JPS61127122A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPS61127122A
JPS61127122A JP25034184A JP25034184A JPS61127122A JP S61127122 A JPS61127122 A JP S61127122A JP 25034184 A JP25034184 A JP 25034184A JP 25034184 A JP25034184 A JP 25034184A JP S61127122 A JPS61127122 A JP S61127122A
Authority
JP
Japan
Prior art keywords
reaction
reaction chamber
chamber
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25034184A
Other languages
Japanese (ja)
Other versions
JPH0351292B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Mamoru Tashiro
田代 衛
Kazuo Urata
一男 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP25034184A priority Critical patent/JPS61127122A/en
Publication of JPS61127122A publication Critical patent/JPS61127122A/en
Priority to US07/092,529 priority patent/US4811684A/en
Priority to US07/140,903 priority patent/US4857139A/en
Publication of JPH0351292B2 publication Critical patent/JPH0351292B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps

Abstract

PURPOSE:To obtain the device capable of forming the uniform coating films over a large area by separating an excitation light source chamber from a reaction chamber by a light transmitting screening panel and arranging a pair of electrodes and the heated substrates and effecting the formation of a thin film and etching of disused matters by a photochemical reaction and a plasma chemical reaction. CONSTITUTION:A preparatory chamber 4 is separated from a reaction chamber 2 by a valve 6 and NH3 25 and Si2H6 23 are introduced with the inflow being controlled. The reaction chamber 2 is kept at 3Torr and an Si3N4 film is formed on the substrate 1 which has been heated to 350 deg.C in a heating chamber 11 under the irradiation with a low-pressure Hg lamp 9. Then a high-frequency power 15 is applied, using a reaction gas supply nozzle 1 and a substrate holder as electrodes, and Si3N4 is laminated without damage with the reaction chamber kept at 0.1Torr. After stopping the reaction, the substrates are taken out and the holder is returned to the reaction chamber. NF3 26 is supplied and a high-frequency power is applied under 0.3Torr to etch the Si3N4 on a light transmitting screening panel 10. After that, H2 27 is supplied to remove the residual F. By this device, the uniform coating film of 150Angstrom or over can be formed over a large area with a good reproducibility.

Description

【発明の詳細な説明】 「発明の利用分野j 本発明は、光化学反応およびプラズマ化学反応により薄
膜形成および不要物のエツチングを実施する装置であっ
て、大面積の被形成面に均一に量産性の優れた被膜を光
照射室上の透光性遮蔽板上にオイル等をコートすること
なく形成する手段を有するCVD (気相反応)装置に
関する。
Detailed Description of the Invention: Field of Application of the Invention The present invention is an apparatus for forming a thin film and etching unnecessary materials by photochemical reaction and plasma chemical reaction, which can be mass-produced uniformly over a large surface area. The present invention relates to a CVD (vapor phase reaction) apparatus having means for forming an excellent film on a transparent shielding plate on a light irradiation chamber without coating with oil or the like.

「従来技術」 気相反応による薄膜形成技術として、光エネルギにより
反応性気体を活性にさせる光CVD法が知られている。
"Prior Art" As a thin film forming technique using a gas phase reaction, a photo-CVD method in which a reactive gas is activated by light energy is known.

この方法は、従来の熱CVD法またはプラズマ化学反応
に比べ、低温での被膜形成が可能であるに加えて、被形
成面に場傷を与えないという点で優れたものである。
This method is superior to conventional thermal CVD methods or plasma chemical reactions in that it is possible to form a film at a low temperature and does not cause any damage to the surface on which it is formed.

