JPS61288431A - Manufacture of insulating layer - Google Patents

Manufacture of insulating layer

Info

Publication number
JPS61288431A
JPS61288431A JP13104385A JP13104385A JPS61288431A JP S61288431 A JPS61288431 A JP S61288431A JP 13104385 A JP13104385 A JP 13104385A JP 13104385 A JP13104385 A JP 13104385A JP S61288431 A JPS61288431 A JP S61288431A
Authority
JP
Japan
Prior art keywords
substrate
susceptor
nitride
gas
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13104385A
Other languages
Japanese (ja)
Inventor
Toshihiro Sugii
寿博 杉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13104385A priority Critical patent/JPS61288431A/en
Publication of JPS61288431A publication Critical patent/JPS61288431A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To contrive improvement both in the characteristics and in the yield rate of the semiconductor device such as IC, LSI and the like by a method wherein ammonia or nitride a=gas is ionized by projecting a pulse-like laser beam on ammonia or nitride gas, and it is reacted with a semiconductor substrate, thereby enabling to form an Si nitride film of high quality. CONSTITUTION:After the Si substrate 1 to be processed is washed by performing a nitride acid boiling and a hydrofluoric acid treatment and the substrate is cleaned up, the substrate is set on the susceptor 9 of a nitriding device. After a reaction pipe 11 is evacuated by operating the vacuum pump having a pipeline connected to an exhaust hole 14, high purity NH3 gas is introduced from an introducing hole 13. Then, a current is applied to a heater 10, the Si substrate 1 is heated up through the susceptor 9, and it is mainained at the temperature of 800 deg.C. Also, a DC power source 12 is turned ON, and a negative electric field is added to the Si substrate 1. An argon- fluoric excimer laser 18 is made to irradiate as laser power in the above-mentioned state, and a focus is set at the height of approximately 5mm on the substrate 1 by adjusting a focusing lens for the purpose of placing the Si substrate 1 within the range of distance of the length of diffusion when NH3 is ionized. An Si3N4 film of approximately 100Angstrom in thickness can be formed by performing a treatment for 10min in the above-mentioned state.

Description

【発明の詳細な説明】 〔概要〕 アンモニアもしくは窒素ガスにパルス状のレーザ光を照
射してイオン化し、これを半導体基板と反応さ、せる窒
化膜よりなる絶縁層の製造方法。
[Detailed Description of the Invention] [Summary] A method for manufacturing an insulating layer made of a nitride film, which ionizes ammonia or nitrogen gas by irradiating it with a pulsed laser beam, and causes the ionized gas to react with a semiconductor substrate.

〔産業上の利用分野〕[Industrial application field]

本発明は多光子吸収によりイオン化した活性イオンを用
いて窒化膜を半導体基板上に成長させる絶縁層の製造方
法に関する。
The present invention relates to a method for manufacturing an insulating layer in which a nitride film is grown on a semiconductor substrate using active ions ionized by multiphoton absorption.

大量の情報を迅速に処理する情報処理装置の進歩と共に
半導体装置は単位素子の小形化による大容量化が推進さ
れており、LSIやVLSIが実用化されている。
2. Description of the Related Art Along with advances in information processing devices that can quickly process large amounts of information, the capacity of semiconductor devices has been increased by miniaturizing unit elements, and LSI and VLSI have been put into practical use.

ここで、半導体材料としてはシリコン(Si)で代表さ
れる単体半導体やガリウム砒素(GaAs、)で代表さ
れる化合物半導体があるが、現在もっとも多く用いられ
上記のLSIやVLSIが形成されている材料はSi半
導体である。
Here, semiconductor materials include single semiconductors represented by silicon (Si) and compound semiconductors represented by gallium arsenide (GaAs), but the materials currently most commonly used and used to form the above-mentioned LSIs and VLSIs. is a Si semiconductor.

そして集積化はパターンの微少化と多層化により行われ
ているが、単位素子間の絶縁および層絶縁にはSiの酸
化物である二酸化シリコン(Si02)、窒化物である
窒化シリコン(Si3Ng)や5i02に燐(P)を添
加した燐硅酸ガラス(略称PSG)などを用いで行われ
ている。
Integration is achieved by miniaturizing patterns and increasing the number of layers, but insulation between unit elements and layer insulation include silicon dioxide (Si02), an oxide of Si, silicon nitride (Si3Ng), a nitride, etc. This is done using phosphosilicate glass (abbreviated as PSG), which is made by adding phosphorus (P) to 5i02.

