JPH1098032A - Formation of thin film and thin film forming device - Google Patents
Formation of thin film and thin film forming deviceInfo
- Publication number
- JPH1098032A JPH1098032A JP24959096A JP24959096A JPH1098032A JP H1098032 A JPH1098032 A JP H1098032A JP 24959096 A JP24959096 A JP 24959096A JP 24959096 A JP24959096 A JP 24959096A JP H1098032 A JPH1098032 A JP H1098032A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- thin film
- film
- substrate
- reaction tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Formation Of Insulating Films (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光励起を用いた気
相化学堆積法に基く薄膜の形成方法及び形成装置に係
り、特に、低基板温度で高スループット及び膜厚均一性
に優れた薄膜の形成方法及び形成装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for forming a thin film based on a chemical vapor deposition method using photoexcitation, and more particularly to a method for forming a thin film having a high throughput and a uniform film thickness at a low substrate temperature. The present invention relates to a forming method and a forming apparatus.
【0002】[0002]
【従来の技術】半導体装置の製造工程に於て、誘電体薄
膜(窒化硅素、二酸化硅素等)の形成工程に関しては、
従来主に気相化学堆積法(CVD)が用いられていた。
CVD法に於ては、原料として供給される気体分子は熱
或いはプラズマによって分解或いは励起され薄膜堆積に
供されていた。熱分解によって誘電体薄膜を形成する場
合、基板温度は400℃以上で成膜している。プラズマ
励起による方法では、基板温度は300℃以上で成膜し
ている。2. Description of the Related Art In the process of manufacturing a semiconductor device, a process of forming a dielectric thin film (silicon nitride, silicon dioxide, etc.)
Conventionally, a chemical vapor deposition (CVD) method has been mainly used.
In the CVD method, gas molecules supplied as a raw material are decomposed or excited by heat or plasma and used for thin film deposition. When a dielectric thin film is formed by thermal decomposition, the film is formed at a substrate temperature of 400 ° C. or higher. In the method using plasma excitation, the film is formed at a substrate temperature of 300 ° C. or higher.
【0003】最近、上記熱或いはプラズマ励起に替わる
方法として、光励起CVD法が用いられている。反応槽
中に導入された原料気体分子(アンモニア、亜酸化窒素
等)は、光(波長300nm以下)によって励起され成
膜反応に供される為、基板温度300℃以上で薄膜を堆
積出来る。Recently, a photo-excited CVD method has been used as an alternative to the above-mentioned heat or plasma excitation. The raw material gas molecules (ammonia, nitrous oxide, etc.) introduced into the reaction tank are excited by light (wavelength of 300 nm or less) and supplied to a film forming reaction, so that a thin film can be deposited at a substrate temperature of 300 ° C. or more.
【0004】[0004]
【発明が解決しようとする課題】前記従来技術の内、熱
分解によるCVD法では、400℃以上の高基板温度を
要する為、半導体装置の電極金属形成工程の後、誘電体
薄膜を形成した場合、電極金属と半導体基板との熱的反
応により、電気的特性が著しく劣化する。低温で成膜可
能なプラズマ励起CVD法の場合、電極の劣化を抑止す
ることが可能であるが、プラズマ中のイオンが半導体表
面に照射されることにより、表面層に欠陥を生じやすく
素子の特性が劣化する。Among the above-mentioned prior arts, the CVD method using thermal decomposition requires a high substrate temperature of 400 ° C. or more, so that a dielectric thin film is formed after the electrode metal forming step of a semiconductor device. In addition, electrical characteristics are significantly deteriorated due to a thermal reaction between the electrode metal and the semiconductor substrate. In the case of the plasma-excited CVD method, which can form a film at a low temperature, it is possible to suppress the deterioration of the electrodes. Deteriorates.
【0005】光励起CVD法では、低温且つイオン衝撃
のない成膜が可能であり、素子の電気特性の劣化はな
い。しかしながら、光励起の場合、次に列挙する問題点
があった。[0005] The photo-excited CVD method allows a film to be formed at a low temperature without ion bombardment, and does not deteriorate the electrical characteristics of the device. However, in the case of optical excitation, there are the following problems.