かかる光CVD法を実施するに際し、その装置の一例を
第1図に示すが、反応室(2)内に保持された基板(1
)、その基板の加熱手段(3)、さらに基板に光照射す
る低圧水銀灯(9)とを有している。ドーピング系(7
)には、反応性気体の励起用の水銀バプラ(13)及び
排気系(8)にはロータリーポンプ(19)を具備して
いる。ドーピング系よりの反応性気体例えばジシランが
反応室(2)に導入され、反応生成物である例えばアモ
ルファス珪素を基板(基板温度250℃)上に形成する
に際し、反応室の紫外光透光用の遮蔽板(10)、代表
的には石英窓にも同時に多量に珪素膜が形成されてしま
う。このためこの窓への被膜形成を防ぐため、この窓に
フォンブリンオイル(弗素系オイルの一例) (16)
を薄くコートしている。
When carrying out such a photoCVD method, an example of the apparatus is shown in FIG.
), heating means (3) for the substrate, and a low-pressure mercury lamp (9) for irradiating light onto the substrate. Doping system (7
) is equipped with a mercury bubbler (13) for excitation of reactive gases and a rotary pump (19) in the exhaust system (8). When a reactive gas such as disilane from the doping system is introduced into the reaction chamber (2) and a reaction product such as amorphous silicon is formed on the substrate (substrate temperature 250°C), the ultraviolet light transmitting portion of the reaction chamber is At the same time, a large amount of silicon film is also formed on the shielding plate (10), typically a quartz window. Therefore, in order to prevent the formation of a film on this window, apply Fomblin oil (an example of fluorine-based oil) (16) to this window.
coated with a thin layer of

しかし、このオイルは、窓への被膜形成を防ぐ作用を有
しつつも、このオイルが被膜内に不純物として混入して
しまう。さらにこのオイル上にも少しづつ同時に反応生
成物が形成され、ここでの光吸収により被膜形成の厚さ
に制限が生じてしまう欠点を有する。
However, although this oil has the effect of preventing the formation of a film on the window, this oil ends up being mixed into the film as an impurity. Furthermore, a reaction product is simultaneously formed little by little on this oil, and the thickness of the film formed is limited due to light absorption there.

「問題を解決するための手段」 本発明はこれらの問題を解決するため、光CVD法に加
えてプラズマ気相反応をも行い得る装置とした。そして
光CVD法において、窓にも基板上と同時に被膜を少な
くしつつも形成されることをやむを得ないものとして受
は止めたことを前提としている。そして、光CVD法ま
たはプラズマCVD法により被膜が形成された基板を取
り出してしまった後、プラズマ気相エツチング反応によ
りこの窓に形成された紫外光の透光を妨げる窓上面での
付着物をエツチングして除去してしまうことを基本とし
ている。
"Means for Solving the Problems" In order to solve these problems, the present invention provides an apparatus that can perform plasma vapor phase reactions in addition to photo-CVD methods. In the photo-CVD method, it is assumed that the formation of a film on the window and on the substrate at the same time, while reducing the amount of film, is unavoidable and has been rejected. After removing the substrate on which the film has been formed by photo-CVD or plasma CVD, a plasma vapor phase etching reaction is performed to etch away the deposits on the top surface of the window that prevent the transmission of ultraviolet light. The basic idea is to remove it by doing so.

加えてこのエツチングラジカルをその後水素を導入し、
プラズ÷水素クリーニングを行い、初期状態の反応室を
再現させるものである。
In addition, this etching radical is then introduced with hydrogen,
Plasma/hydrogen cleaning is performed to recreate the reaction chamber in its initial state.

また、この反応性気体が反応室内に導入されるノズルを
金属で設け、反応室と電気的に絶縁することによりこの
ノズルと基板(基板ホルダ)または金属(ステンレス)
反応室とのそれぞれを一対の電極としてプラズマ反応(
エツチングまたはディボジソション)を行なわしめたも
のである。
In addition, by providing a metal nozzle through which this reactive gas is introduced into the reaction chamber and electrically insulating it from the reaction chamber, it is possible to connect this nozzle to the substrate (substrate holder) or metal (stainless steel).
Plasma reaction (
etching or debosition).

かくすることにより、特にプラズマエツチングにより発
生する反応性励起気体の一部は窓にも衝突し、窓上の不
要反応化成物を除去することができる。このため次の基
板上の被膜形成に対し窓上には紫外光の阻害物がなく、
紫外光を有効に基板の被形成面に到達させることができ
た。
In this way, a part of the reactive excited gas generated especially by plasma etching also collides with the window, thereby making it possible to remove unnecessary reaction compounds on the window. Therefore, there is no obstruction to ultraviolet light on the window for the next film formation on the substrate.
The ultraviolet light was able to effectively reach the formation surface of the substrate.

