値
まで減圧させた。成膜室201と処理室215の差圧が
ないのを確認しゲートバルブ210を開けて基体202
を処理室215から成膜室201に輸送し支持体203
に設置した。排気管204側に設けられたコンダクタン
スバルブ(不図示)を全開にし、圧力を10-6Torr
まで減圧させた。次に第1のガス導入管205からSi
4 を100sccm、第2のガス導入管206からO
2 を200sccm、第3のガス導入管207からAr
を2slmの流量で成膜室201内に導入し、排気管2
04側に設けられたコンダクタンスバルブ(不図示)に
より1mTorrの圧力に保持した。更に、2.45G
Hzのマイクロ波電源(不図示)より発振した1kWの
電力をスロット付環状導波管208を介して成膜室20
1に導入しプラズマを発生させた。この際、第2のガス
導入管206を介して導入された酸素ガスは成膜室20
1内で励起、分解されて酸素原子などの活性種となり、
基体202の方向に輸送され、第1のガス導入管205
を介して導入されたSiH4 と反応し、酸化シリコン膜
が基体202上に86nmの厚さで形成された。さらに
成膜室201内及び処理室215内を排気系(不図示)
を介して、10-6Torrの値まで減圧させた。成膜室
201と処理室215の差圧がないのを確認しゲートバ
ルブ210を開けて基体202を成膜室201から処理
室215に輸送し支持体216に設置した。排気管21
1側に設けられたコンダクタンスバルブ(不図示)を全
開にし、圧力を10-6Torrまで減圧させ、その圧力
に維持した。次に光源214から紫外線を発射し、石英
部材213を通して基体202上の酸化シリコン膜に照
射した。
Furthermore, inside the film forming chamber 201 and the processing chamber 21.
The inside of 5 was depressurized to a value of 10 −6 Torr through an exhaust system (not shown). After confirming that there is no pressure difference between the film forming chamber 201 and the processing chamber 215, the gate valve 210 is opened to open the substrate 202.
Of the substrate 203 from the processing chamber 215 to the film forming chamber 201.
Installed in. The conductance valve (not shown) provided on the exhaust pipe 204 side is fully opened to adjust the pressure to 10 -6 Torr.
The pressure was reduced to. Next, from the first gas introduction pipe 205, Si
H 4 100 sccm, O from the second gas introduction pipe 206
2 for 200 sccm, Ar from the third gas introduction pipe 207
Is introduced into the film forming chamber 201 at a flow rate of 2 slm, and the exhaust pipe 2
The pressure was maintained at 1 mTorr by a conductance valve (not shown) provided on the 04 side. Furthermore, 2.45G
1 kW of power oscillated from a microwave power source (not shown) of Hz through the slotted annular waveguide 208
1 and plasma was generated. At this time, the oxygen gas introduced through the second gas introducing pipe 206 is used as the film forming chamber 20.
Excited and decomposed in 1 to become active species such as oxygen atom,
The first gas introduction pipe 205 is transported in the direction of the substrate 202.
The silicon oxide film was formed on the base 202 to a thickness of 86 nm by reacting with SiH 4 introduced through the substrate. Further, an exhaust system (not shown) is provided inside the film forming chamber 201 and the processing chamber 215.
The pressure was reduced to a value of 10 −6 Torr via. It was confirmed that there was no pressure difference between the film forming chamber 201 and the processing chamber 215, the gate valve 210 was opened, and the substrate 202 was transported from the film forming chamber 201 to the processing chamber 215 and installed on the support 216. Exhaust pipe 21
The conductance valve (not shown) provided on the first side was fully opened, the pressure was reduced to 10 -6 Torr, and the pressure was maintained. Next, ultraviolet rays were emitted from the light source 214, and the silicon oxide film on the substrate 202 was irradiated through the quartz member 213.

【0027】得られた窒化シリコン膜及び酸化シリコン
膜の膜質は500nm付近の反射率が0.3%と極めて
良好な光学特性であることが確認された。また干渉計で
レンズ表面の曲率を参照レンズと測定比較したが、成膜
による変化は観測されなかった。
It was confirmed that the film quality of the obtained silicon nitride film and silicon oxide film had a very good optical property with a reflectance of 0.3% in the vicinity of 500 nm. Moreover, the curvature of the lens surface was measured and compared with the reference lens by an interferometer, but no change due to film formation was observed.

【0028】実施例4 本発明の薄膜形成方法を光磁気ディスク用窒化シリコン
膜の形成に応用した実施例を図2を用いて説明する。
Embodiment 4 An embodiment in which the thin film forming method of the present invention is applied to the formation of a silicon nitride film for a magneto-optical disk will be described with reference to FIG.