【0006】1)反応槽内で原料ガス(例えば、シラン
とアンモニア)の反応をさせる為、光を導入する光学窓
に薄膜の堆積が生ずると、基板表面に照射される実効的
光強度が低下し、堆積速度の低下を来す。1) When a thin film is deposited on an optical window through which light is introduced to cause a reaction between source gases (for example, silane and ammonia) in a reaction tank, the effective light intensity applied to the substrate surface decreases. Resulting in a reduced deposition rate.
【0007】2)薄膜の成長速度の基板面内分布は、基
板に照射される光の面内分布に強く依存するため、大面
積基板への高均一膜厚薄膜の形成が困難である。2) The in-plane distribution of the growth rate of the thin film in the plane of the substrate strongly depends on the in-plane distribution of the light applied to the substrate, and it is difficult to form a thin film having a uniform thickness on a large-area substrate.
【0008】[0008]
【課題を解決するための手段】光励起を反応槽と分離し
たガスセル内で行う。The photoexcitation is performed in a gas cell separated from the reaction tank.
【0009】[0009]
【発明の実施の形態】まず、原料気体分子の内、それ自
体の分解によっては薄膜の堆積が生じない気体分子(例
えば、アンモニア、亜酸化窒素)の光励起を反応槽と分
離したガス導入装置内で行う。 しかる後、励起された
気体分子をノズルを通して反応槽内へ導入し、これとは
別に直接反応槽内へ導入した第2の原料ガス(例えば、
シラン)と反応せしめ、基板及び反応槽に直接光を導入
することなく、窒化硅素や二酸化硅素を堆積させる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, photoexcitation of gas molecules (for example, ammonia and nitrous oxide), which do not form a thin film due to decomposition of the raw material gas molecules, in a gas introduction device separated from a reaction tank. Do with. Thereafter, the excited gas molecules are introduced into the reaction tank through the nozzle, and separately from the second raw material gas (for example,
Silane) and deposit silicon nitride or silicon dioxide without introducing light directly into the substrate and the reaction tank.
【0010】本方式では、薄膜の成長速度の面内分布
は、ノズルから照射された励起分子線の強度分布によっ
て決定される為、光の強度分布とは係わりがない。In this method, the in-plane distribution of the growth rate of the thin film is determined by the intensity distribution of the excited molecular beam emitted from the nozzle, and is not related to the intensity distribution of light.
【0011】更に、本発明に於ては、ガス導入装置に導
入する光を、装置の外に設置した光学系を用いて、導入
装置内で集束させる事が出来るため、導入したガスに対
する励起効率が極めて高い。即ち、高密度の励起分子を
供給出来るため、薄膜の堆積速度を増大させる事が出来
る。Further, according to the present invention, the light introduced into the gas introducing device can be focused in the introducing device by using an optical system installed outside the device, so that the excitation efficiency for the introduced gas can be improved. Is extremely high. That is, since high-density excited molecules can be supplied, the deposition rate of the thin film can be increased.
【0012】実施例1 図1を用いて実施例1を説明する。本実施例では、モノ
シラン(SiH4)とアンモニア(NH3)を用いてGa
As(001)基板上に窒化硅素膜を形成する形成方法
及び形成装置について説明する。まず、反応槽1内に設
置された試料台2にGaAs基板3を装填する。試料台
2には基板加熱用ヒータが設置されている。基板3は、
回転機構により毎分10回転させた。反応槽1は、ター
ボ分子ポンプ(TMP)により、真空度を3×10~10
Torrまで排気されている。次に、基板3をヒータに
より加熱し300℃に保持する。続いて、バルブ4を開
きNH3ガス(流量50sccm)を導入する。この
時、バルブ5を調整してガスセル6内の真空度を10T
orrに保つ。ガスセル6(一辺5cmの立方体)内の
NH3ガスは、オリフィス7を通って反応槽1内に入
る。この時、反応槽1の真空度は0.5Torrであっ
た。続いて、ArFエキシマレーザ(波長193nm、
強度100mJ、周波数100Hz)を光学窓8を介し
てガスセル6に導入する。この時、エキシマレーザ光
は、レンズ9によってガスセル内に焦点を持つように集
光されている。エキシマレーザを10分照射する。その
後、エキシマレーザ照射を中断し、バルブ10を明けて
SiH4(流量5sccm)をノズル11より導入す
る。反応槽1の真空度が1Torrに安定するのを待っ
た後、エキシマレーザをガスセル6に照射することによ
りNH3ガスが励起され、窒化硅素膜の堆積が開始され
る。堆積後、エリプソメータにより膜厚を測定した所、
5分間のレーザ照射により150nmの窒化硅素膜が堆
積していた。直径4インチの基板上の膜厚分布は、2%
以下であった。同じく屈折率分布は、3%以下であっ
た。Embodiment 1 Embodiment 1 will be described with reference to FIG. In this embodiment, monosilane (SiH 4 ) and ammonia (NH 3 ) are used to form Ga.