さらに低圧水銀灯のある光源室を真空(0゜1〜10t
orr)とし、ここでの185nmの紫外光の吸収損失
を少なくした。またこの光源室と反応室との圧力を概略
同一(差圧は高々10torr一般には1torr以下
)とすることにより、石英窓の厚さを従来の10mmよ
り2〜3mmと薄くし得るため、石英での光吸収損失も
少ないという特長を合わせ有する。
In addition, vacuum the light source room containing the low-pressure mercury lamp (0°1 to 10t).
orr) to reduce absorption loss of 185 nm ultraviolet light. In addition, by making the pressure between the light source chamber and the reaction chamber approximately the same (the differential pressure is at most 10 torr, generally 1 torr or less), the thickness of the quartz window can be reduced to 2 to 3 mm from the conventional 10 mm. It also has the advantage of low light absorption loss.

「作用」 これらの特性のため、新たな被膜形成を行わんとする時
は窓上の以前工程で生じた反応生成物は完全に除去され
ている。このため、光気相反応(光CVD)を窓上での
反応生成物形成による紫外光の基板表面までの到達がな
くなる(阻害される)までの範囲で毎回形成に対し一定
の厚さに再現性よ(基板上に被膜を作ることができた。
``Operation'' Because of these properties, when a new coating is to be formed, the reaction products formed in the previous process on the window are completely removed. For this reason, the photovapor phase reaction (photoCVD) can be reproduced to a constant thickness for each formation until the ultraviolet light reaches the substrate surface due to the formation of reaction products on the window. (I was able to create a film on the substrate.)

さらにこの先CVDの後同じバッチでこの被膜上にプラ
ズマCVD法により同じまたは異種の被膜を同じ反応室
を用いて作製することが本発明では可能である。
Further, in the present invention, it is possible to fabricate the same or different types of coatings by plasma CVD on this coating in the same batch after CVD using the same reaction chamber.

さらに本発明は、反応室を大気に触れさせずに窓上の不
要物をプラズマエツチング法で除去するため反応系をロ
ード・ロック方式とし得る。さらにオイルフリーの反応
系であるため、バックグラウンドレベルの真空度を10
−’torr以下とすることができた。そして非酸化物
生成物である珪素等の半導体被膜、炭化珪素、窒化珪素
、窒化アルミニューム、金属アルミニュームの光励起に
より被膜形成をさせることができた。
Further, in the present invention, the reaction system can be of a load-lock type in order to remove unnecessary substances on the window by plasma etching without exposing the reaction chamber to the atmosphere. Furthermore, since it is an oil-free reaction system, the background level vacuum can be reduced to 10
-'torr or less. Films could be formed by optical excitation of non-oxide products such as semiconductor films such as silicon, silicon carbide, silicon nitride, aluminum nitride, and metal aluminum.

「実施例j 以下本発明を第2図に示した実施例により、その詳細を
記す。
``Example j'' The present invention will be described in detail below using an example shown in FIG.

第2図において、被形成面を有する基板(1)はホルダ
(1゛)に保持され、反応室(2)内のハロゲンヒータ
(3)(上面を水冷(31))に近接して設けられてい
る。反応室(2)、紫外光源が配設された光源室(5)
及びヒータ(3)が配設された加熱室(11)は、それ
ぞれの圧力を10torr以下の概略同一の真空度に保
持した。このために反応に支障のない気体(窒素、アル
ゴンまたはアンモニア)を(28)より(12)に供給
し、または(12″)より排気することにより成就した
。また透光性遮蔽板である石英窓(10)により、光源
室(5)と反応室(2)とが仕切られている。この窓(
10)の上側にはノズル(14)が設けられ、このノズ
ルはアンモニア(NH3)、弗化窒素(NF3)用のノ
ズル(14”)が噴出口を下向き(窓向き) (32)
に、またシラン(SinHzn−z) + メチルアル
ミニューム(八1(CL) 3)用のノズル(14’)
が噴出口(14’)を上向き(基板向き) (33)に
設けている。
In FIG. 2, a substrate (1) having a surface to be formed is held in a holder (1゛), and is installed in the reaction chamber (2) in close proximity to a halogen heater (3) (the top surface of which is water-cooled (31)). ing. Reaction chamber (2), light source chamber (5) equipped with an ultraviolet light source
The heating chamber (11) in which the heater (3) and the heater (3) were provided were maintained at approximately the same degree of vacuum, with each pressure being 10 torr or less. This was accomplished by supplying a gas (nitrogen, argon, or ammonia) that does not interfere with the reaction to (12) from (28) or exhausting from (12''). The light source chamber (5) and the reaction chamber (2) are separated by a window (10).
10) A nozzle (14) is provided on the upper side, and this nozzle has a nozzle (14”) for ammonia (NH3) and nitrogen fluoride (NF3) with the spout facing downward (facing the window) (32)
Also, a nozzle (14') for silane (SinHzn-z) + methyl aluminum (81 (CL) 3)
The spout (14') is provided upward (toward the substrate) (33).