【0029】基体202としては、ポリカーボネート
(PC)基板[φ3.5インチ、耐熱温度60℃]を使
用した。まず支持体203上に基体202を配し、排気
管204より成膜室201内を排気し、10-6Torr
の値まで減圧させた。次に、第1のガス導入管205か
らSiH4 を40sccm、第2のガス導入管206か
らN2 を20sccm、第3のガス導入管207からA
rを200sccmの流量で成膜室201内に導入し、
排気管204側に設けられたコンダクタンスバルブ(不
図示)により6mTorrの圧力に保持する。更に、
2.45GHzのマイクロ波電源(不図示)より発振し
た4kWの電力をスロット付環状導波管208を介して
成膜室201に導入しプラズマを発生させた。この際、
第2のガス導入管206を介して導入された窒素ガスは
成膜室201内で励起、分解されて窒素原子などの活性
種となり、基体202の方向に輸送され、第1のガス導
入管205を介して導入されたSiH4 と反応し、窒化
シリコン膜が基体202上に21nmの厚さで形成され
た。さらに成膜室201内及び処理室215内を排気系
(不図示)を介して、10-6Torrの値まで減圧させ
た。成膜室201と処理室215の差圧がないのを確認
しゲートバルブ210を開けて基体202を成膜室20
1から処理室215に輸送し支持体216に設置した。
排気管211側に設けられたコンダクタンスバルブ(不
図示)を全開にし、圧力を10-6Torrまで減圧させ
た。次にガス導入管212より窒素ガスを導入し排気管
211側に設けられたコンダクタンスバルブ(不図示)
を調整し、圧力を760Torrに保持した。次に窒素
レーザ214から波長337.1nmの紫外線を発射
し、石英部材213を通して基体202上の窒化シリコ
ン膜に照射した。
As the substrate 202, a polycarbonate (PC) substrate [φ3.5 inch, heat resistant temperature 60 ° C.] was used. First, the substrate 202 is placed on the support body 203, and the inside of the film forming chamber 201 is evacuated through the exhaust pipe 204 to reach 10 −6 Torr.
The pressure was reduced to the value of. Next, 40 sccm of SiH 4 from the first gas introducing pipe 205, 20 sccm of N 2 from the second gas introducing pipe 206, and A from the third gas introducing pipe 207.
r is introduced into the film forming chamber 201 at a flow rate of 200 sccm,
A conductance valve (not shown) provided on the exhaust pipe 204 side keeps the pressure at 6 mTorr. Furthermore,
Electric power of 4 kW oscillated from a microwave power source (not shown) of 2.45 GHz was introduced into the film forming chamber 201 through the annular waveguide 208 with slots to generate plasma. On this occasion,
The nitrogen gas introduced through the second gas introducing pipe 206 is excited and decomposed in the film forming chamber 201 to become active species such as nitrogen atoms, which are transported toward the substrate 202, and the first gas introducing pipe 205. The silicon nitride film was formed on the substrate 202 in a thickness of 21 nm by reacting with SiH 4 introduced through the substrate. Further, the inside of the film forming chamber 201 and the inside of the processing chamber 215 were depressurized to a value of 10 −6 Torr via an exhaust system (not shown). After confirming that there is no pressure difference between the film forming chamber 201 and the processing chamber 215, the gate valve 210 is opened and the substrate 202 is attached to the film forming chamber 20.
It was transported from the No. 1 to the processing chamber 215 and installed on the support 216.
A conductance valve (not shown) provided on the exhaust pipe 211 side was fully opened to reduce the pressure to 10 -6 Torr. Next, a conductance valve (not shown) provided on the exhaust pipe 211 side by introducing nitrogen gas from the gas introduction pipe 212
Was adjusted and the pressure was maintained at 760 Torr. Next, ultraviolet light having a wavelength of 337.1 nm was emitted from the nitrogen laser 214, and the silicon nitride film on the substrate 202 was irradiated through the quartz member 213.

【0030】窒素レーザ処理なしのものと窒素レーザ処
理をしたものとを比べると、Si−Nの吸収係数は変わ
らずSi−Hの吸収係数が約2割減りその分水素含有率
が減ったことで膜質改善の効果を確認できた。
Comparing the one without nitrogen laser treatment and the one without nitrogen laser treatment, the absorption coefficient of Si-N did not change, and the absorption coefficient of Si-H decreased by about 20%, and the hydrogen content decreased accordingly. Thus, the effect of improving the film quality was confirmed.

【0031】実施例5 本発明の薄膜形成方法を光磁気ディスク用窒化シリコン
膜の形成に応用した実施例を図2を用いて説明する。
Example 5 An example in which the thin film forming method of the present invention is applied to the formation of a silicon nitride film for a magneto-optical disk will be described with reference to FIG.

