JPS61196528A - Thin film forming apparatus - Google Patents

Thin film forming apparatus

Info

Publication number
JPS61196528A
JPS61196528A JP3726885A JP3726885A JPS61196528A JP S61196528 A JPS61196528 A JP S61196528A JP 3726885 A JP3726885 A JP 3726885A JP 3726885 A JP3726885 A JP 3726885A JP S61196528 A JPS61196528 A JP S61196528A
Authority
JP
Japan
Prior art keywords
gas
reaction chamber
film
substrate
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3726885A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Mamoru Tashiro
田代 衛
Kazuo Urata
一男 浦田
Yuuji Misemura
店村 悠爾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP3726885A priority Critical patent/JPS61196528A/en
Publication of JPS61196528A publication Critical patent/JPS61196528A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To avoid any formation of reactive product on windows of armour type sheet in case films are to be formed by photo CVD process by a method wherein reactive gas is fed in the same direction as that of non-productive gas exhausted out of a reaction chamber. CONSTITUTION:A light source chamber 5 and a heating chamber 11 are supplied with non-productive gas and then the gas is led into 14 a reaction chamber through the gaps in a light transmissive shielding sheet 10. Then the gas is exhausted 14' from the armour type light transmissive shielding sheet 10 having a laminar flow on an exhaust port side while reactive gas 31 fed from a nozzle 30 is exhausted 31 having a laminar flow in the same direction as that of the non-productive gas flow 14, 14' in the space between the gas 14, 14' and a substrate 1 with a surface to be formed i.e. the substrate side. Through these procedures, a reactive product may not be formed on the surface of armour type light transmissive shielding sheet 10 at all. Resultantly the reaction chamber may be irradiated with ultraviolet rays with sufficient intensity exciting the reactive gas 31 continuously.

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は、光化学反応により薄膜形成する方法であって
、大面積の被形成面上に均一に被膜を光照射用の透光性
遮蔽板上にオイル等をコートすることなく形成する手段
を有するCVD (気相反応)装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application of the Invention The present invention is a method for forming a thin film by photochemical reaction, in which a film is uniformly formed on a large surface on a transparent shielding plate for light irradiation. The present invention relates to a CVD (vapor phase reaction) device having means for forming a film without coating it with oil or the like.

「従来技術及びその問題点」 気相反応による薄膜形成技術として、光エネルギにより
反応性気体を活性にさせる光CVD法が知られている。
"Prior Art and its Problems" As a technique for forming thin films through gas phase reactions, a photo-CVD method is known in which a reactive gas is activated by light energy.

この方法は、従来の熱CVD法またはプラズマCVD法
に比べ、低温での被膜形成が可能であるに加えて、被形
成面に損傷を与えないという点で優れたものである。
This method is superior to the conventional thermal CVD method or plasma CVD method in that it is possible to form a film at a low temperature and does not damage the surface on which it is formed.

かかる光CVD法を実施するに際し、その方法の一例を
第1図に示すが、反応室(2)内に保持された基板(1
)、その基板の加熱手段(3)、さらに基板に光照射す
る低圧水銀灯(9)とを有している。ドーピング系(7
)には、反応性気体の励起用の水銀バブラ(13)及び
排気系(8)にはロータリーポンプ(19)を具備して
いる。ドーピング系よりの反応性気体例えばジシランが
反応室(2)に導入され、反応生゛成物である例えばア
モルファス珪素を基板(基板温度250°C)上に形成
するに際し、反応室の紫外光透光用の遮蔽板(10)、
代表的には石英窓にも同時に多量に珪素膜が形成されて
しまう。このためこの窓への被膜形成を防ぐため、この
窓にフォンブリンオイル(弗素系オイルの一例)(16
)を薄くコートしている。
When carrying out such a photo-CVD method, an example of the method is shown in FIG.
), heating means (3) for the substrate, and a low-pressure mercury lamp (9) for irradiating light onto the substrate. Doping system (7
) is equipped with a mercury bubbler (13) for excitation of reactive gases and a rotary pump (19) in the exhaust system (8). A reactive gas such as disilane from a doping system is introduced into the reaction chamber (2), and when a reaction product such as amorphous silicon is formed on a substrate (substrate temperature 250°C), ultraviolet light is transmitted through the reaction chamber. light shielding plate (10),
Typically, a large amount of silicon film is also formed on the quartz window at the same time. Therefore, in order to prevent the formation of a film on this window, Fomblin oil (an example of fluorine-based oil) (16
) is thinly coated.