このノズル(14)はプラズマCVDおよびプラズマエ
ッチにおける高周波電源(15)より供給する一方の電
極となっている。
This nozzle (14) serves as one electrode supplied from a high frequency power source (15) in plasma CVD and plasma etching.

光源室の排気に際し逆流による反応性気体の光源室まで
の混入防止のためヒータ(29)を配設した。
A heater (29) was provided to prevent reactive gas from entering the light source chamber due to backflow when the light source chamber was evacuated.

これにより反応性気体のうちの分解後固体となる成分を
トラップし気体のみの逆火とさせた。
This traps the components of the reactive gas that become solid after decomposition, resulting in flashback of only the gas.

移動に関し、圧力差が生しないようにしたロード・ロッ
ク方式を用いた。まず、予備室(4)にて基板(1)、
ホルダ(1゛)および基板および基板おさえ(1゛)(
熱を効率よく基板に伝導させる)を挿入・配設し、真空
引きをした後、ゲート弁(6)を開とし、反応室(2)
に移し、またゲート弁(6)を閉として、反応室(2)
、予備室(4)を互いに仕切った。
Regarding movement, a load-lock method was used to prevent pressure differences from occurring. First, in the preliminary room (4), the board (1),
Holder (1゛), board and board holder (1゛) (
After inserting and arranging the device (to efficiently conduct heat to the substrate) and drawing a vacuum, open the gate valve (6) and open the reaction chamber (2).
and close the gate valve (6) to open the reaction chamber (2).
, the preliminary room (4) was partitioned off from each other.

ドーピング系(7)は、バルブ(22) 、流量計(2
1)よりなり、反応後固体生成物を形成させる反応性気
体は(23) 、 (24)より、また反応後気体生成
物は(25) 、 (26)より反応室(2)へ供給さ
せた。反応室の圧力制御は、コントロールバルブ(17
) 、 コック(20)を経てターボ分子ポンプ(大阪
真空製PG550を使用) (18) 、ロータリーポ
ンプ(19)を経、排気させた。
The doping system (7) includes a valve (22) and a flow meter (2).
1), the reactive gas that forms the solid product after the reaction was supplied from (23) and (24), and the gaseous product after the reaction was supplied from (25) and (26) to the reaction chamber (2). . The pressure in the reaction chamber is controlled using a control valve (17
), a turbo molecular pump (PG550 manufactured by Osaka Vacuum Co., Ltd. was used) (18) and a rotary pump (19) for exhaustion.

排気系(8)はコック(20)により予備室を真空引き
をする際はそちら側を開とし、反応室側を閉とする。ま
た反応室を真空引きする際は反応室を開とし、予備室側
を閉とした。
When the preliminary chamber is evacuated using the cock (20), the exhaust system (8) is opened on that side and closed on the reaction chamber side. Furthermore, when evacuating the reaction chamber, the reaction chamber was opened and the preliminary chamber side was closed.

かくして基板を反応室に図示の如く挿着した。The substrate was thus inserted into the reaction chamber as shown.

この反応室の真空度は10” ’ torr以下とした
。この後(28)より窒素を導入しさらに反応性気体を
(7)より反応室に導入して被膜形成を行った。
The degree of vacuum in the reaction chamber was set to 10"' torr or less. Thereafter, nitrogen was introduced from (28) and a reactive gas was further introduced into the reaction chamber from (7) to form a film.

反応用光源は低圧水銀灯(9)とし、水冷(31″)を
設けた。その紫外光源は、低圧水銀灯(185nm。
The light source for the reaction was a low-pressure mercury lamp (9), equipped with water cooling (31'').The ultraviolet light source was a low-pressure mercury lamp (185 nm).

254nmの波長を発光する発光長40cm、照射強度
20m W / Cm ” +ランプ電力40W)ラン
プ数16本である。
The number of lamps is 16, emitting light with a wavelength of 254 nm, emitting length of 40 cm, irradiation intensity of 20 m W/Cm'' + lamp power of 40 W).