A method and an apparatus for forming a silicon nitride film on an As (001) substrate will be described. First, a GaAs substrate 3 is loaded on a sample stage 2 installed in a reaction tank 1. The sample stage 2 is provided with a substrate heating heater. Substrate 3
The rotation was performed 10 times per minute by a rotation mechanism. The reaction tank 1 is evacuated by a turbo molecular pump (TMP) to a degree of vacuum of 3 × 10 to 10
It has been exhausted to Torr. Next, the substrate 3 is heated at 300 ° C. by a heater. Subsequently, the valve 4 is opened, and NH 3 gas (flow rate 50 sccm) is introduced. At this time, the degree of vacuum in the gas cell 6 was adjusted to 10 T by adjusting the valve 5.
Keep at orr. The NH 3 gas in the gas cell 6 (a cube having a side of 5 cm) enters the reaction tank 1 through the orifice 7. At this time, the degree of vacuum in the reaction tank 1 was 0.5 Torr. Subsequently, an ArF excimer laser (wavelength 193 nm,
(Intensity 100 mJ, frequency 100 Hz) is introduced into the gas cell 6 through the optical window 8. At this time, the excimer laser light is focused by the lens 9 so as to have a focal point in the gas cell. The excimer laser is irradiated for 10 minutes. Thereafter, the excimer laser irradiation is interrupted, the valve 10 is opened, and SiH 4 (flow rate 5 sccm) is introduced from the nozzle 11. After waiting for the degree of vacuum in the reactor 1 to stabilize at 1 Torr, the NH 3 gas is excited by irradiating the gas cell 6 with an excimer laser, and the deposition of the silicon nitride film is started. After deposition, the film thickness was measured with an ellipsometer.
A 150 nm silicon nitride film was deposited by the laser irradiation for 5 minutes. 2% film thickness distribution on 4 inch diameter substrate
It was below. Similarly, the refractive index distribution was 3% or less.
【0013】通常のレーザCVD或いは光CVDに於て
は、薄膜の堆積を続けると、次第に光学窓が曇り、堆積
速度が低下するが、本実施例に於ては、累積膜厚100
mmまでの範囲では、5%以上の堆積速度低下は見られ
なかった。In ordinary laser CVD or optical CVD, if the deposition of a thin film is continued, the optical window gradually becomes cloudy and the deposition rate is reduced.
In the range up to mm, a decrease in deposition rate of 5% or more was not observed.
【0014】本実施例に於ては、窒化硅素膜について説
明したが、NH3ガスに替えて亜酸化窒素ガスを導入し
た所、膜厚分布が窒化硅素と同等の二酸化硅素膜を形成
することが出来た。In this embodiment, a silicon nitride film has been described. However, when nitrous oxide gas is introduced instead of NH 3 gas, a silicon dioxide film having a film thickness distribution equivalent to that of silicon nitride is formed. Was completed.
【0015】また、SiH4に替えてホスフィン(P
H3)を導入することにより、窒化燐膜の形成も出来
た。[0015] In addition, phosphine instead of SiH 4 (P
By introducing H 3 ), a phosphorus nitride film could be formed.