しかし、このオイルは、窓(10)への被膜形成を防ぐ
作用を有しつつも、被膜内に不純物として混入してしま
う。さらにこのオイル上にも少しづつ同時に反応生成物
が形成され、ここでの光吸収により被膜形成の厚さに制
限が生じてしまう欠点を有する。
However, although this oil has the effect of preventing the formation of a film on the window (10), it ends up being mixed into the film as an impurity. Furthermore, a reaction product is simultaneously formed little by little on this oil, and the thickness of the film formed is limited due to light absorption there.

r問題を解決するための手段」 本発明はこれらの問題を解決するため、光CVD法にお
いて、問題となっている紫外光透光用の遮蔽板を複数枚
「よろい板(一方の室(反応室)に通風のため、巾のせ
まい板を複数膜一定の傾斜を保ってとりつけた装置)状
」に配設せしめ、この透光性遮蔽板上面に反応生成物が
蓄積されて紫外光を遮光しないように、または遮光させ
に(いように、光源室側より非生成物気体(反応または
分解により固体を形成しない気体、例えばHe + A
 r + H2。
In order to solve these problems, the present invention aims to solve the problem in the photo-CVD method by installing a plurality of shielding plates for transmitting ultraviolet light. In order to provide ventilation in the chamber, a plurality of narrow plates are installed at a constant inclination in the form of a device, in which reaction products accumulate on the top surface of the translucent shielding plate and block ultraviolet light. In order to avoid light generation or to block light, remove non-product gases (gases that do not form solids by reaction or decomposition, such as He + A) from the light source chamber side.
r + H2.

Nz、NHz、NzO,O□またはこれらの混合気体)
を導出せしめる方法としたものである。
Nz, NHz, NzO, O□ or a mixture thereof)
This is a method to derive the following.

そしてこの気体と基板との間に、この気体の流れる方向
と同一方向に反応性気体を導入する。そしてこの反応性
気体を効率よく基板の被形成面上に励起して被膜化させ
る。かくしてこの非生成物気体の流れは反応性気体にと
って「ガスウオール」(気体による壁の作用により透光
性遮蔽板に励起した気体が被着しないようにする)を構
成させることができる。
Then, a reactive gas is introduced between this gas and the substrate in the same direction as the flow direction of this gas. Then, this reactive gas is efficiently excited onto the surface of the substrate to form a film. This flow of non-product gas can thus constitute a "gas wall" for the reactive gas (the wall action of the gas prevents the excited gas from adhering to the transparent shielding plate).

「作用」 これらの特長のため、本発明方法による光CVD法で被
膜形成を行わんとする時、よろい板状の窓上に反応生成
物が形成されることがない、またはきわめて少ない。そ
の結果、紫外光は「よろい板状」の窓を十分透過して、
反応性気体を十分励起(分解、および反応を含む)し、
被形成面に反応生成物を蓄積させ得る。その時、同時に
同じ反応生成物が透光性遮蔽板の上面にも飛来するが、
この生成物はよろい板の隙間より反応室に導出される非
生成物気体により作られる「ガスウオール」により阻害
され、窓上面には被着し得ない。そのため、「よろい板
状」の透光性遮蔽板(窓ともいう)の表面には反応生成
物が形成されず、結果として紫外光を反応室内にいつま
でも十分な強度で放射し反応性気体を励起させ続は得る
。そして基板の被形成面上に十分な膜厚に被膜形成をさ
せ得る。そして従来より公知の100〜200人(オイ
ルコートを行わない場合)または1000〜1500人
(オイルコートを行った場合)という厚さではなく、繰
り返し500〜5000人の所望の膜厚の被膜を形成さ
せ得る。
"Effect" Because of these features, when a film is to be formed by the photo-CVD method according to the method of the present invention, no or very few reaction products are formed on the shroud-like window. As a result, ultraviolet light can fully pass through the "shroud" window,
Sufficiently excite (including decomposition and reaction) reactive gases,
Reaction products may accumulate on the formed surface. At that time, the same reaction product also flies to the top surface of the transparent shielding plate,
This product is inhibited by the "gas wall" created by the non-product gas discharged into the reaction chamber through the gap between the shutter plates, and cannot adhere to the upper surface of the window. Therefore, no reaction products are formed on the surface of the "armor plate-like" light-transmitting shielding plate (also called a window), and as a result, ultraviolet light is emitted with sufficient intensity into the reaction chamber indefinitely to excite the reactive gas. Let's continue. Then, a film can be formed to a sufficient thickness on the surface of the substrate. Then, instead of the conventionally known thickness of 100 to 200 layers (without oil coating) or 1000 to 1,500 layers (with oil coating), a film with a desired thickness of 500 to 5000 layers is repeatedly formed. It can be done.

さらにこの光CVDの後、同じバッチでこの被膜上にプ
ラズマCVD法により同種または異種の被膜を同じ反応
室を用いて作製することが本発明では可能である。
Further, in the present invention, after this photo-CVD, it is possible to produce films of the same type or different types on this film in the same batch by plasma CVD using the same reaction chamber.