【0032】基体202としては、ポリカーボネート
(PC)基板[φ3.5インチ、耐熱温度60℃]を使
用した。まず支持体203上に基体202を配し、排気
管204より成膜室201内を排気し、10-6Torr
の値まで減圧させた。次に、第1のガス導入管205か
らSiH4 を40sccm、第2のガス導入管206か
らN2 を20sccm、第3のガス導入管207からA
rを200sccmの流量で成膜室201内に導入し、
排気管204側に設けられたコンダクタンスバルブ(不
図示)により6mTorrの圧力に保持する。更に、
2.45GHzのマイクロ波電源(不図示)より発振し
た4kWの電力をスロット付環状導波管208を介して
成膜室201に導入しプラズマを発生させた。この際、
第2のガス導入管206を介して導入された窒素ガスは
成膜室201内で励起、分解されて窒素原子などの活性
種となり、基体202の方向に輸送され、第1のガス導
入管205を介して導入されたSiH4 と反応し、窒化
シリコン膜が基体202上に21nmの厚さで形成され
た。さらに成膜室201内及び処理室215内を排気系
(不図示)を介して、10-6Torrの値まで減圧させ
た。成膜室201と処理室215の差圧がないのを確認
しゲートバルブ210を開けて基体202を成膜室20
1から処理室215に輸送し支持体216に設置した。
排気管211側に設けられたコンダクタンスバルブ(不
図示)を全開にし、圧力を10-6Torrまで減圧させ
た。次にガス導入管212より窒素ガスを導入し排気管
211側に設けられたコンダクタンスバルブ(不図示)
を調整し、圧力を760Torrに保持した。次にXe
フラッシュランプから紫外線を発射し、石英部材213
を通して基体202上の窒化シリコン膜膜に照射した。
As the substrate 202, a polycarbonate (PC) substrate [φ3.5 inch, heat resistant temperature 60 ° C.] was used. First, the substrate 202 is placed on the support body 203, and the inside of the film forming chamber 201 is evacuated through the exhaust pipe 204 to reach 10 −6 Torr
The pressure was reduced to the value of. Next, 40 sccm of SiH 4 from the first gas introducing pipe 205, 20 sccm of N 2 from the second gas introducing pipe 206, and A from the third gas introducing pipe 207.
r is introduced into the film forming chamber 201 at a flow rate of 200 sccm,
A conductance valve (not shown) provided on the exhaust pipe 204 side keeps the pressure at 6 mTorr. Furthermore,
Electric power of 4 kW oscillated from a microwave power source (not shown) of 2.45 GHz was introduced into the film forming chamber 201 through the annular waveguide 208 with slots to generate plasma. On this occasion,
The nitrogen gas introduced through the second gas introducing pipe 206 is excited and decomposed in the film forming chamber 201 to become active species such as nitrogen atoms, which are transported toward the substrate 202, and the first gas introducing pipe 205. The silicon nitride film was formed on the substrate 202 in a thickness of 21 nm by reacting with SiH 4 introduced through the substrate. Further, the inside of the film forming chamber 201 and the inside of the processing chamber 215 were depressurized to a value of 10 −6 Torr via an exhaust system (not shown). After confirming that there is no pressure difference between the film forming chamber 201 and the processing chamber 215, the gate valve 210 is opened and the substrate 202 is attached to the film forming chamber 20.
It was transported from the No. 1 to the processing chamber 215 and installed on the support 216.
A conductance valve (not shown) provided on the exhaust pipe 211 side was fully opened to reduce the pressure to 10 -6 Torr. Next, a conductance valve (not shown) provided on the exhaust pipe 211 side by introducing nitrogen gas from the gas introduction pipe 212
Was adjusted and the pressure was maintained at 760 Torr. Next Xe
Ultraviolet rays are emitted from the flash lamp, and the quartz member 213
The silicon nitride film on the substrate 202 was irradiated with the light.

【0033】Xeフラッシュランプ処理なしのものとX
eフラッシュランプ処理をしたものとを比べると、Si
−Nの吸収係数は変わらずSi−Hの吸収係数が約2割
減りその分水素含有率が減ったことで膜質改善の効果を
確認できた。
Xe without flash lamp treatment and X
Compared with the one treated with flash lamp,
The absorption coefficient of -N did not change, and the absorption coefficient of Si-H decreased by about 20%, and the hydrogen content decreased correspondingly, so that the effect of improving the film quality could be confirmed.

【0034】実施例6 本発明の薄膜形成方法を太陽電池用pin接合型光起電
力層の形成に応用した実施例を図2を用いて説明する。
Example 6 An example in which the thin film forming method of the present invention is applied to the formation of a pin junction type photovoltaic layer for a solar cell will be described with reference to FIG.