ここでSi02層はSi基板を大気中で熱処理すること
より作ることができ比較的容易であるが、良質の窒化膜
を形成することは容易ではない。
Here, the Si02 layer can be formed by heat-treating the Si substrate in the atmosphere, which is relatively easy, but it is not easy to form a high-quality nitride film.

本発明は多光子吸収法を用いて比較的低温で良質のシリ
コン窒化膜を得る製造方法に関するものである。
The present invention relates to a method of manufacturing a silicon nitride film of high quality at a relatively low temperature using a multiphoton absorption method.

〔従来の技術〕[Conventional technology]

Si3 N 4からなる絶縁層をSi基板上に成長させ
る方法としてはSi基板上に化学的にSi3N4を被覆
する方法とSi基板から直接に成長させる方法とがある
Methods for growing an insulating layer made of Si3N4 on a Si substrate include a method of chemically coating Si3N4 on the Si substrate and a method of growing it directly from the Si substrate.

すなわち、化学気相成長方法(Chemical Va
porDepos i t ion  略称CVa法)
はSt被処理基板を装置内に設けられたサセプタ上に載
置し、Si基板を約900℃に加熱した状態でモノシラ
ン(SiH4)  とアンモニア(NH3)ガスを装置
内に供給し、Si基板上で熱分解させることによってS
i3 N 4からなる絶縁層を形成するものである。
That is, chemical vapor deposition method (Chemical Vapor Deposition method)
porDeposit ion (abbreviated as CVa method)
In this method, the St substrate to be processed is placed on a susceptor installed in the device, and while the Si substrate is heated to approximately 900°C, monosilane (SiH4) and ammonia (NH3) gas are supplied into the device. By pyrolysis with
An insulating layer made of i3N4 is formed.

SiH4+4/3  NHコ →1/3  Si3  
N  4  +4  H2・・・(1)然し、かかる方
法はSi基板を直接に窒素を含むガス雰囲気中で窒化し
てSi3 N 4を成長させる方法と較べて界面が清浄
でなく、またSi基板と窒化膜とが結晶的に不連続であ
り、また純度の高いSi3N4が生じにくいことからイ
オンマイグレーションやキャリアトラップを生じ易い。
SiH4+4/3 NH co →1/3 Si3
N 4 +4 H2... (1) However, in this method, the interface is not clean compared to the method of growing Si3 N 4 by directly nitriding the Si substrate in a nitrogen-containing gas atmosphere, and the interface between the Si substrate and the Since it is crystallographically discontinuous with the nitride film and highly pure Si3N4 is difficult to form, ion migration and carrier traps are likely to occur.

そこで絶縁層の品質向上のためにはSi基板の直接窒化
によるSi3N4層の形成が好ましい。
Therefore, in order to improve the quality of the insulating layer, it is preferable to form a Si3N4 layer by direct nitriding of the Si substrate.

なお熱処理温度が低いほど熱誘起欠陥の発生が少なく、
また反りの発生を抑制できることからなるべく低温で反
応させることが必要である。
Note that the lower the heat treatment temperature, the fewer thermally induced defects occur.
In addition, since the occurrence of warping can be suppressed, it is necessary to carry out the reaction at as low a temperature as possible.

第2図は従来行われているプラズマ発生法による装置構
成を示すものである。
FIG. 2 shows the configuration of an apparatus using a conventional plasma generation method.

すなわちSi基板1はカーボンなどからなるサセプタ2
の上に載置されて透明石英などからなる反応管3の中に
置かれており、周囲よりヒータ4により加熱されるよう
になっている。
That is, the Si substrate 1 is a susceptor 2 made of carbon or the like.
It is placed on top of a reaction tube 3 made of transparent quartz or the like, and is heated by a heater 4 from the surrounding area.

また反応管3には反応ガスの導入口5と排出口6があり
、排出口6は図示してない排気系に接続されている。
The reaction tube 3 also has a reaction gas inlet 5 and an outlet 6, and the outlet 6 is connected to an exhaust system (not shown).

また導入口5とヒータ4の間には高周波コイル7が設け
られている。
Further, a high frequency coil 7 is provided between the inlet 5 and the heater 4.