【0016】実施例2 図2を用いて実施例2を説明する。本実施例に於ても、
モノシラン(SiH4)とアンモニア(NH3)を用いて
GaAs(001)基板上に窒化硅素膜を形成する形成
方法及び形成装置について説明する。ガス導入前の基板
装填法及び反応槽の真空排気に関しては、実施例1と同
じ方法を用いた。本実施例では、NH3ガスの導入法の
みが異なる。Embodiment 2 Embodiment 2 will be described with reference to FIG. In this embodiment,
A method and an apparatus for forming a silicon nitride film on a GaAs (001) substrate using monosilane (SiH 4 ) and ammonia (NH 3 ) will be described. The same method as in Example 1 was used for the substrate loading method before gas introduction and the evacuation of the reaction tank. In this embodiment, only the method of introducing NH 3 gas is different.
【0017】まず、一辺5cmの正方形断面でガス導入
方向の長さが15cmのガスセル13中にバルブ12を
開く事によってNH3ガス(流量50sccm)を導入
する。NH3ガスは、オリフィス14を通って反応槽1
に入る。この時の真空度は、ガスセル13内で10To
rr、反応槽1内で0.5Torrであった。続いて、
バルブ10を開いてSiH4(流量5sccm)をノズ
ル11より導入する。この時、反応真空度は1Torr
となった。First, NH 3 gas (flow rate 50 sccm) is introduced by opening the valve 12 into a gas cell 13 having a square section of 5 cm on a side and a length of 15 cm in the gas introduction direction. The NH 3 gas passes through the orifice 14 and reacts in the reaction tank 1.
to go into. The degree of vacuum at this time is 10 To
rr was 0.5 Torr in the reaction tank 1. continue,
The valve 10 is opened and SiH 4 (flow rate 5 sccm) is introduced from the nozzle 11. At this time, the reaction vacuum was 1 Torr
It became.
【0018】続いて、エキシマレーザ光(波長193n
m、強度100mJ、周波数100Hz)を光学窓15
(5×110mmの長方形)を通してガスセル13に導
入し、NH3ガスを励起して窒化硅素膜の堆積を始め
る。エキシマレーザ光は、2×100mmの矩形平行ビ
ームを集束させずに直接導入した。Subsequently, excimer laser light (wavelength 193n)
m, intensity 100 mJ, frequency 100 Hz)
(5 × 110 mm rectangle) and introduced into the gas cell 13 to excite NH 3 gas to start the deposition of the silicon nitride film. The excimer laser light was directly introduced without focusing a rectangular parallel beam of 2 × 100 mm.
【0019】堆積後、エリプソメータにより膜厚を測定
した所、10分間のレーザ照射により300nmの窒化
硅素膜が堆積していた。直径4インチの基板上の膜厚分
布は、1.5%以下であった。同じく屈折率分布は、2
%以下であった。After the deposition, the film thickness was measured by an ellipsometer. As a result, a 300-nm silicon nitride film was deposited by laser irradiation for 10 minutes. The film thickness distribution on a substrate having a diameter of 4 inches was 1.5% or less. Similarly, the refractive index distribution is 2
% Or less.
【0020】本実施例に於ても、累積膜厚100mmま
での範囲では、5%以上の堆積速度低下は見られなかっ
た。In this embodiment, no decrease in the deposition rate of 5% or more was observed in the range up to the cumulative film thickness of 100 mm.
【0021】実施例3 図3を用いて実施例3を説明する。本実施例に於ては、
ホスフィン(PH3)、モノシラン(SiH4)及びアン
モニア(NH3)を用いてGaAs(001)基板上に
窒化燐及び窒化硅素膜を形成する形成方法及び形成装置
について説明する。ガス導入前の基板装填法及び反応槽
の真空排気に関しては、実施例1と同じ方法を用いた。Embodiment 3 Embodiment 3 will be described with reference to FIG. In this embodiment,
A method and an apparatus for forming a phosphorus nitride and silicon nitride film on a GaAs (001) substrate using phosphine (PH 3 ), monosilane (SiH 4 ), and ammonia (NH 3 ) will be described. The same method as in Example 1 was used for the substrate loading method before gas introduction and the evacuation of the reaction tank.