【0035】基体202としてはステンレス(SUS4
30)上に下部電極としてAl膜をコーティングしたも
のを使用した。まず支持体203上に基体202を配
し、排気管204より成膜室201内を排気し、10-6
Torrまで減圧させた。更に基体202に加熱手段
(不図示)を用いて350℃にまで加熱し保持した。次
に第1のガス導入管205からSiH4 を60scc
m、H2 を100sccm、第2のガス導入管206か
ら1%PH3 /H2 を10sccm、第3のガス導入管
207よりSiF4 を5sccmの流量で導入した。次
に排気管204側に設けられたコンダクタンスバルブ
(不図示)により15mTorrの圧力に保持する。こ
の状態で2.45GHzのマイクロ波電源(不図示)よ
り発振した800Wの電力をスロット付環状導波管20
8を介して成膜室201に導入しプラズマを発生させ
て、基体202上にn型a−Si:H:F膜を形成し
た。さらに成膜室201内及び処理室215内を排気系
(不図示)を介して、10-6Torrの値まで減圧させ
た。成膜室201と処理室215の差圧がないのを確認
しゲートバルブ210を開けて基体202を成膜室20
1から処理室215に輸送し支持体216に設置した。
排気管211側に設けられたコンダクタンスバルブ(不
図示)を全開にし、圧力を10-6Torrまで減圧さ
せ、その圧力に維持した。次に光源214から紫外線を
発射し、石英部材213を通して基体202上のn型a
−Si:H:F膜に照射した。
The base 202 is made of stainless steel (SUS4
30) which was coated with an Al film as the lower electrode was used. First, the substrate 202 is placed on the support 203, and the inside of the film forming chamber 201 is evacuated through the exhaust pipe 204, and 10 −6
The pressure was reduced to Torr. Further, the substrate 202 was heated to 350 ° C. and held by using a heating means (not shown). Next, 60 scc of SiH 4 is fed from the first gas introduction pipe 205.
m, H 2 at 100 sccm, 1% PH 3 / H 2 at 10 sccm from the second gas introduction pipe 206, and SiF 4 at 5 sccm from the third gas introduction pipe 207. Next, a pressure of 15 mTorr is maintained by a conductance valve (not shown) provided on the exhaust pipe 204 side. In this state, 800 W of power oscillated from a 2.45 GHz microwave power source (not shown) is used to form the slotted annular waveguide 20.
The film was introduced into the film forming chamber 201 via 8 and plasma was generated to form an n-type a-Si: H: F film on the substrate 202. Further, the inside of the film forming chamber 201 and the inside of the processing chamber 215 were depressurized to a value of 10 −6 Torr via an exhaust system (not shown). After confirming that there is no pressure difference between the film forming chamber 201 and the processing chamber 215, the gate valve 210 is opened and the substrate 202 is attached to the film forming chamber 20.
It was transported from the No. 1 to the processing chamber 215 and installed on the support 216.
A conductance valve (not shown) provided on the exhaust pipe 211 side was fully opened to reduce the pressure to 10 -6 Torr and maintained at that pressure. Next, ultraviolet rays are emitted from the light source 214, and the n-type a on the substrate 202 is passed through the quartz member 213.
-Si: H: F film was irradiated.

【0036】またさらに成膜室201内及び処理室21
5内が10-6Torrの値まで減圧されているのを確認
し、ゲートバルブ210を開けて基体202を処理室2
15から成膜室201に輸送し支持体203に設置し
た。排気管204側に設けられたコンダクタンスバルブ
(不図示)を全開にし、圧力を10-6Torrまで減圧
させた。次に第1のガス導入管205からSiH4 を3
00sccm、第2のガス導入管206からH2 を10
0sccm、第3のガス導入管207よりSiF 4 を1
0sccmの流量で導入した。さらに排気管204側に
設けられたコンダクタンスバルブ(不図示)により10
mTorrの圧力に保持する。この状態で2.45GH
zのマイクロ波電源(不図示)より発振した1200W
の電力をスロット付環状導波管208を介して成膜室2
01に導入しプラズマを発生させて、n型a−Si:
H:F膜上にi型a−Si:H:F膜を形成した。さら
に成膜室201内及び処理室215内を排気系(不図
示)を介して、10-6Torrの値まで減圧させた。成
膜室201と処理室215の差圧がないのを確認しゲー
トバルブ210を開けて基体202を成膜室201から
処理室215に輸送し支持体216に設置した。排気管
211側に設けられたコンダクタンスバルブ(不図示)
を全開にし、圧力を10-6Torrまで減圧させ、その
圧力に維持した。次に光源214から紫外線を発射し、
石英部材213を通して基体202上のi型a−Si:
H:F膜に照射した。
Furthermore, inside the film forming chamber 201 and the processing chamber 21.
5 is 10-6Confirm that the pressure has been reduced to the value of Torr
Then, the gate valve 210 is opened and the substrate 202 is attached to the processing chamber 2.
15 is transferred to the film forming chamber 201 and installed on the support 203.
Was. Conductance valve provided on the exhaust pipe 204 side
(Not shown) fully open and set the pressure to 10-6Decompress to Torr
I let it. Next, from the first gas introduction pipe 205, SiHFour 3
00 sccm, H from the second gas introduction pipe 2062 10
0 sccm, SiF from the third gas introduction pipe 207 Four 1
It was introduced at a flow rate of 0 sccm. Further on the exhaust pipe 204 side
10 by the conductance valve (not shown) provided
Hold at a pressure of mTorr. 2.45GH in this state
1200W oscillated from a microwave power source (not shown) of z
Power of the film through the annular waveguide with slot 208
01-type a-Si:
An i-type a-Si: H: F film was formed on the H: F film. Further
The inside of the film forming chamber 201 and the processing chamber 215 are exhausted (not shown).
Via) 10-6The pressure was reduced to the value of Torr. Success
Check that there is no differential pressure between the membrane chamber 201 and the processing chamber 215, and
The valve 202 is opened to remove the substrate 202 from the film forming chamber 201.
It was transported to the processing chamber 215 and installed on the support 216. Exhaust pipe
Conductance valve provided on the 211 side (not shown)
Fully open and set the pressure to 10-6Reduce the pressure to Torr,
Maintained at pressure. Next, the ultraviolet rays are emitted from the light source 214,
I-type a-Si on the substrate 202 through the quartz member 213:
The H: F film was irradiated.

【0037】またさらに成膜室201内及び処理室21
5内が10-6Torrの値まで減圧しているのを確認
し、ゲートバルブ210を開けて基体202を処理室2
15から成膜室201に輸送し支持体203に設置し
た。排気管204側に設けられたコンダクタンスバルブ
(不図示)を全開にし、圧力を10-6Torrまで減圧
させた。第1のガス導入管205からSiH4 を20s
ccm、H2 を200sccm、第2のガス導入管20
6から0.3%B26 /H2 を10sccm、第3の
ガス導入管207よりSiF4 を5sccmの流量で導
入した。次に排気管204側に設けられたコンダクタン
スバルブ(不図示)により20mTorrの圧力に保持
する。この状態で2.45GHzのマイクロ波電源(不
図示)より発振した1200Wの電力をスロット付環状
導波管208を介して成膜室201に導入しプラズマを
発生させて、i型a−Si:H:F膜上にp型a−S
i:H:F膜を形成した。さらに成膜室201内及び処
理室215内を排気系(不図示)を介して、10-6To
rrの値まで減圧させた。成膜室201と処理室215
の差圧がないのを確認しゲートバルブ210を開けて基
体202を成膜室201から処理室215に輸送し支持
体216に設置した。排気管211側に設けられたコン
ダクタンスバルブ(不図示)を全開にし、圧力を10-6
Torrまで減圧させ、その圧力に維持した。次に光源
214から紫外線を発射し、石英部材213を通して基
体202上のp型a−Si:H:F膜に照射した。
Furthermore, inside the film forming chamber 201 and the processing chamber 21.
After confirming that the inside of the chamber 5 is depressurized to a value of 10 −6 Torr, the gate valve 210 is opened and the substrate 202 is placed in the processing chamber 2.
It was transported from 15 to the film forming chamber 201 and installed on the support 203. A conductance valve (not shown) provided on the exhaust pipe 204 side was fully opened to reduce the pressure to 10 -6 Torr. SiH 4 from the first gas inlet pipe 205 for 20s
ccm, 200 sccm of H 2 , second gas introduction pipe 20
6 to 0.3% B 2 H 6 / H 2 was introduced at a flow rate of 10 sccm, and SiF 4 was introduced at a flow rate of 5 sccm from the third gas introduction pipe 207. Next, the pressure is maintained at 20 mTorr by a conductance valve (not shown) provided on the exhaust pipe 204 side. In this state, 1200 W of electric power oscillated from a 2.45 GHz microwave power source (not shown) is introduced into the film forming chamber 201 through the annular waveguide with a slot 208 to generate plasma to generate i-type a-Si: H: p-type aS on F film
An i: H: F film was formed. Further, the inside of the film forming chamber 201 and the inside of the processing chamber 215 are passed through an exhaust system (not shown) to 10 −6 To
The pressure was reduced to the value of rr. Deposition chamber 201 and processing chamber 215
After confirming that there is no differential pressure, the gate valve 210 was opened and the substrate 202 was transported from the film forming chamber 201 to the processing chamber 215 and installed on the support 216. Fully open the conductance valve (not shown) provided on the exhaust pipe 211 side to adjust the pressure to 10 −6.
The pressure was reduced to Torr and maintained at that pressure. Next, ultraviolet rays were emitted from the light source 214, and the p-type a-Si: H: F film on the substrate 202 was irradiated through the quartz member 213.

【0038】このように作製した太陽電池の光電変換率
について評価した。0.1W/cm 2 の強度を持つ光照
射下で、光電変換率は8.8%という良好な値を示し、
特性が安定していた。
Photoelectric conversion rate of the solar cell thus manufactured
Was evaluated. 0.1 W / cm 2 With the intensity of
Under irradiation, the photoelectric conversion rate shows a good value of 8.8%,
The characteristics were stable.

【0039】実施例7 本発明の薄膜形成方法を液晶表示用基板の酸化シリコン
膜の形成に応用した実施例を図3を用いて説明する。
Embodiment 7 An embodiment in which the thin film forming method of the present invention is applied to the formation of a silicon oxide film on a liquid crystal display substrate will be described with reference to FIG.