かかる装置においてSi基板へSi3N4を成長させる
には導入口5よりN2或いはガス状の窒素化合物例えば
NH3を反応管3に導入し、排出口6から排気して1〜
0.1 torrの気圧としSi基板1を800〜10
00℃に加熱した状態で高周波電源8を動作させ400
KHz〜13.56MHzの高周波電流を高周波コイル
7に通電することにより反応ガス例えばNH3をプラズ
マ化し、生じたアンモニアイオン例えばNutコ” +
 NH2” +NH+とSi基板1とを反応させること
によって比較的低温でSi3N4膜の形成が行われてい
る。
In order to grow Si3N4 on a Si substrate in such an apparatus, N2 or a gaseous nitrogen compound such as NH3 is introduced into the reaction tube 3 through the inlet 5, exhausted through the outlet 6, and then
The atmospheric pressure is 0.1 torr, and the Si substrate 1 is heated to 800 to 10 torr.
The high frequency power supply 8 was operated with the temperature heated to 400°C.
By applying a high frequency current of KHz to 13.56 MHz to the high frequency coil 7, a reactive gas such as NH3 is turned into plasma, and the generated ammonia ions, such as Nut.
A Si3N4 film is formed at a relatively low temperature by reacting NH2'' +NH+ with the Si substrate 1.

然しなからこのようなプラズマ発生法による場合はプラ
ズマ中のイオンが反応管3の管壁と衝突することにより
管壁に吸着されている酸素(02)、炭素(C)、水(
[20)などの不純物や管壁自体をもスパッタし、この
らのものが不純物としてSi3N4膜の中に取り込まれ
ると云う問題がある。
However, when such a plasma generation method is used, ions in the plasma collide with the wall of the reaction tube 3, and the oxygen (02), carbon (C), and water (
There is a problem that impurities such as [20] and the tube wall itself are also sputtered, and these are incorporated into the Si3N4 film as impurities.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上説明したように直接窒化法によって比較的低温でS
i基板上にSi3N4からなる絶縁層を形成する場合に
従来のプラズマ発生法で取り込まれる不純物を低減する
必要がある。
As explained above, S is produced at relatively low temperatures by the direct nitriding method.
When forming an insulating layer made of Si3N4 on an i-substrate, it is necessary to reduce impurities introduced by conventional plasma generation methods.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題は反応ガスの導入口と排気系につながる排気
口とを備えた反応管内に設けられ、下部電極を兼ねるサ
セプタの上に被処理半導体基板を!!置して前記反応管
の外側に設けた上部電極と対向せしめると共に、該サセ
プタを直流電源の負極と回路接続し、アンモニアもしく
は窒素の何れか一つよりなる反応ガスを反応管中に供給
し、前記サセプタを加熱した状態でレーザ光を反応室内
に照射して反応ガスをイオン化せしめ、該イオンを電界
により前記半導体基板に移行して反応させ、窒化物を成
長させることを特徴とする絶縁層の製造方法により解決
することができる。
The problem mentioned above is that the semiconductor substrate to be processed is placed inside a reaction tube equipped with a reaction gas inlet and an exhaust port connected to an exhaust system, and placed on top of a susceptor that also serves as a lower electrode! ! The susceptor is placed so as to face an upper electrode provided outside the reaction tube, and the susceptor is connected in a circuit to the negative electrode of a DC power source, and a reaction gas consisting of either ammonia or nitrogen is supplied into the reaction tube. The insulating layer is characterized in that a laser beam is irradiated into the reaction chamber while the susceptor is heated to ionize the reaction gas, and the ions are transferred to the semiconductor substrate by an electric field and caused to react, thereby growing a nitride. This problem can be solved by changing the manufacturing method.

〔作用〕[Effect]

本発明はN2或いはNH3などの反応ガスに対し高出力
のレーザ光を照射し、反応ガスの分子を多光子吸収によ
りイオン化し、その活性なイオンを外部電界により加熱
されているSi基板に移行させ、反応させて窒化膜を成
長させるものである。
The present invention irradiates a reactive gas such as N2 or NH3 with a high-power laser beam, ionizes the molecules of the reactive gas by multiphoton absorption, and transfers the active ions to a Si substrate heated by an external electric field. , which causes a reaction to grow a nitride film.