【0022】まず、バルブ4を開きPH3ガス(流量5
0sccm)を導入する。この時、バルブ5を調整して
ガスセル6内の真空度を5Torrに保つ。ガスセル6
内のPH3ガスは、オリフィス7を通って反応槽1内に
入る。この時、反応槽1の真空度は0.25Torrで
あった。続いて、ArFエキシマレーザ(波長193n
m、強度100mJ、周波数100Hz)を光学窓8を
介してガスセル6に導入する。この時、エキシマレーザ
光は、レンズ9によってガスセル内に焦点を持つように
集光されている。エキシマレーザを10分照射する。そ
の後、エキシマレーザ照射を中断し、ガスセル13中に
バルブ12を開く事によってNH3ガス(流量50sc
cm)を導入する。NH3ガスは、オリフィス14を通
って反応槽1に入る。この時の真空度は、ガスセル13
内で10Torr、反応槽1内で0.75Torrであ
った。続いて、エキシマレーザ光を光学窓8及び15を
通してガスセル6及び13に導入し、PH3ガス及びN
H3ガスを励起して窒化燐膜の堆積を始める。こうして
堆積させた窒化燐膜の成長速度は、毎分20nmであっ
た。PH3ガスをエキシマレーザ光で励起せずに導入し
た場合、成長速度は毎分10nmであった。SiH4の
場合はエキシマレーザ光によって解離が生じないため、
SiH4にレーザを照射しても成長速度が増大すること
はないが、PH3ガスはレーザ照射により解離するた
め、NH3ガスとの反応が促進され成長速度が増大した
ものである。First, the valve 4 is opened and the PH 3 gas (flow rate 5
0 sccm). At this time, the degree of vacuum in the gas cell 6 is maintained at 5 Torr by adjusting the valve 5. Gas cell 6
PH 3 gas enters the reaction tank 1 through the orifice 7. At this time, the degree of vacuum in the reaction tank 1 was 0.25 Torr. Subsequently, an ArF excimer laser (wavelength 193n)
m, intensity 100 mJ, frequency 100 Hz) is introduced into the gas cell 6 through the optical window 8. At this time, the excimer laser light is focused by the lens 9 so as to have a focal point in the gas cell. The excimer laser is irradiated for 10 minutes. Thereafter, the excimer laser irradiation is interrupted, and the valve 12 is opened in the gas cell 13 so that the NH 3 gas (flow rate 50 sc
cm). NH 3 gas enters the reactor 1 through the orifice 14. At this time, the degree of vacuum is
10 Torr in the reactor and 0.75 Torr in the reactor 1. Subsequently, excimer laser light is introduced into the gas cells 6 and 13 through the optical windows 8 and 15, and PH 3 gas and N
The H 3 gas is excited to start the deposition of the phosphorus nitride film. The growth rate of the phosphorus nitride film thus deposited was 20 nm per minute. When PH 3 gas was introduced without being excited by excimer laser light, the growth rate was 10 nm / min. In the case of SiH 4 , since dissociation does not occur due to excimer laser light,
Irradiation of SiH 4 with a laser does not increase the growth rate, but PH 3 gas is dissociated by the laser irradiation, so that the reaction with NH 3 gas is accelerated and the growth rate is increased.
【0023】[0023]
【発明の効果】本発明によれば、光励起CVDにより窒
化膜或いは酸化膜を形成した場合に於て、光導入用の光
学窓への薄膜の堆積が抑止される為、成長速度が長期に
渡って安定に保たれる。また、基板上に堆積した薄膜の
膜厚の面内分布が入射光の分布の影響を受けない為、膜
厚均一性の高い薄膜が形成出来る。According to the present invention, when a nitride film or an oxide film is formed by photoexcited CVD, deposition of a thin film on an optical window for introducing light is suppressed, so that the growth rate is extended over a long period of time. And is kept stable. Further, since the in-plane distribution of the film thickness of the thin film deposited on the substrate is not affected by the distribution of incident light, a thin film having high film thickness uniformity can be formed.
【図1】本発明の実施例1の薄膜形成装置の断面図であ
る。FIG. 1 is a sectional view of a thin film forming apparatus according to a first embodiment of the present invention.
【図2】本発明の実施例2の薄膜形成装置の断面図であ
る。FIG. 2 is a sectional view of a thin film forming apparatus according to a second embodiment of the present invention.
【図3】本発明の実施例3の薄膜形成装置の断面図であ
る。FIG. 3 is a sectional view of a thin film forming apparatus according to a third embodiment of the present invention.
1…反応槽、2…試料台、3…基板、4…バルブ、5…
バルブ、6…ガスセル、7…オリフィス、8…光学窓、
9…レンズ、10…バルブ、11…ノズル、12…バル
ブ、13…ガスセル、14…オリフィス、15…光学
窓。DESCRIPTION OF SYMBOLS 1 ... Reaction tank, 2 ... Sample stand, 3 ... Substrate, 4 ... Valve, 5 ...
Valve, 6 gas cell, 7 orifice, 8 optical window,
9: lens, 10: valve, 11: nozzle, 12: valve, 13: gas cell, 14: orifice, 15: optical window.
Claims (4)
め、反応槽内に装填した基板表面に上記気体分子を原料
とする薄膜を堆積する薄膜形成方法において、上記反応
槽の外部で上記気体分子を個別に光励起したる後、該光
励起分子を上記反応槽内へ導入することによって上記薄
膜を堆積せしめることを特徴とする薄膜の形成方法。1. A thin film forming method for photo-exciting at least one kind of gas molecules and depositing a thin film using said gas molecules as a raw material on the surface of a substrate loaded in a reaction tank, wherein said gas molecules are formed outside said reaction tank. A method for forming a thin film, comprising: individually exciting light, and then introducing the photoexcited molecules into the reaction tank to deposit the thin film.
連結しかつ光導入用光学窓を有する少なくとも1つのガ
スセルを具備していることを特徴とする薄膜形成装置。2. A thin film forming apparatus comprising: a reaction vessel having a substrate heating section; and at least one gas cell connected to the reaction vessel and having a light introducing optical window.
セルの上記反応槽との上記連結部に備えられたオリフィ
スによりなされていることを特徴とする請求項2記載の
薄膜形成装置。3. The thin film forming apparatus according to claim 2, wherein the connection between the reaction tank and the gas cell is made by an orifice provided in the connection portion of the gas cell with the reaction tank.
学窓に集束せしめる光学レンズを具備していることを特
徴とする請求項2又は3に記載の薄膜形成装置。4. The thin film forming apparatus according to claim 2, wherein said thin film forming apparatus further comprises an optical lens for focusing on said optical window for light introduction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24959096A JPH1098032A (en) | 1996-09-20 | 1996-09-20 | Formation of thin film and thin film forming device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24959096A JPH1098032A (en) | 1996-09-20 | 1996-09-20 | Formation of thin film and thin film forming device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1098032A true JPH1098032A (en) | 1998-04-14 |
Family
ID=17195284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24959096A Pending JPH1098032A (en) | 1996-09-20 | 1996-09-20 | Formation of thin film and thin film forming device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1098032A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003124992A (en) * | 2001-10-19 | 2003-04-25 | Pfu Ltd | Broadcast communication method, broadcast communication system and storage means |
FR2863444A1 (en) * | 2003-12-05 | 2005-06-10 | France Telecom | Information managing process, involves storing data each with information to be transmitted and parameter indicating identification of location, and accessing data through communicating object to acquire information |
JP2015510263A (en) * | 2012-01-26 | 2015-04-02 | ノベラス・システムズ・インコーポレーテッドNovellus Systems Incorporated | Conformal film deposition using ultraviolet light |
US9673041B2 (en) | 2010-04-15 | 2017-06-06 | Lam Research Corporation | Plasma assisted atomic layer deposition titanium oxide for patterning applications |
US9786570B2 (en) | 2012-11-08 | 2017-10-10 | Novellus Systems, Inc. | Methods for depositing films on sensitive substrates |
US9793110B2 (en) | 2010-04-15 | 2017-10-17 | Lam Research Corporation | Gapfill of variable aspect ratio features with a composite PEALD and PECVD method |
US9875891B2 (en) | 2014-11-24 | 2018-01-23 | Lam Research Corporation | Selective inhibition in atomic layer deposition of silicon-containing films |
US9892917B2 (en) | 2010-04-15 | 2018-02-13 | Lam Research Corporation | Plasma assisted atomic layer deposition of multi-layer films for patterning applications |
US9997357B2 (en) | 2010-04-15 | 2018-06-12 | Lam Research Corporation | Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors |
US10037884B2 (en) | 2016-08-31 | 2018-07-31 | Lam Research Corporation | Selective atomic layer deposition for gapfill using sacrificial underlayer |
US10043655B2 (en) | 2010-04-15 | 2018-08-07 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
US10062563B2 (en) | 2016-07-01 | 2018-08-28 | Lam Research Corporation | Selective atomic layer deposition with post-dose treatment |
KR20190027753A (en) * | 2017-09-07 | 2019-03-15 | 도쿄엘렉트론가부시키가이샤 | Film forming apparatus and film forming method |
US10269559B2 (en) | 2017-09-13 | 2019-04-23 | Lam Research Corporation | Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer |
US10373806B2 (en) | 2016-06-30 | 2019-08-06 | Lam Research Corporation | Apparatus and method for deposition and etch in gap fill |
US11646198B2 (en) | 2015-03-20 | 2023-05-09 | Lam Research Corporation | Ultrathin atomic layer deposition film accuracy thickness control |
US12040181B2 (en) | 2019-05-01 | 2024-07-16 | Lam Research Corporation | Modulated atomic layer deposition |
-
1996
- 1996-09-20 JP JP24959096A patent/JPH1098032A/en active Pending
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003124992A (en) * | 2001-10-19 | 2003-04-25 | Pfu Ltd | Broadcast communication method, broadcast communication system and storage means |
FR2863444A1 (en) * | 2003-12-05 | 2005-06-10 | France Telecom | Information managing process, involves storing data each with information to be transmitted and parameter indicating identification of location, and accessing data through communicating object to acquire information |
US10043657B2 (en) | 2010-04-15 | 2018-08-07 | Lam Research Corporation | Plasma assisted atomic layer deposition metal oxide for patterning applications |
US11133180B2 (en) | 2010-04-15 | 2021-09-28 | Lam Research Corporation | Gapfill of variable aspect ratio features with a composite PEALD and PECVD method |
US10361076B2 (en) | 2010-04-15 | 2019-07-23 | Lam Research Corporation | Gapfill of variable aspect ratio features with a composite PEALD and PECVD method |
US9793110B2 (en) | 2010-04-15 | 2017-10-17 | Lam Research Corporation | Gapfill of variable aspect ratio features with a composite PEALD and PECVD method |
US10559468B2 (en) | 2010-04-15 | 2020-02-11 | Lam Research Corporation | Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors |
US9892917B2 (en) | 2010-04-15 | 2018-02-13 | Lam Research Corporation | Plasma assisted atomic layer deposition of multi-layer films for patterning applications |
US9997357B2 (en) | 2010-04-15 | 2018-06-12 | Lam Research Corporation | Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors |
US11011379B2 (en) | 2010-04-15 | 2021-05-18 | Lam Research Corporation | Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors |
US10043655B2 (en) | 2010-04-15 | 2018-08-07 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
US9673041B2 (en) | 2010-04-15 | 2017-06-06 | Lam Research Corporation | Plasma assisted atomic layer deposition titanium oxide for patterning applications |
JP2015510263A (en) * | 2012-01-26 | 2015-04-02 | ノベラス・システムズ・インコーポレーテッドNovellus Systems Incorporated | Conformal film deposition using ultraviolet light |
US10741458B2 (en) | 2012-11-08 | 2020-08-11 | Novellus Systems, Inc. | Methods for depositing films on sensitive substrates |
US10008428B2 (en) | 2012-11-08 | 2018-06-26 | Novellus Systems, Inc. | Methods for depositing films on sensitive substrates |