この紫外光は、透光性遮蔽板である石英(10)を経て
反応室(2)の基板(1)の被形成面(1)上を照射す
る。
This ultraviolet light passes through quartz (10), which is a transparent shielding plate, and irradiates onto the formation surface (1) of the substrate (1) in the reaction chamber (2).

ヒータ(3)は反応室の上側に位置した「デイポジノシ
ョン・アップ」方式とし、フレークが被形成面に付着し
てピンホールの原因を作ることを避けた。
The heater (3) was a "deposition up" type heater located above the reaction chamber to avoid flakes from adhering to the surface to be formed and causing pinholes.

反応室はステンレスであり、光源室、加熱室(11)も
ともに真空引きをし、それぞれの圧力差を10torr
以下とした。その結果、従来例に示される如く、大面積
の照射用に石英板の面積を大きくすると圧力的に耐えら
れないという欠点を本発明は有していない。即ち、紫外
光源も真空下に保持された光源室と反応室とを囲んだス
テンレス容器内に真空に保持されている。このため、5
cmX5cmの大きさではなく 30cm x 30c
mの大きさの基板をも何等の工業的な問題もなく作るこ
とができ得る。
The reaction chamber is made of stainless steel, and both the light source chamber and heating chamber (11) are evacuated to maintain a pressure difference of 10 torr.
The following was made. As a result, the present invention does not have the disadvantage of not being able to withstand pressure when the area of the quartz plate is increased for irradiation of a large area, as shown in the conventional example. That is, the ultraviolet light source is also kept under vacuum in a stainless steel container surrounding a light source chamber and a reaction chamber that are kept under vacuum. For this reason, 5
The size is 30cm x 30cm instead of cm x 5cm.
A substrate having a size of m can also be produced without any industrial problems.

基板の温度はハロゲンヒータ(3)により加熱し室温〜
500°Cまでの所定の温度とした。
The temperature of the substrate is heated by a halogen heater (3) to a temperature between room temperature and
The predetermined temperature was up to 500°C.

さらに、本発明による具体例を以下の実験例1〜3に示
す。
Further, specific examples according to the present invention are shown in Experimental Examples 1 to 3 below.

実験例1・・・・・シリコン窒化膜の形成側反応性気体
としてアンモニアを(25)より30cc/分、ジシラ
ンを(23)より8cc/分で供給し、基板温度350
℃とした。基板は直径5インチのウェハ5枚とした。反
応室(2)内圧力は3.0torrとした。
Experimental example 1...Ammonia was supplied from (25) at 30 cc/min and disilane was supplied from (23) at 8 cc/min as reactive gases on the silicon nitride film formation side, and the substrate temperature was 350.
℃. The substrates were five wafers each having a diameter of 5 inches. The internal pressure of the reaction chamber (2) was 3.0 torr.

30分の反応で1500人の膜厚が形成された。その被
膜形成速度は65人/分であった。本発明は水銀の蒸気
等を用いない直接光励起である。被膜の5点のばらつき
は±5%以内に入っていた。しかしこの厚さ以上の厚さ
には窓への窒化珪素膜の形成によりきわめて困難であっ
た。
A film with a thickness of 1,500 people was formed in a 30-minute reaction. The film formation rate was 65 people/min. The present invention uses direct optical excitation without using mercury vapor or the like. The variation of the 5 points of the coating was within ±5%. However, it is extremely difficult to form a silicon nitride film on the window to a thickness greater than this thickness.

1500Å以上の膜厚とするには、この後プラズマCV
D法を行えばよい。即ち(15)より13.56MHz
の高周波(40W)を加えた。すると同じ反応性気体(
但し圧力0,1torr)にて2.3へ/秒を得た。か
(してこの方法では被形成面にプラズマ損傷を与えるこ
となく0.5 μの膜を得ることができ得る。
To obtain a film thickness of 1500 Å or more, plasma CV
Just use method D. That is, from (15), 13.56MHz
high frequency (40W) was applied. Then the same reactive gas (
However, a speed of 2.3 to/sec was obtained at a pressure of 0.1 torr). (Thus, with this method, a film of 0.5 μm can be obtained without causing plasma damage to the surface on which it is formed.

さらにこの後反応を停止し、反応室を真空引きして被膜
形成を行った基板を予備室に除去した。
Further, after this, the reaction was stopped, the reaction chamber was evacuated, and the substrate on which the film was formed was removed to a preliminary chamber.