本発明は従来の反応ガスのイオン化が高周波電界の印加
によるプラズマ化によって行われていたのに対し、多光
子吸収によりイオン化し、このイオンを電界によj17
Si基板に移行せしめることにより有効衝突数を増加さ
せ、これにより不純物含有のない高品質の窒化膜を成長
させるもので、被処理基板がSiの場合はSi3N4層
が成長し、また被処理基板がSiOz 1iを表面に備
えている場合にはStの窒素酸化物例えば5iONから
なる絶縁層を成長させることができる。
In contrast to the conventional ionization of reactive gases, which was performed by applying a high-frequency electric field to form plasma, the present invention ionizes the reaction gas by multiphoton absorption, and the ions are ionized by an electric field.
By transferring to a Si substrate, the number of effective collisions is increased, thereby growing a high quality nitride film that does not contain impurities.If the substrate to be processed is Si, a Si3N4 layer is grown; When SiOz 1i is provided on the surface, an insulating layer made of St nitrogen oxide, for example 5iON, can be grown.

ここで多光子吸収によりイオン化を行わせるにはレーザ
光が強力であることが必要で、このためにはレーザ光は
連続発振光よりもパルス発振光が適している。
In order to perform ionization through multiphoton absorption, the laser beam must be powerful, and for this purpose, pulsed laser light is more suitable than continuous wave light.

いま反応ガスをNH3とし、多光子吸収によるイオン化
反応を示すと次ぎのようになる。
Now, assuming that the reaction gas is NH3, the ionization reaction due to multiphoton absorption is shown as follows.

NH3−” NH3” + e      =(2)N
H3−” NH2” + H+e   =(3)N)1
3 →NH”  + [2+e   −=−(4)第1
図は本発明を実施する窒化装置の構成を示すもので、S
i基板1はカーボンなどがらなり下部電極を兼ねるサセ
プタ9の上に載置されており、この下に設けたヒータ1
0によって加熱されるようになっている。
NH3-”NH3”+e=(2)N
H3-” NH2” + H+e = (3)N)1
3 →NH” + [2+e −=−(4) 1st
The figure shows the configuration of a nitriding apparatus for carrying out the present invention.
The i-substrate 1 is placed on a susceptor 9 made of carbon or the like and which also serves as a lower electrode, and the heater 1 provided below the susceptor 9.
It is heated by 0.

またサセプタ9は反応管11を通して直流電源12の負
極に結線されている。
Further, the susceptor 9 is connected to the negative electrode of a DC power source 12 through a reaction tube 11.

反応管11には反応ガスの導入口13と排出口14があ
り、排出口14は排気系に配管されている以外にレーザ
光の入射窓15と反射鏡16が設けられており、またサ
セプタ9に対向して反射管11の外側には上一部電極1
7が備えられていて直流電源12の正極に結線されてい
る。
The reaction tube 11 has an inlet 13 and an outlet 14 for the reaction gas, and the outlet 14 is connected to the exhaust system, and is also provided with a laser beam entrance window 15 and a reflector 16, and a susceptor 9. On the outside of the reflection tube 11, facing the
7 is provided and connected to the positive electrode of the DC power supply 12.

また入射窓15と反射鏡16を結ぶ直線上にはレーザ光
源18と集光レンズ19とが設けられており、レーザ光
源18からのレーザ光20は集光レンズ19と反射鏡1
6とによってSi基板1の直上位置に集光させて反応ガ
スを励起せしめ、多光子吸収を起こさせることによりイ
オン化させている。
Further, a laser light source 18 and a condensing lens 19 are provided on a straight line connecting the entrance window 15 and the reflecting mirror 16.
6, the light is focused directly above the Si substrate 1 to excite the reactive gas, causing multiphoton absorption to cause ionization.

このようにして作られた反応ガスのイオンは正電荷を持
っているので負に帯電しているSi基板1に衝突して窒
化反応が進行する。
Since the ions of the reaction gas thus produced have a positive charge, they collide with the negatively charged Si substrate 1 and the nitriding reaction proceeds.

〔実施例〕〔Example〕

被処理Si基板1は硝酸()INO3)ボイルと弗酸(
HF)処理により基板洗滌を行って清浄化した後、第1
図に構成を示す窒化装置のサセプタ9の上にセットし、
排出口14に配管されている真空ポンプを動作させて反
応管11内を約5 XIP’ Paまで排気した後に導
入口13より高純度のNH3ガスを導入し、その圧力を
IPaに保持した。
The Si substrate 1 to be processed is prepared using boiling nitric acid (INO3) and hydrofluoric acid (
After cleaning and cleaning the substrate by HF) treatment, the first
Set it on the susceptor 9 of the nitriding apparatus whose configuration is shown in the figure,
After operating the vacuum pump connected to the discharge port 14 to evacuate the inside of the reaction tube 11 to about 5 XIP' Pa, high-purity NH3 gas was introduced from the introduction port 13 and the pressure was maintained at IPa.

次ぎにヒータ10に通電し、サセプタ9を通してSi基
板1を加熱し、その温度をsoo ”cに保った。
Next, the heater 10 was energized to heat the Si substrate 1 through the susceptor 9, and the temperature was maintained at soo''c.

また直流電源12をONしてSi基板1に負の電界を加
えておく。
Further, the DC power supply 12 is turned on to apply a negative electric field to the Si substrate 1.

かかる状態でアルゴン・弗素エキシマレーザ(波長19
3nm) 1Bをレーザパワーとして200mJ/パル
ス。
In this state, argon/fluorine excimer laser (wavelength 19
3nm) 200mJ/pulse with 1B as the laser power.

パルス繰り返し速度100Hzの条件で照射し、集光レ
ンズ19を調節してSi基板1の上で約5鴎の高さに焦
点を結ぶようにした。
Irradiation was performed at a pulse repetition rate of 100 Hz, and the condenser lens 19 was adjusted to focus on the height of about 5 mm above the Si substrate 1.

これはNH3がイオン化する場合の拡散長の距離範囲に
Si基板1を置くためである。
This is because the Si substrate 1 is placed within the distance range of the diffusion length when NH3 is ionized.

すなわち拡散長よりも外れた位置ではイオンと電子との
再結合が起こるために窒化速度は急激に減少する。
In other words, at a position beyond the diffusion length, ions and electrons recombine, and the nitriding rate sharply decreases.

このような条件で10分間処理することにより厚さ約1
00人のSi3 N 4膜を作ることができた。
By processing for 10 minutes under these conditions, the thickness of
We were able to make 000 Si3N4 films.

このようにして作った窒化膜の性能を確かめるためにM
ISトランジスタのゲート絶縁膜として耐圧を測定した
ところ15MV/cmの値を示し、この値は従来のプラ
ズマ窒化装置を用いて形成したものが約10MV/cm
であるのに較べて高品質であることが確認できた。
In order to confirm the performance of the nitride film made in this way, M
When the breakdown voltage of the gate insulating film of an IS transistor was measured, it was found to be 15 MV/cm, which is about 10 MV/cm for a film formed using a conventional plasma nitriding system.
It was confirmed that the quality was higher than that of the previous one.

なお上記の実施例は表面の酸化膜を除去したSi基板の
窒化法について記したが、酸化膜を備えたSi基板を被
処理基板として窒化する場合も同様であって良質な絶縁
層を作ることができる。
Although the above embodiment describes a method for nitriding a Si substrate from which the oxide film on the surface has been removed, the process is similar when nitriding a Si substrate with an oxide film as a substrate to be processed, and a high-quality insulating layer can be created. Can be done.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の実施により高品質のSi窒
化膜の形成が可能となり、これによりIC,LSIなど
半導体装置の特性と収率の向上が可能となる。
As explained above, by carrying out the present invention, it is possible to form a high quality Si nitride film, thereby making it possible to improve the characteristics and yield of semiconductor devices such as ICs and LSIs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は多光子吸収によるイオン化を用いた窒化装置の
構成図、 第2図はプラズマ窒化装置の構成図、 である。 図において、 1はSi基板、       2,9はサセプタ、3.
11は反応管、     4,10はヒータ、5.13
は導入口、     6.14は排出口、7は高周波コ
イル、   15は入射窓、16は反射鏡、     
 17は上部電極、18はレーザ光源、    19は
集光レンズ、20はレーザ光、 である。
FIG. 1 is a block diagram of a nitriding apparatus using ionization by multiphoton absorption, and FIG. 2 is a block diagram of a plasma nitriding apparatus. In the figure, 1 is a Si substrate, 2 and 9 are susceptors, and 3.
11 is a reaction tube, 4 and 10 are heaters, 5.13
is an inlet, 6.14 is an outlet, 7 is a high frequency coil, 15 is an entrance window, 16 is a reflector,
17 is an upper electrode, 18 is a laser light source, 19 is a condensing lens, and 20 is a laser beam.

Claims (1)

【特許請求の範囲】[Claims] 反応ガスの導入口(13)と排気系につながる排出口(
14)とを備えた反応管(11)内に設けられ、下部電
極を兼ねるサセプタ(9)の上に被処理半導体基板を載
置して前記反応管(11)の外側に設けた上部電極(1
7)と対向せしめると共に、該サセプタ(9)を直流電
源(12)の負極と回路接続し、アンモニアもしくは窒
素の何れか一つよりなる反応ガスを反応管(11)に供
給し、前記サセプタ(9)を加熱した状態でレーザ光を
反応管(11)内に照射して反応ガスをイオン化せしめ
、該イオンを電界により前記半導体基板に移行して反応
させ、窒化物を成長させることを特徴とする絶縁層の製
造方法。
The reaction gas inlet (13) and the outlet connected to the exhaust system (
A semiconductor substrate to be processed is placed on a susceptor (9) which is provided in a reaction tube (11) which also serves as a lower electrode, and an upper electrode (14) is provided outside the reaction tube (11). 1
7), the susceptor (9) is connected in a circuit to the negative electrode of the DC power source (12), a reaction gas consisting of either ammonia or nitrogen is supplied to the reaction tube (11), and the susceptor (9) 9) is heated and irradiated with a laser beam into the reaction tube (11) to ionize the reaction gas, and the ions are transferred to the semiconductor substrate by an electric field and caused to react, thereby growing a nitride. A method for manufacturing an insulating layer.
JP13104385A 1985-06-17 1985-06-17 Manufacture of insulating layer Pending JPS61288431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13104385A JPS61288431A (en) 1985-06-17 1985-06-17 Manufacture of insulating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13104385A JPS61288431A (en) 1985-06-17 1985-06-17 Manufacture of insulating layer

Publications (1)

Publication Number Publication Date
JPS61288431A true JPS61288431A (en) 1986-12-18

Family

ID=15048682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13104385A Pending JPS61288431A (en) 1985-06-17 1985-06-17 Manufacture of insulating layer

Country Status (1)

Country Link
JP (1) JPS61288431A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419025B1 (en) * 1996-11-06 2004-04-29 주식회사 하이닉스반도체 Nitride film formation method of semiconductor device
WO2022052334A1 (en) * 2020-09-11 2022-03-17 江苏大学 Room-temperature nitriding process based on thermal-mechanical effects of laser, and processing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419025B1 (en) * 1996-11-06 2004-04-29 주식회사 하이닉스반도체 Nitride film formation method of semiconductor device
WO2022052334A1 (en) * 2020-09-11 2022-03-17 江苏大学 Room-temperature nitriding process based on thermal-mechanical effects of laser, and processing device
GB2614984A (en) * 2020-09-11 2023-07-26 Univ Jiangsu Room-temperature nitriding process based on thermal-mechanical effects of laser, and processing device
GB2614984B (en) * 2020-09-11 2024-02-14 Univ Jiangsu Room-temperature nitriding process based on thermal-mechanical effects of laser, and processing device

Similar Documents

Publication Publication Date Title
JPS61127121A (en) Formation of thin film
JP2635021B2 (en) Deposition film forming method and apparatus used for the same
JPS5958819A (en) Formation of thin film
WO2004008519A1 (en) Method for forming oxide film and electronic device material
JPH0496226A (en) Manufacture of semiconductor device
JPS63224233A (en) Surface treatment
TW564480B (en) Method and apparatus for radical oxidation of silicon
JPS61288431A (en) Manufacture of insulating layer
JP2001102345A (en) Method and device for treating surface
JPS61143585A (en) Thin film forming method
JPS60211847A (en) Forming method of insulating film
JPS59163831A (en) Manufacture of semiconductor device and manufacturing apparatus therefor
JPS59147435A (en) Formation of silicon oxide film
JP4291193B2 (en) Optical processing apparatus and processing apparatus
JPH02109338A (en) Stabilization of insulation film
JPH0978245A (en) Formation of thin film
JPS62127472A (en) Apparatus for forming thin film
JPH04110471A (en) Formation of thin film
JPS61127122A (en) Formation of thin film
JPH0674502B2 (en) Semiconductor device
JPS61196528A (en) Thin film forming apparatus
JPH0573046B2 (en)
JP2004014794A (en) Substrate processing device and manufacturing method of semiconductor device
JPS61127120A (en) Formation of thin film
JPS63162876A (en) Method for annealing thin film formed by plasma cvd method