さらに本発明は、非生成物気体の導出用量が不十分のた
めに窓上に付着した不要生成物をもプラズマエツチング
法で反応室を大気に触れさせずに除去し得る。また本発
明装置は、オイルフリーの反応系であるため、バックグ
ラウンドレベルの真空度を10−’torr以下とする
ことができた。そして非酸化物の反応生成物である珪素
等の半導体被膜、炭化珪素、窒化珪素、窒化アルミニュ
ーム、金属アルミニュームの光励起による光CVD被膜
形成をさせ得る。
Further, according to the present invention, unnecessary products deposited on the window due to an insufficient amount of non-product gas being discharged can be removed by plasma etching without exposing the reaction chamber to the atmosphere. Furthermore, since the apparatus of the present invention is an oil-free reaction system, the background level of vacuum could be kept at 10-'torr or less. A photoCVD film can be formed by photoexcitation of a non-oxide reaction product such as a semiconductor film such as silicon, silicon carbide, silicon nitride, aluminum nitride, or metal aluminum.

「実施例j 以下本発明を第2図に示した実施例により、その詳細を
記す。
``Example j'' The present invention will be described in detail below using an example shown in FIG.

第2図において、被形成面を有する基板(1)はホルダ
(1゛)に保持され、反応室(2)上のハロゲンヒータ
(3)(上面を水冷(32))に近接して設けられてい
る。反応室(2)、紫外光源(9)が配設された光源室
(5)及びヒータ(3)が配設された加熱室(11)は
、それぞれの圧力を100torr以下の概略同−の真
空度に保持した。このために、反応に支障のない非生成
物気体(ここでは窒素、アルゴンまたはアンモニア)を
(28)より流量計(21)、バルブ(22)より光源
室(5)、加熱室(11)に供給した。そしてその気体
を「よろい板状」透光性遮蔽板(10)の隙間より反応
室に導出(14)することにより、不要反応生成物の遮
蔽板上面への付着防止をした。またこの「よろい板状」
透光性遮蔽板(10)より、排気口側に層流になるよう
に排気(14”)し、この非生成物気体流(14) 、
 (14’ )と被形成面を有する基板(1)との間即
ち基板側にはノズル(30)からの反応性気体(31)
が(14)、 (14’)と同じ方向に層流となるべく
流れ排気(31’) している。この反応性気体はアン
モニア(NH3)、弗化窒素(NF3) 、珪化物気体
であるシラン(StnHzn、z) 1弗化珪素(Si
Fz、 SiF4.5iJi。
In Fig. 2, a substrate (1) having a surface to be formed is held in a holder (1゛), and is provided in close proximity to a halogen heater (3) (the upper surface of which is water-cooled (32)) above a reaction chamber (2). ing. The reaction chamber (2), the light source chamber (5) in which the ultraviolet light source (9) is disposed, and the heating chamber (11) in which the heater (3) is disposed are kept under approximately the same vacuum at a pressure of 100 torr or less. held at the same time. For this purpose, a non-product gas (nitrogen, argon or ammonia in this case) that does not interfere with the reaction is introduced from (28) into the flowmeter (21), and from the valve (22) into the light source chamber (5) and heating chamber (11). supplied. The gas was then led out (14) into the reaction chamber through the gap in the "armor plate-like" light-transmitting shielding plate (10), thereby preventing unnecessary reaction products from adhering to the upper surface of the shielding plate. Also, this "armor plate shape"
The non-product gas flow (14) is exhausted from the light-transmitting shielding plate (10) to form a laminar flow toward the exhaust port (14"),
(14') and the substrate (1) having the surface to be formed, that is, on the substrate side, there is a reactive gas (31) from the nozzle (30).
The exhaust gas (31') flows in the same direction as (14) and (14') to form a laminar flow. These reactive gases include ammonia (NH3), nitrogen fluoride (NF3), silicide gases such as silane (StnHzn,z), silicon fluoride (Si
Fz, SiF4.5iJi.

H2Sxh) +メチルアルミニューム(AI (CH
2) 3)またはその混合気体を用い得る。非生成物気
体としては反応生成物として珪素の如き半導体を作る場
合、水素、アルゴンまたはへリュームを用いた。窒化物
(窒化珪素、窒化アルミニューム)を作る場合・ は窒
素またはアンモニアを用いた。金属アルミニュームを作
る場合は水素、アルゴンまたはヘリニームを用いた。
H2Sxh) + methyl aluminum (AI (CH
2) 3) or a gas mixture thereof may be used. As the non-product gas, hydrogen, argon or helium was used when a semiconductor such as silicon was produced as a reaction product. When making nitrides (silicon nitride, aluminum nitride), nitrogen or ammonia was used. Hydrogen, argon, or helinium was used to make metallic aluminum.

ドーピング系(7)は、バルブ(22)、流量計(21
)よりなり、反応後固体生成物を形成させる反応性気体
は(23)ないしく26)より供給させた。反応室の圧
力側JRハ、コントロールバルブ(17)、コック(2
0)を経てターボ分子ポンプ(大阪真空製PG550を
使用) (18) 、ロータリーポンプ(19)を経、
排気させることにより成就した。
The doping system (7) includes a valve (22) and a flowmeter (21).
), and the reactive gas to form a solid product after reaction was supplied from (23) to 26). Pressure side of reaction chamber JR c, control valve (17), cock (2)
0), a turbo molecular pump (using Osaka Vacuum PG550) (18), a rotary pump (19),
This was achieved by exhausting the air.