その後、さらに基板を取り出し、ホルダをもとの反応室
に戻し、ゲートを閉じた後反応室に(26)よりNF、
を供給した。そして、反応室の圧力を0.3torrと
し、13.56MHzの高周波(15)を80Hの出力
で加えプラズマエッチを窓(10)上面に対して行った
After that, further substrates were taken out, the holder was returned to the original reaction chamber, and after closing the gate, NF was added to the reaction chamber from (26).
was supplied. Then, the pressure in the reaction chamber was set to 0.3 torr, and a high frequency wave (15) of 13.56 MHz was applied at an output of 80 H to perform plasma etching on the upper surface of the window (10).

約20分した後、この石英(10)上の不要反応生成物
である窒化珪素被膜を完全に除去することができた。こ
のNP、を除去した後(27)より水素を加え、この反
応室内の残留弗素をプラズマクリーンをして除去した。
After about 20 minutes, the silicon nitride film on the quartz (10), which was an unnecessary reaction product, could be completely removed. After removing this NP, hydrogen was added from (27), and residual fluorine in the reaction chamber was removed by plasma cleaning.

この後、2回目の被膜作製を行ったが、同じく再現性の
よい被膜を作り得た。
After this, a second coating was produced, and a coating with good reproducibility was also produced.

実験例2・・アモルファスシリコン膜の形成例ジシラン
(SizH6)を(23)より供給した。また、(27
)より水素を供給した。被形成面に1000人の膜厚を
60分間のディボジソションで形成させることができた
Experimental Example 2: Formation example of amorphous silicon film Disilane (SizH6) was supplied from (23). Also, (27
) was supplied with hydrogen. A film with a thickness of 1,000 layers could be formed on the surface to be formed in 60 minutes of deposition.

この後基板を予備室に除去してしまった後、この反応室
(2)の内壁および窓(10)上面に付着したシリコン
膜を実施°例1と同様のNFIを加えたプラズマエッチ
法にて除去した。わずか15分間で窓上及び反応室内の
付着珪素を除去することができた。
After removing the substrate to the preliminary chamber, the silicon film adhering to the inner wall of the reaction chamber (2) and the upper surface of the window (10) was etched using the same plasma etching method with NFI added as in Example 1. Removed. Adhering silicon on the windows and inside the reaction chamber could be removed in just 15 minutes.

基板温度は250℃、圧力2,5torrとした。The substrate temperature was 250° C. and the pressure was 2.5 torr.

実験例3・・・窒化アルミニュームの形成例AI((:
H+)iを代表例とするメチルアルミニュームを(23
)より8cc/分で供給した。(25)よりアンモニア
を30cc/分で供給した。すると、メチルアルミニュ
ームは光源室に水銀を用いることなく分解し、窒化アル
ミニューム膜を1300人の厚さに作ることができた。
Experimental example 3... Formation example of aluminum nitride AI ((:
Methyl aluminum with H+)i as a representative example (23
) at a rate of 8 cc/min. Ammonia was supplied from (25) at a rate of 30 cc/min. As a result, methylaluminum was decomposed without using mercury in the light source chamber, and an aluminum nitride film with a thickness of 1,300 mm was created.

被膜形成速度は330人/分く圧力3torr、温度3
50℃)を得ることができた。エチルアルミニュームA
l (C2H5) :1等の他のアルキル化合物でもよ
い。
Film formation rate: 330 persons/min, pressure: 3 torr, temperature: 3
50°C). Ethyl aluminum A
Other alkyl compounds such as l(C2H5):1 may also be used.

窓のプラズマエツチングは(26)よりCC1,を供給
してプラズマ反応を行った。加えて(24)より水素を
供給した。かくして窒化アルミニュームを除去させるこ
とができた。
For plasma etching of the window, CC1 was supplied from (26) to perform a plasma reaction. In addition, hydrogen was supplied from (24). In this way, aluminum nitride could be removed.

この被膜形成を10回繰り返しても、同じ膜厚を同一条
件で得ることができた。
Even if this film formation was repeated 10 times, the same film thickness could be obtained under the same conditions.