【0040】基体302として電極(ITO膜やAl膜
など)が形成してあるガラスを使用した。まず支持体3
03上に基体302を配し、排気管304より成膜室3
01内を排気し、10-6Torrの値まで減圧させた。
次に第1のガス導入管305からSiH4 を100sc
cm、第2のガス導入管306からO2 を200scc
m、第3のガス導入管307からArを2slmの流量
で成膜室301内に導入し、排気管304側に設けられ
たコンダクタンスバルブ(不図示)により1mTorr
の圧力に保持する。更に、2.45GHzのマイクロ波
電源(不図示)より発振した1kWの電力をスロット付
環状導波管308を介して成膜室301に導入しプラズ
マを発生させた。この際、第2のガス導入管306を介
して導入された酸素ガスは成膜室301内で励起、分解
されて酸素原子などの活性種となり、基体302の方向
に輸送され、第1のガス導入管305を介して導入され
たSiH4 と反応し、酸化シリコン膜が基体302上に
形成された。さらに成膜室301内及び処理室311内
を排気系(不図示)を介して、10-6Torrの値まで
減圧させた。成膜室301と処理室311の差圧がない
のを確認しゲートバルブ310を開けて基体302を成
膜室301から処理室311に輸送し支持体313に設
置した。排気管312側に設けられたコンダクタンスバ
ルブ(不図示)を全開にし、圧力を10-6Torrまで
減圧させ、その圧力に維持した。次にエキシマランプ3
15から紫外線を発射し、石英部材314を通して基体
302上の酸化シリコン膜に照射した。
As the substrate 302, glass having electrodes (ITO film, Al film, etc.) formed thereon was used. First support 3
03, the base 302 is placed on the base plate 03, and the film formation chamber 3
The inside of 01 was evacuated and the pressure was reduced to a value of 10 −6 Torr.
Next, 100 sc of SiH 4 is introduced through the first gas introduction pipe 305.
cm, O 2 200 scc from the second gas introduction pipe 306
m, Ar is introduced from the third gas introduction pipe 307 into the film formation chamber 301 at a flow rate of 2 slm, and 1 mTorr by a conductance valve (not shown) provided on the exhaust pipe 304 side.
Hold at pressure. Further, 1 kW of electric power oscillated from a microwave power source (not shown) of 2.45 GHz was introduced into the film forming chamber 301 through the annular waveguide with slots 308 to generate plasma. At this time, the oxygen gas introduced through the second gas introduction pipe 306 is excited and decomposed in the film forming chamber 301 to become active species such as oxygen atoms, which are transported toward the substrate 302, and the first gas is supplied. By reacting with SiH 4 introduced through the introduction pipe 305, a silicon oxide film was formed on the substrate 302. Further, the inside of the film forming chamber 301 and the inside of the processing chamber 311 were depressurized to a value of 10 −6 Torr through an exhaust system (not shown). After confirming that there was no pressure difference between the film forming chamber 301 and the processing chamber 311, the gate valve 310 was opened and the substrate 302 was transported from the film forming chamber 301 to the processing chamber 311 and installed on the support 313. A conductance valve (not shown) provided on the exhaust pipe 312 side was fully opened to reduce the pressure to 10 −6 Torr, and the pressure was maintained. Next, excimer lamp 3
Ultraviolet rays were emitted from No. 15 to irradiate the silicon oxide film on the substrate 302 through the quartz member 314.

【0041】得られた酸化シリコン膜の絶縁耐圧につい
て評価した。絶縁耐圧は12MV/cmという良好な値
を示し、特性も安定していた。
The withstand voltage of the obtained silicon oxide film was evaluated. The withstand voltage was a good value of 12 MV / cm, and the characteristics were stable.

【0042】[0042]

【発明の効果】以上説明したように、薄膜形成後薄膜透
過率5〜70%紫外線を照射することにより例えば水素
の結合を解離することにより基板温度上昇を抑えつつ例
えば脱水素反応が進み、例えば膜中の水素含有率が少な
くなるなどの膜質改善効果がある。
As described above, after the thin film is formed, by irradiating with ultraviolet rays having a thin film transmittance of 5 to 70%, for example, hydrogen bonds are dissociated to suppress the temperature rise of the substrate and, for example, the dehydrogenation reaction proceeds. There is an effect of improving the film quality such that the hydrogen content in the film decreases.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1及び2に係わる成膜室・処理
室の断面を模式的に示した図である。
FIG. 1 is a diagram schematically showing a cross section of a film forming chamber / processing chamber according to Examples 1 and 2 of the present invention.

【図2】本発明の実施例3〜5に係わる成膜室・処理室
の断面を模式的に示した図である。
FIG. 2 is a diagram schematically showing a cross section of a film forming chamber / processing chamber according to Examples 3 to 5 of the present invention.

【図3】本発明の実施例6に係わる成膜室・処理室の断
面を模式的に示した図である。
FIG. 3 is a diagram schematically showing a cross section of a film forming chamber / processing chamber according to a sixth embodiment of the present invention.

【符号の説明】 101 成膜室 102 基体 103 陰極 104 陽極 105 排気管 106 ガス導入管 107 直流電源 108 ゲートバルブ 109 処理室 110 基体102の支持体 111 排気管 112 ガス導入管 113 石英部材 114 光源 201 成膜室 202 基体 203 基体202の支持体 204 排気管 205 第1のガス導入管 206 第2のガス導入管 207 第3のガス導入管 208 導波管 209 石英部材 210 ゲートバルブ 211 排気管 212 ガス導入管 213 石英部材 214 光源 215 処理室 216 基体202の支持体 301 成膜室 302 基体 303 基体302の支持体 304 排気管 305 第1のガス導入管 306 第2のガス導入管 307 第3のガス導入管 308 マイクロ波導波管 309 石英部材 310 ゲートバルブ 311 処理室 312 排気管 313 基体302の支持体 314 石英部材 315 光源[Explanation of reference numerals] 101 deposition chamber 102 substrate 103 cathode 104 anode 105 exhaust pipe 106 gas introduction pipe 107 direct current power supply 108 gate valve 109 processing chamber 110 support 102 of substrate 102 111 exhaust pipe 112 gas introduction pipe 113 quartz member 114 light source 201 Deposition chamber 202 Base body 203 Support body of base body 204 Exhaust pipe 205 First gas introduction pipe 206 Second gas introduction pipe 207 Third gas introduction pipe 208 Waveguide 209 Quartz member 210 Gate valve 211 Exhaust pipe 212 Gas Introducing pipe 213 Quartz member 214 Light source 215 Processing chamber 216 Support for substrate 202 301 Film forming chamber 302 Substrate 303 Support for substrate 302 304 Exhaust pipe 305 First gas introducing pipe 306 Second gas introducing pipe 307 Third gas Introduction tube 308 Microwave waveguide 309 Stone Support 314 quartz member 315 of the member 310 a gate valve 311 processing chamber 312 exhaust pipe 313 base 302 sources

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/31 H01L 21/31 C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 21/31 H01L 21/31 C

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 化学的気相法により成膜室内で基体上に
薄膜を形成する工程と、該基体を大気に触れることなく
成膜室から処理室に輸送する工程と、該処理室内でガス
雰囲気中または真空中で該薄膜面に紫外線を照射する工
程とを含むことを特徴とする薄膜形成方法。
1. A step of forming a thin film on a substrate in a film forming chamber by a chemical vapor phase method, a step of transporting the substrate from the film forming chamber to a processing chamber without exposure to the atmosphere, and a gas in the processing chamber. And a step of irradiating the surface of the thin film with ultraviolet light in an atmosphere or in a vacuum.
【請求項2】 該紫外線が、該薄膜の透過率が5〜70
%である波長の紫外線を用いることを特徴とする請求項
1に記載の薄膜形成方法。
2. The transmittance of the thin film for the ultraviolet rays is 5 to 70.
2. The method for forming a thin film according to claim 1, wherein ultraviolet rays having a wavelength of% are used.
【請求項3】 該紫外線は時間的に強度が変化するパル
ス光であることを特徴とする請求項1または2に記載の
薄膜形成方法。
3. The method for forming a thin film according to claim 1, wherein the ultraviolet light is pulsed light whose intensity changes with time.
【請求項4】 該基体は、耐熱温度が100℃以下であ
ることを特徴とする請求項1乃至3のいずれかに記載の
薄膜形成方法。
4. The method of forming a thin film according to claim 1, wherein the substrate has a heat resistant temperature of 100 ° C. or lower.
【請求項5】 該基体が、ポリエチレン、ポリエステ
ル、セルロースアセテート、ポリプロピレン、ポリ塩化
ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリアミ
ド、ポリイミド、アクリル樹脂、ゼラチン或いはこれら
を主成分とする高分子化合物であることを特徴とする請
求項1乃至4のいずれかに記載の薄膜形成方法。
5. The substrate is polyethylene, polyester, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, polyimide, acrylic resin, gelatin, or a polymer compound containing these as main components. The thin film forming method according to any one of claims 1 to 4, characterized in that
【請求項6】 該基体がポリカーボネート或いはこれを
主成分とする高分子化合物であることを特徴とする請求
項1乃至4のいずれかに記載の薄膜形成方法。
6. The method for forming a thin film according to claim 1, wherein the substrate is polycarbonate or a polymer compound containing it as a main component.
【請求項7】 該成膜室で形成させた薄膜が、窒化シリ
コン膜、酸化シリコン膜、酸化タンタル膜、酸化チタン
膜、窒化チタン膜、酸化アルミニウム膜、窒化アルミニ
ウム膜、弗化マグネシウム膜などの絶縁膜であることを
特徴とする請求項1乃至6のいずれかに記載の薄膜形成
方法。
7. The thin film formed in the film forming chamber is a silicon nitride film, a silicon oxide film, a tantalum oxide film, a titanium oxide film, a titanium nitride film, an aluminum oxide film, an aluminum nitride film, a magnesium fluoride film, or the like. The thin film forming method according to claim 1, wherein the thin film forming method is an insulating film.
【請求項8】 該薄膜が、屈折率2.1〜2.4の窒化
シリコン膜であることを特徴とする請求項7に記載の薄
膜形成方法。
8. The method for forming a thin film according to claim 7, wherein the thin film is a silicon nitride film having a refractive index of 2.1 to 2.4.
【請求項9】 該紫外線の波長が300nm〜400n
mの範囲であることを特徴とする請求項1乃至8のいず
れかに記載の薄膜形成方法。
9. The wavelength of the ultraviolet light is 300 nm to 400 n.
The method for forming a thin film according to claim 1, wherein the thickness is in the range of m.
【請求項10】 該ガスが窒素であることを特徴とする
請求項1乃至9のいずれかに記載の薄膜形成方法。
10. The thin film forming method according to claim 1, wherein the gas is nitrogen.
【請求項11】 該薄膜がアモルファスシリコン、多結
晶シリコン、SiC、GaAs等の半導体膜であること
を特徴とする請求項1乃至6のいずれかに記載の薄膜形
成方法。
11. The method for forming a thin film according to claim 1, wherein the thin film is a semiconductor film made of amorphous silicon, polycrystalline silicon, SiC, GaAs or the like.
【請求項12】 光磁気ディスクの製造方法における請
求項1乃至10のいずれかに記載の薄膜形成方法。
12. The thin film forming method according to claim 1, which is a method for manufacturing a magneto-optical disk.
【請求項13】 液晶表示素子の製造方法における請求
項1乃至11のいずれかに記載の薄膜形成方法。
13. The thin film forming method according to claim 1, which is a method for manufacturing a liquid crystal display element.
JP23178795A 1995-09-08 1995-09-08 Formation of thin film Pending JPH0978245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23178795A JPH0978245A (en) 1995-09-08 1995-09-08 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23178795A JPH0978245A (en) 1995-09-08 1995-09-08 Formation of thin film

Publications (1)

Publication Number Publication Date
JPH0978245A true JPH0978245A (en) 1997-03-25

Family

ID=16929025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23178795A Pending JPH0978245A (en) 1995-09-08 1995-09-08 Formation of thin film

Country Status (1)

Country Link
JP (1) JPH0978245A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008535244A (en) * 2005-03-29 2008-08-28 東京エレクトロン株式会社 Method and system for increasing tensile stress in a thin film using parallel electromagnetic radiation
JP2008536303A (en) * 2005-03-29 2008-09-04 東京エレクトロン株式会社 Method and system for increasing tensile stress in thin films using multi-frequency electromagnetic radiation
JP2009224791A (en) * 2009-05-26 2009-10-01 Tokyo Electron Ltd Film-forming method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008535244A (en) * 2005-03-29 2008-08-28 東京エレクトロン株式会社 Method and system for increasing tensile stress in a thin film using parallel electromagnetic radiation
JP2008536303A (en) * 2005-03-29 2008-09-04 東京エレクトロン株式会社 Method and system for increasing tensile stress in thin films using multi-frequency electromagnetic radiation
JP2009224791A (en) * 2009-05-26 2009-10-01 Tokyo Electron Ltd Film-forming method

Similar Documents

Publication Publication Date Title
US7897215B1 (en) Sequential UV induced chemical vapor deposition
US6395650B1 (en) Methods for forming metal oxide layers with enhanced purity
JP2635021B2 (en) Deposition film forming method and apparatus used for the same
US6150265A (en) Apparatus for forming materials
JPH0752718B2 (en) Thin film formation method
US5232749A (en) Formation of self-limiting films by photoemission induced vapor deposition
JPH1098032A (en) Formation of thin film and thin film forming device
US6303499B1 (en) Process for preparing semiconductor device
JPS60245217A (en) Thin film formation equipment
JPH0978245A (en) Formation of thin film
US4910044A (en) Ultraviolet light emitting device and application thereof
JPH05335607A (en) Semiconductor device
JPS59207621A (en) Formation of thin film
US6281122B1 (en) Method for forming materials
JPS63317675A (en) Plasma vapor growth device
JPH0651908B2 (en) Method of forming thin film multilayer structure
JPH0766911B2 (en) Film forming method
JPH0689455B2 (en) Thin film formation method
JP2654456B2 (en) Manufacturing method of high quality IGFET
JP3444843B2 (en) Thin film forming method and thin film forming apparatus
JPS6118125A (en) Thin film forming apparatus
JPH09209156A (en) Microwave plasma cvd device and method therefor
JP3088446B2 (en) Plasma processing apparatus and plasma processing method
JP2616759B2 (en) Thin film formation method
JP3205037B2 (en) Substrate for forming polysilicon thin film and method for producing the same