排気系(8)はコック(20)により予備室を真空引き
をする際はそちら側を開とし、反応室側を閉とする。ま
た反応室を真空引きまたは光化学反応をさせる際は、反
応室側を開とし、予備室側を閉とした。
When the preliminary chamber is evacuated using the cock (20), the exhaust system (8) is opened on that side and closed on the reaction chamber side. Furthermore, when the reaction chamber was evacuated or a photochemical reaction was performed, the reaction chamber side was opened and the preliminary chamber side was closed.

被膜の形成プロセスは、基板の予備室より反応室への移
動に関し、圧力差が生じないようにしたロード・ロック
方式を用いた。まず、予備室(4)にて基板(1)およ
びホルダ(1゛)を挿入・配設し、真空引きをした後、
予め10−’torrまたはそれ以下に真空引きがされ
ている反応室(2)との間のゲート弁(6)を開とし、
基板(1)、ホルダ(l゛)を反応室(2)に移し、ま
たゲート弁(6)を閉として、反応室(2)と予備室(
4)とを互いに仕切った。
The film formation process used a load-lock method in which no pressure difference was created in moving the substrate from the preliminary chamber to the reaction chamber. First, the substrate (1) and holder (1゛) are inserted and arranged in the preliminary chamber (4), and after vacuuming,
Open the gate valve (6) between the reaction chamber (2) which has been evacuated to 10-'torr or lower in advance,
Transfer the substrate (1) and holder (l゛) to the reaction chamber (2), close the gate valve (6), and separate the reaction chamber (2) and the preliminary chamber (
4) and were separated from each other.

その後、光源室に対し逆流による反応性気体の光源室内
への混入防止のため、まず非生成物気体を100〜50
0cc/分の流量で光源室に導入し、同時に連結した加
熱室にも流した。そしてそれらは複数の「よろい板状」
遮蔽板(10)の隙間をへて反応室に導出(14)され
排気(14’)をさせる。その後反応性気体(31)を
ノズル(30)より供給した。
After that, to prevent reactive gases from entering the light source chamber due to backflow, first add 100 to 50% of the non-product gas to the light source chamber.
It was introduced into the light source chamber at a flow rate of 0 cc/min, and also into the connected heating chamber at the same time. And they are multiple "armor plate-like"
It is led out (14) into the reaction chamber through the gap between the shielding plates (10) and exhausted (14'). Thereafter, reactive gas (31) was supplied through the nozzle (30).

反応用光源は低圧水銀灯(9)とし、水冷(32”)を
設けた。その紫外光源は、低圧水銀灯(185nm。
The light source for the reaction was a low-pressure mercury lamp (9), equipped with water cooling (32"). The ultraviolet light source was a low-pressure mercury lamp (185 nm).

254nmの波長を発光する発光長40cm、照射強度
20mW/cm”、ランプ電力40W)ランプ数16本
である。
There are 16 lamps (luminous length: 40 cm, irradiation intensity: 20 mW/cm", lamp power: 40 W) that emit light at a wavelength of 254 nm.

この紫外光は、透光性遮蔽板である「よろい板状」石英
(10)を経て反応室(2)の反応性気体(31)およ
び基板(1)の被形成面(1)上を照射する。
This ultraviolet light irradiates the reactive gas (31) in the reaction chamber (2) and the formation surface (1) of the substrate (1) through the "armor plate-like" quartz (10) that is a light-transmitting shielding plate. do.

ヒータ(3)は反応室(2)の上側に位置した「ディボ
ジッション・アンプ」方式とし、フレークが被形成面に
付着しピンホールの原因を作ることを避け、かつ基板(
1)を裏面側より所定の温度(室/ML〜500℃)に
ハロゲンヒータにより加熱した。
The heater (3) is a "deposition amplifier" type heater located above the reaction chamber (2) to prevent flakes from adhering to the surface to be formed and causing pinholes, and to prevent the flakes from adhering to the substrate (
1) was heated from the back side to a predetermined temperature (chamber/ML to 500°C) using a halogen heater.

またフレイクがよろい板状窓に落下しても、隙間より噴
出する非生成物気体(14)により、排気系(16’)
に吹き払わせた。
Furthermore, even if flakes fall onto the armor plate window, the non-product gas (14) spewing out from the gap will cause the exhaust system (16') to
blew it away.

反応室はステンレスであり、紫外光源も真空下に保持さ
れた光源室と反応室とを囲んだステンレス容器内に減圧
雰囲気に保持された。このため、5cmX5cmの小さ
い被膜形成面積ではなく30cmx30cmの大きさの
基板上にも何等の工業的な問題もなく被膜形成させるこ
とができ得る。
The reaction chamber was made of stainless steel, and the ultraviolet light source was also kept in a reduced pressure atmosphere in a stainless steel container surrounding the light source chamber and the reaction chamber, which were kept under vacuum. Therefore, a film can be formed on a substrate with a size of 30 cm x 30 cm instead of a small film formation area of 5 cm x 5 cm without any industrial problems.

この実施例では「よろい板状」の透光性遮蔽板は3cm
 (巾)  X 34cm (長さ)×21IIm(厚
さ)とし、それぞれを互いに3mm重合わせた。かかる
よろい板状のシャヘイ板を12枚50μの隙間を作って
配設した。その平均風速は反応室の圧力が3torr、
 20cc/分の気体の導出で1m/分となる。その結
果3cmの巾の領域に励起した反応性気体が被着するの
には十分の風速(50cm/分〜5m/分)を得ること
ができる。
In this example, the "armor plate-like" light-transmitting shielding plate is 3 cm long.
(width) x 34 cm (length) x 21 II m (thickness), and each was overlapped by 3 mm. Twelve such armor plates were arranged with a gap of 50 μm between them. The average wind speed is 3 torr, and the pressure in the reaction chamber is 3 torr.
If the gas is discharged at 20 cc/min, the flow rate will be 1 m/min. As a result, a sufficient wind speed (50 cm/min to 5 m/min) can be obtained to deposit the excited reactive gas in a 3 cm wide area.

さらに、本発明による具体例を以下の実験例1〜4に示
す。
Further, specific examples according to the present invention are shown in Experimental Examples 1 to 4 below.

実験例1・・・・・シリコン窒化膜の形成側反応性気体
としてアンモニアを(25)より50cc/分、ジシラ
ンを(23)より8cc/分で供給し、基板温度350
℃とした。基板は直径5インチのウェハ4枚とした。反
応室(2)内圧力は3.0torrとした。
Experimental Example 1...Ammonia was supplied from (25) at a rate of 50 cc/min and disilane was supplied from (23) at a rate of 8 cc/min as reactive gases on the silicon nitride film formation side, and the substrate temperature was 350.
℃. The substrates were four 5-inch diameter wafers. The internal pressure of the reaction chamber (2) was 3.0 torr.

非生成物気体として窒素を200 cc/分(平均風速
1m/分)の流量で流し、よろい板状遮蔽板上面への窒
化珪素の付着を防いだ。
Nitrogen was flowed as a non-product gas at a flow rate of 200 cc/min (average wind speed of 1 m/min) to prevent silicon nitride from adhering to the upper surface of the armor plate-like shielding plate.

30分の反応で1500人の膜厚が基板上に形成された
。その被膜形成速度は50人/分であった。本発明は水
銀の蒸気等を用いない直接光励起である。
A film thickness of 1,500 wafers was formed on the substrate in a 30-minute reaction. The film formation rate was 50 people/min. The present invention uses direct optical excitation without using mercury vapor or the like.

被膜の5点のばらつきは±10%以内に入っていた。The variation in the five points of the coating was within ±10%.

1500Å以上の膜厚とするには、さらにこの被膜形成
時間を1時間またはそれ以上とすればよい。
In order to obtain a film thickness of 1500 Å or more, the film formation time may be increased to 1 hour or more.

そして例えば0.5μの膜を得ることができる。For example, a film of 0.5μ can be obtained.

さらにこの後反応を停止するためには、反応性気体(3
1)の導入を停止し、反応室(2)内を真空引きして、
さらに非生成物気体(14)の導入をバルブ(22)に
より停止した後、ゲイト弁を開けて被膜形成を行った基
板を予備室に移した。
Furthermore, in order to stop the reaction after this, a reactive gas (3
Stop the introduction of 1), evacuate the inside of the reaction chamber (2),
Furthermore, after stopping the introduction of the non-product gas (14) using the valve (22), the gate valve was opened and the substrate on which the film was formed was transferred to the preliminary chamber.

この実施例で被膜形成後反応室を開けて、「よろい板状
」遮蔽板の上面の窒化珪素の生膜状態を調べた。しかし
その生膜はほとんどなかった。もちろん「よろい板状」
遮蔽板の隙間からの非生成物気体の導出を行わない場合
は、この遮蔽板上に約200人の窒化珪素被膜が形成さ
れ、紫外光を完全にブロッキングしてしまった。その結
果、基板の被形成面上にも200人の膜厚の窒化珪素膜
しか得ることができなかった。
In this example, after the film was formed, the reaction chamber was opened and the state of the silicon nitride biofilm on the upper surface of the "armor plate-like" shielding plate was examined. However, there was almost no biofilm. Of course “armor plate”
When the non-product gas was not led out from the gap in the shielding plate, a silicon nitride film of about 200 layers was formed on the shielding plate, completely blocking ultraviolet light. As a result, only a silicon nitride film with a thickness of 200 mm could be obtained on the surface of the substrate.

実験例2 実験例1と同様の条件で窒化珪素被膜を形成させた。但
し光源室より導出する窒素気体は20cc/分と実施例
1の1710とした。すると2時間の被膜形成を行った
結果700人の被膜を作ることができる。しかしそれ以
上の被膜形成は被膜形成プロセスを行ってもほとんど不
可能であった。
Experimental Example 2 A silicon nitride film was formed under the same conditions as Experimental Example 1. However, the nitrogen gas discharged from the light source chamber was 20 cc/min, which was 1710 cc/min as in Example 1. As a result of 2 hours of coating, it is possible to coat 700 people. However, it was almost impossible to form a further film even if a film-forming process was performed.

実施例1と同様にして「よろい板状」の遮蔽膜上の窒化
珪素膜を調べた結果、遮蔽板の上面に窒化珪素膜が約2
00人の厚さで形成されていた。そのためにこれ以上の
基板上への窒化珪素膜の形成が困難であったと推定され
る。
As a result of examining the silicon nitride film on the "armor plate-shaped" shielding film in the same manner as in Example 1, it was found that the silicon nitride film on the upper surface of the shielding plate was approximately 2.
It was formed with a thickness of 0.00 people. It is presumed that this made it difficult to form a silicon nitride film on a larger substrate.

この不要生成物を除去するため、さらに反応室の内壁、
ホルダ上のフレイクとなる不要反応生成物をも同時に除
去するため、本発明装置では高周波電源より一対の電極
であるホルダ(1°)及び電極(29)に電気エネルギ
を加え、プラズマエッチを行った。即ち、ホルダをもと
の反応室に戻し、ゲートを閉じた後、反応室に(26)
よりNF、を供給した。
In order to remove this unnecessary product, the inner wall of the reaction chamber,
In order to simultaneously remove unnecessary reaction products that become flakes on the holder, the apparatus of the present invention applies electrical energy to a pair of electrodes, the holder (1°) and the electrode (29), from a high frequency power source to perform plasma etching. . That is, after returning the holder to the original reaction chamber and closing the gate, (26)
NF was supplied.

この時非生成物気体(14)はOcc/分とした。そし
て反応室の圧力を0.1 torrとし、13.56M
)lzの高周波を80匈の出力で加えプラズマエッチを
反応室(2)の内側、窓(10)上面および内面(光源
室側)に対して行った。
At this time, the non-product gas (14) was set at Occ/min. Then, the pressure in the reaction chamber was set to 0.1 torr, and the pressure was 13.56M.
)lz high frequency wave was applied at an output of 80 cm to perform plasma etching on the inside of the reaction chamber (2) and the upper surface and inner surface (light source chamber side) of the window (10).

約20分した後、この石英(10)上の不要反応生成物
である窒化珪素被膜を完全に除去することができた。こ
のNF、を真空除去した後(25)より水素を加え、こ
の反応室内の残留弗素をプラズマクリーンをして除去し
た。この後、2回目の被膜作製を行ったが、同じく再現
性のよい被膜を作り得た。
After about 20 minutes, the silicon nitride film on the quartz (10), which was an unnecessary reaction product, could be completely removed. After this NF was removed in vacuo, hydrogen was added from step (25), and residual fluorine in the reaction chamber was removed by plasma cleaning. After this, a second coating was produced, and a coating with good reproducibility was also produced.

実験例3・・アモルファスシリコン膜の形成例ジシラン
(SizHb)を(23)より100cc/分の流量で
供給した。また、水素を(28)より「よろい板状」遮
蔽板の上面への付着を防ぐため500cc/分の流量で
供給した。温度は210℃、反応室圧力3torrとし
た。被形成面に1200人の膜厚を60分間のディポジ
ッションで形成させることができた。
Experimental Example 3 Formation example of amorphous silicon film Disilane (SizHb) was supplied from (23) at a flow rate of 100 cc/min. Further, hydrogen was supplied from (28) at a flow rate of 500 cc/min to prevent it from adhering to the upper surface of the "armor plate-like" shielding plate. The temperature was 210° C. and the reaction chamber pressure was 3 torr. A film thickness of 1,200 layers could be formed on the surface to be formed in 60 minutes of deposition.

同じプロセスを繰り返しても、同じ膜厚の1000〜1
200人を得ることができた。
Even if the same process is repeated, the same film thickness of 1000~1
We were able to get 200 people.