「効果」 本発明は、以上の説明より明らかなごとく、大面積の基
板上に被膜を形成するにあたり、窓上の不要反応生成被
膜をプラズマエツチングより完全に除去することができ
る。このため窓上面にオイルをまったく用いる必要がな
い。このため被膜内には炭素等の不純物がはいりにくく
、かつ排圧を1f17torrと高真空にし得、オイル
フリーの高純度の被膜作製が可能となった。
"Effects" As is clear from the above description, the present invention can completely remove unnecessary reaction-generated films on windows by plasma etching when forming a film on a large-area substrate. Therefore, there is no need to use any oil on the top surface of the window. Therefore, it is difficult for impurities such as carbon to enter the coating, and the exhaust pressure can be set to a high vacuum of 1f17 torr, making it possible to produce an oil-free coating with high purity.

さらにこの光CVD法による被膜形成に加えて、この上
に重ねて同じまたは異なる被膜をプラズマCVD法で形
成させんとすることが可能である。かかる場合、光CV
D法で被膜を形成して被形成面をスパッタさせず、さら
にプラズマ気相法によりこの上に重ねて同じ膜または他
の同様の膜を作ることも可能である。即ち被膜形成速度
を遅くさせることなく、再現性のよい被膜形成をさせる
ことができた。
Furthermore, in addition to forming a film by this photo-CVD method, it is possible to form the same or a different film on top of it by a plasma CVD method. In such cases, optical CV
It is also possible to form a film by the D method without sputtering the surface on which it is formed, and then to superimpose the same film or another similar film thereon by a plasma vapor phase method. That is, it was possible to form a film with good reproducibility without slowing down the film formation rate.

さらにこの窓上面に落下したフレーク等も同様にプラズ
マエッチにより除去することにより、反応室に完全にオ
イルレスの環境を得、連続形成を初めて可能にした。
Furthermore, by removing flakes and the like that had fallen onto the top surface of the window, we created a completely oil-free environment in the reaction chamber, making continuous formation possible for the first time.

なお本発明は、珪素および窒化珪素、窒化アルミニュー
ムにおいてその実験例を示したが、それ以外にM(CH
3)、即(MとしてI n + Cr + S n +
 M o + G a + Wを用い、Mの金属または
その珪化物を作製してもよい。マタ鉄、ニッケル、コバ
ルトのカルボニル化物を反応性気体として用い、鉄、ニ
ッケル、コバルトまたはその化合物の被膜また珪化物と
これらとの化合物を形成することは有効である。
Although the present invention has shown experimental examples using silicon, silicon nitride, and aluminum nitride, it is also possible to use M(CH
3), immediately (M as I n + Cr + S n +
M o + Ga + W may be used to produce the metal M or its silicide. It is effective to use a carbonylated product of iron, nickel, or cobalt as a reactive gas to form a film of iron, nickel, cobalt, or a compound thereof, or a compound of these with a silicide.

前記した実験例において、珪素半導体の形成に際し、ド
ーパントを同時に添加できる。また光源として低圧水銀
灯°ではなくエキシマレーザ(波長100〜400nm
) 、アルゴンレーザ、窒素レーザ等を用いてもよいこ
とはいうまでもない。
In the experimental examples described above, dopants can be added at the same time when forming a silicon semiconductor. Also, the light source is not a low-pressure mercury lamp but an excimer laser (wavelength: 100 to 400 nm).
), argon laser, nitrogen laser, etc. may of course be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来より公知の光励起CVD装置を示す。 第2図は本発明のCVO装置を示す。 FIG. 1 shows a conventionally known photoexcited CVD apparatus. FIG. 2 shows a CVO device of the present invention.

Claims (1)