US9786570B2 (en) | 2012-11-08 | 2017-10-10 | Novellus Systems, Inc. | Methods for depositing films on sensitive substrates |
US9875891B2 (en) | 2014-11-24 | 2018-01-23 | Lam Research Corporation | Selective inhibition in atomic layer deposition of silicon-containing films |
US10804099B2 (en) | 2014-11-24 | 2020-10-13 | Lam Research Corporation | Selective inhibition in atomic layer deposition of silicon-containing films |
US11646198B2 (en) | 2015-03-20 | 2023-05-09 | Lam Research Corporation | Ultrathin atomic layer deposition film accuracy thickness control |
US10373806B2 (en) | 2016-06-30 | 2019-08-06 | Lam Research Corporation | Apparatus and method for deposition and etch in gap fill |
US10957514B2 (en) | 2016-06-30 | 2021-03-23 | Lam Research Corporation | Apparatus and method for deposition and etch in gap fill |
US10679848B2 (en) | 2016-07-01 | 2020-06-09 | Lam Research Corporation | Selective atomic layer deposition with post-dose treatment |
US10062563B2 (en) | 2016-07-01 | 2018-08-28 | Lam Research Corporation | Selective atomic layer deposition with post-dose treatment |
US10037884B2 (en) | 2016-08-31 | 2018-07-31 | Lam Research Corporation | Selective atomic layer deposition for gapfill using sacrificial underlayer |
US10559460B2 (en) | 2017-09-07 | 2020-02-11 | Tokyo Electron Limited | Film forming apparatus and film forming method |
CN109468613A (en) * | 2017-09-07 | 2019-03-15 | 东京毅力科创株式会社 | Film formation device and film build method |
KR20190027753A (en) * | 2017-09-07 | 2019-03-15 | 도쿄엘렉트론가부시키가이샤 | Film forming apparatus and film forming method |
US10269559B2 (en) | 2017-09-13 | 2019-04-23 | Lam Research Corporation | Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer |
US12040181B2 (en) | 2019-05-01 | 2024-07-16 | Lam Research Corporation | Modulated atomic layer deposition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH1098032A (en) | Formation of thin film and thin film forming device | |
US7897215B1 (en) | Sequential UV induced chemical vapor deposition | |
US4509451A (en) | Electron beam induced chemical vapor deposition | |
JP2635021B2 (en) | Deposition film forming method and apparatus used for the same | |
US5512102A (en) | Microwave enhanced CVD system under magnetic field | |
US20010048981A1 (en) | Method of processing substrate | |
JPS6324923B2 (en) | ||
EP0933806A1 (en) | Method for cleaning plasma treatment device and method for plasma treatment | |
US7960252B2 (en) | Method for forming a semiconductor film including a film forming gas and decomposing gas while emitting a laser sheet | |
US20100012032A1 (en) | Apparatus for high-rate chemical vapor deposition | |
US4910436A (en) | Wide area VUV lamp with grids and purging jets | |
JPH0380531A (en) | Method and apparatus for surface treating and thin film member | |
JPS60245217A (en) | Thin film formation equipment | |
US5112647A (en) | Apparatus for the preparation of a functional deposited film by means of photochemical vapor deposition process | |
US6472299B2 (en) | Method and apparatus for treating a substrate with hydrogen radicals at a temperature of less than 40 K | |
McCrary et al. | Characterization of Excimer Laser Deposited Gaas Films From the Photolysis of Trimethylgallium and Trimethylarsine At 193 nm | |
JPS63317675A (en) | Plasma vapor growth device | |
JPH1018042A (en) | Thin film forming device | |
JP2723053B2 (en) | Method and apparatus for forming thin film | |
JPS634454B2 (en) | ||
JPS60178622A (en) | Manufacture of semiconductor device | |
JP2654456B2 (en) | Manufacturing method of high quality IGFET | |
Nara et al. | Synchrotron radiation-assisted silicon film growth by irradiation parallel to the substrate | |
JPS6028225A (en) | Optical vapor growth method | |
JPH0978245A (en) | Formation of thin film |