実験例3・・・窒化アルミニュームの形成例AI (C
H3) xを代表例とするメチルアルミニュームを(2
3)より30cc/分で供給した。(24)より水素を
30cc/分で希釈した。また(28)よりアンモニア
を300cc/分で供給した。するとメチルアルミニュ
ームは光源室に水銀蒸気を導入しなくても分解し、窒化
アルミニューム膜を1300人の厚さに作ることができ
た。被膜形成速度は30人7分(圧力3torr。
Experimental example 3... Formation example AI of aluminum nitride (C
H3) methylaluminum with x as a representative example (2
3) at a rate of 30 cc/min. (24), hydrogen was diluted at 30 cc/min. Additionally, ammonia was supplied from (28) at a rate of 300 cc/min. As a result, the methyl aluminum decomposed without introducing mercury vapor into the light source chamber, and it was possible to create an aluminum nitride film 1,300 times thick. Film formation speed: 30 people, 7 minutes (pressure: 3 torr).

温度350℃)であった。また、エチルアルミ二二−ム
Al (CzHs) 3等の他のアルキル化合物でもよ
い。
The temperature was 350°C). Other alkyl compounds such as ethylaluminum diimium (CzHs) 3 may also be used.

実験例4・・・金属アルミニュームの形成側実験例3に
おいて(28)より水素を300cc/分の流量で加え
た。すると被形成面に金属アルミニュームを約500人
の厚さに3時間のディボジッションの結果得ることがで
きた。その他は実験例3と同様である。
Experimental Example 4: Formation of metallic aluminum In Experimental Example 3, hydrogen was added from (28) at a flow rate of 300 cc/min. After 3 hours of deposition, a metal aluminum layer with a thickness of about 500 people was obtained on the surface to be formed. The rest was the same as in Experimental Example 3.

「効果」 本発明は、以上の説明より明らかなごとく、大面積の基
板上に被膜を形成するにあたり、透光性遮蔽板上の不要
反応生成被膜をこの板を「よろい板状」の複数の遮蔽板
とすることにより、より完全に除去することができる。
"Effects" As is clear from the above description, the present invention, when forming a film on a large-area substrate, removes the unnecessary reaction-generated film on the light-transmitting shielding plate by using a plurality of "armor plate-like" By using a shielding plate, it can be removed more completely.

このため窓上面にオイルをまったく用いる必要がない。Therefore, there is no need to use any oil on the top surface of the window.

このため被膜内には炭素等の不純物がはいりにくく、か
つ排圧を10”’ torrと高真空にし得、オイルフ
リーの高純度の被膜作製が可能となった。
Therefore, it is difficult for impurities such as carbon to enter the coating, and the exhaust pressure can be set to a high vacuum of 10'' torr, making it possible to produce an oil-free coating with high purity.

さらにこの窓上面に落下したフレーク等も同様にプラズ
マエッチにより除去することにより、反応室に完全にオ
イルレスの環境を得、連続形成を初めて可能にした。
Furthermore, by removing flakes and the like that had fallen onto the top surface of the window, we created a completely oil-free environment in the reaction chamber, making continuous formation possible for the first time.

なお本発明は、珪素および窒化珪素、窒化アルミニュー
ム、金属アルミニュームにおいてその実験例を示したが
、それ以外にM(CI(:l)、、即ちMとしてIn+
 Sn、 Cr、 Sn+ Mo、 Ga+ Hを用い
、Mの金属またはそれに酸化物気体を導入し、MSi2
等の珪化物を作製してもよい。また鉄、ニッケル、コバ
ルトのカルボニル化物を反応性気体として用い、鉄、ニ
ッケル、コバルトまたはその化合物の被膜また珪化物と
これらとの化合物を形成することは有効である。
Although the present invention has shown experimental examples using silicon, silicon nitride, aluminum nitride, and metal aluminum, M(CI(:l), that is, M as In+
Using Sn, Cr, Sn + Mo, Ga + H, introducing M metal or oxide gas into it, MSi2
You may also produce a silicide such as. It is also effective to use a carbonylated product of iron, nickel, or cobalt as a reactive gas to form a film of iron, nickel, cobalt, or a compound thereof, or a compound of silicide and these.

前記した実験例において、珪素半導体の形成に際し、ド
ーパントを同時に添加できる。また光源として低圧水銀
灯ではな(エキシマレーザ(波長100〜400nm)
 、アルゴンレーザ、窒素レーザ等を低圧水銀灯の代わ
りにまたはこれと併用して用いてもよいことはいうまで
もない。
In the experimental examples described above, dopants can be added at the same time when forming a silicon semiconductor. Also, do not use a low-pressure mercury lamp as a light source (excimer laser (wavelength 100-400 nm)).
It goes without saying that , argon laser, nitrogen laser, etc. may be used in place of or in combination with the low-pressure mercury lamp.

本発明において、被膜形成を水銀バプラを通すことによ
り被膜成長速度を向上させてもよい。
In the present invention, the film growth rate may be improved by passing the film through a mercury bubbler.

本発明における実験例はよろい板状の遮蔽板を一方の側
、第2図では右下側より左上側に傾けるように配設した
。しかしこれはノズルを中央部に配設し、中央部より左
右の上側に向けて傾けた遮蔽板を配設するよろい板であ
ってもよい。またガス流が中央部より外周に向けて供給
させる場合、中央部より同心円状に中央部がある場合は
外側より同心円状に中央部に向けてよろい板状に配設し
てもよい。
In an experimental example of the present invention, a shielding plate in the form of an armor plate was arranged to be tilted from one side, in FIG. 2, from the lower right side to the upper left side. However, this may be an armor plate in which the nozzle is disposed in the center and a shielding plate is disposed tilted upward from the center to the left and right. Further, when the gas flow is supplied from the center toward the outer periphery, if the center is located concentrically from the center, the gas flow may be arranged concentrically from the outside toward the center in the form of a shroud.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来より公知の光励起CVO装置を示す。 第2図は本発明のCVO装置を示す。 FIG. 1 shows a conventionally known optically pumped CVO device. FIG. 2 shows a CVO device of the present invention.

Claims (1)

【特許請求の範囲】 1、反応性気体の励起用の光源と、被形成面を有する基
板が配設される反応室とを有し、前記光源と反応室との
間には透光性遮蔽板を有し、該遮蔽板はよろい板状に複
数に分割して配設した薄膜形成装置において、非生成物
気体をよろい板状透光性遮蔽板の隙間より反応室側に導
出せしめるとともに、前記反応室内で前記非生成物気体
の排気させる方向と同一方向であって、かつ前記非生成
物気体より基板側に反応性気体を導入せしめることによ
り、反応性気体が前記よろい板状透光性遮蔽板上に蓄積
されない、またはされにくいようにせしめることを特徴
とする薄膜形成方法。 2、特許請求の範囲第1項において、非生成物気体と反
応性気体の境界領域にガスウォールを構成せしめること
を特徴とする薄膜形成方法。
[Claims] 1. A light source for excitation of a reactive gas and a reaction chamber in which a substrate having a surface to be formed is disposed, and a light-transmitting shield is provided between the light source and the reaction chamber. In a thin film forming apparatus having a plate, the shielding plate being divided into a plurality of armor plate-like parts, the non-product gas is led out to the reaction chamber side through the gap between the armor plate-shaped light-transmitting shielding plates, and By introducing the reactive gas into the reaction chamber in the same direction as the direction in which the non-product gas is exhausted and closer to the substrate than the non-product gas, the reactive gas is introduced into the armor plate-like translucent surface. A method for forming a thin film, characterized in that it does not accumulate or is difficult to accumulate on a shielding plate. 2. A thin film forming method according to claim 1, characterized in that a gas wall is formed in a boundary region between a non-product gas and a reactive gas.
JP3726885A 1985-02-25 1985-02-25 Thin film forming apparatus Pending JPS61196528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3726885A JPS61196528A (en) 1985-02-25 1985-02-25 Thin film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3726885A JPS61196528A (en) 1985-02-25 1985-02-25 Thin film forming apparatus

Publications (1)

Publication Number Publication Date
JPS61196528A true JPS61196528A (en) 1986-08-30

Family

ID=12492921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3726885A Pending JPS61196528A (en) 1985-02-25 1985-02-25 Thin film forming apparatus

Country Status (1)

Country Link
JP (1) JPS61196528A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174319A (en) * 1987-01-14 1988-07-18 Hitachi Ltd Manufacture of semiconductor device
US4960071A (en) * 1987-09-30 1990-10-02 Sumitomo Metal Industries Ltd. Thin film forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174319A (en) * 1987-01-14 1988-07-18 Hitachi Ltd Manufacture of semiconductor device
US4960071A (en) * 1987-09-30 1990-10-02 Sumitomo Metal Industries Ltd. Thin film forming apparatus

Similar Documents

Publication Publication Date Title
JPS61127121A (en) Formation of thin film
US5753320A (en) Process for forming deposited film
US6786997B1 (en) Plasma processing apparatus
JPS61196528A (en) Thin film forming apparatus
JPS61196527A (en) Thin film forming apparatus
JPH0689455B2 (en) Thin film formation method
JPS61196529A (en) Thin film forming apparatus
JPH0573046B2 (en)
JPS61127120A (en) Formation of thin film
JPH0351292B2 (en)
JPS63317675A (en) Plasma vapor growth device
JP3174787B2 (en) Optical CVD equipment
JPS61271819A (en) Thin film forming method
JPS61232611A (en) Forming device for thin film
JPS61216318A (en) Photo chemical vapor deposition device
JPS6118125A (en) Thin film forming apparatus
JPS61255015A (en) Thin film forming method
JPS625633A (en) Thin film forming method
JPS61196526A (en) Photochemical vapor deposition process and apparatus thereof
JPS61288431A (en) Manufacture of insulating layer
JPS61271820A (en) Thin film forming method
JPS6118123A (en) Thin film forming apparatus
JPS6118124A (en) Thin film forming apparatus
JPS6277472A (en) Photochemical reaction method
JPS61183920A (en) Apparatus for treating semiconductor or metal with laser beam or light