【特許請求の範囲】 1、反応性気体の励起用の発光源を配設させた光源室と
、前記光源室と反応室とを仕切る透光性遮蔽板と、前記
反応室に配設された被形成面を有する加熱された基板と
、該基板を保持するホルダと、前記反応室に一対の電極
と、該電極に電気エネルギを供給する電源とを有し、前
記光化学反応を伴って被形成面上に薄膜を形成させると
ともに、前記一対の電極によりプラズマグロー放電を生
ぜしめ、プラズマ気相法により被膜の形成を、またはプ
ラズマ・エッチング反応により不要付着物の除去を行う
ことを特徴とする薄膜形成装置。 2、特許請求の範囲第1項において、プラズマ気相エッ
チング反応またはプラズマ気相被膜形成反応は一対の電
極として反応性気体を供給するノズルと基板ホルダまた
は反応室とを有せしめ、これらの間に高周波電気エネル
ギを供給する手段を有することを特徴とする薄膜形成装
置。
[Scope of Claims] 1. A light source chamber in which a light source for excitation of a reactive gas is disposed, a light-transmitting shielding plate that partitions the light source chamber and the reaction chamber, and a light-transmitting shielding plate disposed in the reaction chamber. A heated substrate having a surface to be formed, a holder for holding the substrate, a pair of electrodes in the reaction chamber, and a power source for supplying electrical energy to the electrodes, and the surface to be formed by the photochemical reaction. A thin film characterized by forming a thin film on a surface, generating a plasma glow discharge using the pair of electrodes, forming a film by a plasma vapor phase method, or removing unnecessary deposits by a plasma etching reaction. Forming device. 2. In claim 1, the plasma vapor phase etching reaction or the plasma vapor phase film forming reaction has a nozzle for supplying a reactive gas as a pair of electrodes and a substrate holder or a reaction chamber, and a substrate holder or a reaction chamber is provided between these. A thin film forming apparatus characterized by having means for supplying high frequency electrical energy.
JP25034184A 1984-11-26 1984-11-26 Formation of thin film Granted JPS61127122A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP25034184A JPS61127122A (en) 1984-11-26 1984-11-26 Formation of thin film
US07/092,529 US4811684A (en) 1984-11-26 1987-09-03 Photo CVD apparatus, with deposition prevention in light source chamber
US07/140,903 US4857139A (en) 1984-11-26 1988-01-04 Method and apparatus for forming a layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25034184A JPS61127122A (en) 1984-11-26 1984-11-26 Formation of thin film

Publications (2)

Publication Number Publication Date
JPS61127122A true JPS61127122A (en) 1986-06-14
JPH0351292B2 JPH0351292B2 (en) 1991-08-06

Family

ID=17206474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25034184A Granted JPS61127122A (en) 1984-11-26 1984-11-26 Formation of thin film

Country Status (1)

Country Link
JP (1) JPS61127122A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120368A (en) * 1989-08-25 1991-05-22 Applied Materials Inc Cleansing of chemical vacuum deposition apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147236A (en) * 1981-03-09 1982-09-11 Kokusai Electric Co Ltd Removing method for extraneous matter on reaction pipe for vapor growth device
JPS59188913A (en) * 1983-04-11 1984-10-26 Semiconductor Energy Lab Co Ltd Photo cvd device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147236A (en) * 1981-03-09 1982-09-11 Kokusai Electric Co Ltd Removing method for extraneous matter on reaction pipe for vapor growth device
JPS59188913A (en) * 1983-04-11 1984-10-26 Semiconductor Energy Lab Co Ltd Photo cvd device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120368A (en) * 1989-08-25 1991-05-22 Applied Materials Inc Cleansing of chemical vacuum deposition apparatus

Also Published As

Publication number Publication date
JPH0351292B2 (en) 1991-08-06

Similar Documents

Publication Publication Date Title
JPS61127121A (en) Formation of thin film
EP0104658B1 (en) Process for forming thin film
US6786997B1 (en) Plasma processing apparatus
US20030143410A1 (en) Method for reduction of contaminants in amorphous-silicon film
EP0416774A1 (en) A method of treating a sample of aluminium-containing material
US4588610A (en) Photo-chemical vapor deposition of silicon nitride film
JPH02281627A (en) Manufacture of semiconductor device
JP3469761B2 (en) Method for manufacturing semiconductor device
JP3112880B2 (en) Cleaning method for CVD equipment
JPS61127122A (en) Formation of thin film
JPS61143585A (en) Thin film forming method
JPS61127120A (en) Formation of thin film
JPS63317675A (en) Plasma vapor growth device
JPS6246515A (en) Thin film forming method
JPS61196528A (en) Thin film forming apparatus
JPS61144014A (en) Thin film formation
JPS61216318A (en) Photo chemical vapor deposition device
JP2654456B2 (en) Manufacturing method of high quality IGFET
JPS6250468A (en) Plasma vapor growth method for thin film
JPS61288431A (en) Manufacture of insulating layer
JPH0978245A (en) Formation of thin film
JPH06158327A (en) Thin film depositing method
JPS61196527A (en) Thin film forming apparatus
JPS61230328A (en) Vapor growth apparatus
JPS6118124A (en) Thin film forming apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees