JPS61196529A - Thin film forming apparatus - Google Patents

Thin film forming apparatus

Info

Publication number
JPS61196529A
JPS61196529A JP3726985A JP3726985A JPS61196529A JP S61196529 A JPS61196529 A JP S61196529A JP 3726985 A JP3726985 A JP 3726985A JP 3726985 A JP3726985 A JP 3726985A JP S61196529 A JPS61196529 A JP S61196529A
Authority
JP
Japan
Prior art keywords
film
light
reaction
reaction chamber
shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3726985A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP3726985A priority Critical patent/JPS61196529A/en
Publication of JPS61196529A publication Critical patent/JPS61196529A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Abstract

PURPOSE:To avoid any formation of reactive product on windows of armour type sheet in case films are to be formed by photo CVD process by a method wherein the first armour type light transmissive shielding sheet and the second light transmissive shielding sheet are arranged between a reaction chamber and a light source chamber. CONSTITUTION:The first shielding sheet 10 arranged with multiple armour type ultraviolet ray transmissive shielding sheets as well as the second shielding sheet 10' outside the first shielding sheet 10 are formed into a structure to lead out non-productive gas (a gas producing no solid by reaction or decomposi tion) from the space 43 between the first and the second shielding sheets 10 and 10'. In such a structure, a light source chamber 40 may be arranged on a position exposed to atmosphere while preventing any needless reactive product from sticking on the surface of shielding sheets 10, 10'.

Description

【発明の詳細な説明】 「発明の利用分野j 本発明は、光化学反応により薄膜形成する装置であって
、大面積の被形成面上に均一に被膜を光照射用の透光性
遮蔽板上にオイル等をコートすることなく形成する手段
を有するCVD (気相反応)装置に関する。
Detailed Description of the Invention: Field of Application of the Invention The present invention is an apparatus for forming a thin film by photochemical reaction, and the present invention is an apparatus for forming a thin film by a photochemical reaction. The present invention relates to a CVD (vapor phase reaction) device having means for forming a film without coating it with oil or the like.

「従来技術及びその問題点」 気相反応による薄膜形成技術として、光エネルギにより
反応性気体を活性にさせる光CVD法が知られている。
"Prior Art and its Problems" As a technique for forming thin films through gas phase reactions, a photo-CVD method is known in which a reactive gas is activated by light energy.

この方法は、従来の熱CVD法またはプラズマCvD法
に比べ、低温での被膜形成が可能であるに加えて、被形
成面に損傷を与えないという点で優れたものである。
This method is superior to the conventional thermal CVD method or plasma CVD method in that it is possible to form a film at a low temperature and does not damage the surface on which it is formed.

かかる光CVD法を実施するに際し、その装置の一例を
第1図に示すが、反応室(2)内に保持された基板(1
)、その基板の加熱手段(3)、さらに基板に光照射す
る低圧水銀灯(9)とを有している。ドーピング系(7
)には、反応性気体の励起用の水銀バブラ(13)及び
排気系(8)にはロータリーポンプ(I9)を具備して
いる。ドーピング系よりの反応性気体例えばジシランが
反応室(2)に導入され、反応生成物である例えばアモ
ルファス珪素を基板(基板温度250℃)上に形成する
に際し、反応室の紫外光透光用の遮蔽板(10)、代表
的には石英窓にも同時に多量に珪素膜が形成されてしま
う。このためこの窓への被膜形成を防ぐため、この窓に
フォンブリンオイル(弗素系オイルの一例) (16)
を薄くコートしている。
When carrying out such a photo-CVD method, an example of the apparatus is shown in FIG.
), heating means (3) for the substrate, and a low-pressure mercury lamp (9) for irradiating light onto the substrate. Doping system (7
) is equipped with a mercury bubbler (13) for excitation of reactive gases and a rotary pump (I9) in the exhaust system (8). When a reactive gas such as disilane from the doping system is introduced into the reaction chamber (2) and a reaction product such as amorphous silicon is formed on the substrate (substrate temperature 250°C), the ultraviolet light transmitting portion of the reaction chamber is At the same time, a large amount of silicon film is also formed on the shielding plate (10), typically a quartz window. Therefore, in order to prevent the formation of a film on this window, apply Fomblin oil (an example of fluorine-based oil) (16) to this window.
coated with a thin layer of

しかし、このオイルは、窓(10)への被膜形成を防ぐ
作用を有しつつも、被膜内に不純物として混入してしま
う。さらにこのオイル上にも少しづつ同時に反応生成物
が形成され、ここでの光吸収により被膜形成の厚さに制
限が生じてしまう欠点を有する。
However, although this oil has the effect of preventing the formation of a film on the window (10), it ends up being mixed into the film as an impurity. Furthermore, a reaction product is simultaneously formed little by little on this oil, and the thickness of the film formed is limited due to light absorption there.

r問題を解決するための手段j 本発明はこれらの問題を解決するため、光CVD法にお
いて問題となっている紫外光透光用の遮蔽板を複数枚「
よろい板(一方の室(反応室)に通風のため、巾のせま
い板を複数膜一定の傾斜を保ってとりつけた装置)状」
に配没せした第1の遮蔽板とこの外側に透光性の第2の
遮蔽板とを設けたものである。そしてこの第1の透光性
遮蔽板上面に反応生成物が蓄積されて紫外光を遮光しな
いように、または遮光させにくいように、この第1及び
第2の遮蔽板の間の空間(以下バッファ室という)より
非生成物気体(反応または分解により固体を形成しない
気体、例えばHe+Ar+Hz、N21NH:llN2
O,O□またはこれらの混合気体)を導出せしめる構造
としたものである。
Means for Solving Problems j In order to solve these problems, the present invention uses a plurality of shielding plates for transmitting ultraviolet light, which is a problem in the optical CVD method.
Armor plate (a device in which multiple narrow plates are attached to one chamber (reaction chamber) at a constant angle for ventilation)
A first shielding plate is disposed inside the shielding plate, and a light-transmitting second shielding plate is provided on the outside of the first shielding plate. The space between the first and second shielding plates (hereinafter referred to as a buffer chamber) is designed to prevent reaction products from accumulating on the upper surface of the first light-transmitting shielding plate and blocking ultraviolet light, or to prevent ultraviolet light from being blocked. ) to non-product gases (gases that do not form solids by reaction or decomposition, e.g. He+Ar+Hz, N21NH:llN2
The structure is such that O, O□ or a mixture thereof can be extracted.

かかる構造とすることにより、光源を大気圧の場所に配
設し得る。またこのバッファ室と反応室との圧力差はバ
ッファ室を正圧、反応室を負圧とし、また隙間(30〜
300μ、一般には約50μ)を有する。そしてバッフ
ァ室の外側の第2の遮蔽板は大気圧内に配設された光源
例えばエキシマレーザとバッファ室との圧力差を保証さ
せた。
With such a structure, the light source can be placed at an atmospheric pressure location. In addition, the pressure difference between the buffer chamber and the reaction chamber is such that the buffer chamber has a positive pressure and the reaction chamber has a negative pressure.
300μ, typically about 50μ). A second shielding plate outside the buffer chamber ensured a pressure difference between the light source, such as an excimer laser, located at atmospheric pressure and the buffer chamber.

r作用j これらの特長のため、光CVD法で被膜形成を行わんと
する時、よろい板状の窓上に反応生成物が形成されるこ
とがない、またはきわめて少ない。
r Effect j Due to these features, when trying to form a film by photo-CVD, no or very few reaction products are formed on the shroud-like window.

その結果、照射光は「よろい板状」の窓を十分透過し、
反応性気体を十分励起(分解、および反応を含む)し、
被形成面に反応生成物を蓄積させ得る。その時、同時に
同じ反応生成物が透光性遮蔽板の上面にも飛来するが、
この生成物はよろい板の隙間より反応室に導出される非
生成物気体により阻害され、窓上面には被着し得ない。
As a result, the irradiated light is sufficiently transmitted through the "shroud" window,
Sufficiently excite (including decomposition and reaction) reactive gases,
Reaction products may accumulate on the formed surface. At that time, the same reaction product also flies to the top surface of the transparent shielding plate,
This product is inhibited by the non-product gas discharged into the reaction chamber through the gap between the shutter plates and cannot adhere to the upper surface of the window.

そのため、「よろい板状」の透光性遮蔽板(窓ともいう
)の表面には反応生成物が形成されず、結果として紫外
光を反応室内にいつまでも十分な強度で放射し反応性気
体を励起させ続は得る。そして基板の被形成面上に十分
な膜厚に被膜形成をさせ得る。そして従来より公知の1
回のみの100〜1000人(オイルコートを行った場
合)という厚さの成膜ではなく、繰り返し500〜50
00人の所望の膜厚の被膜を形成させ得る。
Therefore, no reaction products are formed on the surface of the "armor plate-like" light-transmitting shielding plate (also called a window), and as a result, ultraviolet light is emitted with sufficient intensity into the reaction chamber indefinitely to excite the reactive gas. Let's continue. Then, a film can be formed to a sufficient thickness on the surface of the substrate. And the conventionally known 1
Instead of forming a film with a thickness of 100 to 1000 times (when oil coating is performed), it is repeated 500 to 50 times.
It is possible to form a film with a desired thickness of 0.000 people.

さらにこの先CVDの後、同じバッチでこの被膜上にプ
ラズマCvD法により同種または異種の被膜を同じ反応
室を用いて作製することが本発明では可能である。
Further, in the present invention, after CVD, it is possible to fabricate films of the same type or different types on this film in the same batch by a plasma CVD method using the same reaction chamber.

さらに本発明は、非生成物気体の導出用量が不十分のた
めに窓上に付着した不要生成物をもプラズマエツチング
法で反応室を大気に触れさせずに除去し得る。また本発
明装置は、オイルフリーの反応系であるため、バックグ
ラウンドレベルの真空度を10−’torr以下とする
ことができた。そして非酸化物の反応生成物である珪素
等の半導体被膜、炭化珪素、窒化珪素、窒化アルミニュ
ーム、金属アルミニュームの光励起による光CvD被膜
形成をさせ得る。
Further, according to the present invention, unnecessary products deposited on the window due to an insufficient amount of non-product gas being discharged can be removed by plasma etching without exposing the reaction chamber to the atmosphere. Furthermore, since the apparatus of the present invention is an oil-free reaction system, the background level of vacuum could be kept at 10-'torr or less. A photo-CvD film can be formed by photoexcitation of a non-oxide reaction product such as a semiconductor film such as silicon, silicon carbide, silicon nitride, aluminum nitride, or metal aluminum.

「実施例」 以下本発明を第2図に示した実施例により、その詳細を
記す。
``Example'' The present invention will be described in detail below using an example shown in FIG.

第2図において、被形成面を有する基板(1)はホルダ
(l゛)に保持され、反応室(2)上のハロゲンヒータ
(3)(上面を水冷(32))に近接して設けられてい
る。反応室(2)、紫外光源(40)が透過するバッフ
ァ室(43)およびヒータ(3)が配設された加熱室(
11)は、それぞれの圧力を100torr以下の概略
同一の真空度に配管(12)および第1の遮蔽板の隙間
により保持した。このために、反応に支障のない非生成
物気体(ここでは窒素、アルゴンまたは水素)を(28
)より流量計(21)、バルブ(22)よりバッファ室
(43) 、加熱室(11)に供給した。そしてその気
体を第1の「よろい板状」透光性遮蔽板(10)の隙間
より反応室に導出(14)することにより、不要反応生
成物の遮蔽板上面への付着防止をした。
In FIG. 2, a substrate (1) having a surface to be formed is held in a holder (l), and is placed close to a halogen heater (3) (the upper surface of which is water-cooled (32)) on a reaction chamber (2). ing. A reaction chamber (2), a buffer chamber (43) through which an ultraviolet light source (40) passes, and a heating chamber (
11), each pressure was maintained at approximately the same degree of vacuum of 100 torr or less by the gap between the piping (12) and the first shielding plate. For this purpose, a non-product gas (here nitrogen, argon or hydrogen) that does not interfere with the reaction (28
) was supplied to the flow meter (21), and the valve (22) was supplied to the buffer chamber (43) and heating chamber (11). The gas was then led out (14) into the reaction chamber through the gap in the first "armor plate-like" light-transmitting shielding plate (10), thereby preventing unnecessary reaction products from adhering to the upper surface of the shielding plate.

また光源(40)はエキシマレーザよりコヒーレントな
紫外光(60nm 〜300nm) (41)を第2お
よび第1の透光性遮蔽板を透過して反応室(2)内に照
射した。
Further, the light source (40) transmitted coherent ultraviolet light (60 nm to 300 nm) (41) from an excimer laser into the reaction chamber (2) through the second and first light-transmitting shielding plates.

このレーザは単純なレーザ管からの光であっても、その
光を照射面を広げるため中(図面での上下方向)を5〜
1011II11とし、これを巾30cmとするため拡
大してパルス光として照射することは有効である。この
レーザ光は被形成上面またはその近傍(被形成面より1
0IIIII以内)とすることにより被膜形成速度を大
きくさせた。
Even if the light from this laser comes from a simple laser tube, in order to spread the light onto the irradiation surface, the inside (vertical direction in the drawing) is
1011II11, and it is effective to enlarge it to a width of 30 cm and irradiate it as pulsed light. This laser beam is applied to the upper surface of the object to be formed or its vicinity (1 point from the surface to be formed).
(within 0III), the film formation rate was increased.

本発明の薄膜形成装置における反応性気体はアンモニア
(NH3)、弗化窒素(NF3)、珪化物気体であるシ
ラン(SinHzn−g)+弗化珪素(Sing、 5
iF415izF6゜HzStFz) + メチル77
L/ ミーニー ム(AI (CH2) りまたはその
混合気体を用い得る。非生成物気体としては反応生成物
として珪素の如き半導体を作る場合、水素、アルゴンま
たはへリュームを用いた。窒化物(窒化珪素、窒化アル
ミニューム)を作る場合は窒素または水素を用いた。金
属アルミニュームを作る場合は水素、アルゴンまたはヘ
リュームを用いた。
The reactive gases in the thin film forming apparatus of the present invention include ammonia (NH3), nitrogen fluoride (NF3), silane gas (SinHzn-g) + silicon fluoride (Sing, 5
iF415izF6゜HzStFz) + Methyl77
It is possible to use hydrogen, argon or helium as a non-product gas when producing a semiconductor such as silicon as a reaction product. Nitride (nitride) Nitrogen or hydrogen was used to make aluminum (silicon, aluminum nitride).Hydrogen, argon or helium was used to make metallic aluminum.

ドーピング系(7)は、バルブ(22) 、流量計(2
1)よりなり、反応後固体生成物を形成させる反応性気
体ハ(23)ないしく26)より供給させた。反応室の
圧力制御は、コントロールバルブ(17)を経てターボ
分子ポンプ(大阪真空製PG550を使用”) (18
) 、ロータリーポンプ(19)を経、排気させること
により成就した。
The doping system (7) includes a valve (22) and a flow meter (2).
A reactive gas consisting of 1) and forming a solid product after the reaction was supplied from (23) to 26). The pressure in the reaction chamber is controlled via a control valve (17) using a turbo molecular pump (PG550 made by Osaka Vacuum) (18).
) was achieved by exhausting the air through a rotary pump (19).

予備室を真空引きする際は他のターボ分子ポンプ(18
”)及びロータリーポンプ(19”)を用いた。
When vacuuming the preliminary chamber, use another turbo molecular pump (18
”) and a rotary pump (19”) were used.

被膜の形成プロセスは、基板の予備室より反応室への移
動に関し、圧力差が生じないようにしたロード・ロック
方式を用いた。まず、予備室(4)にて基板(1)およ
びホルダ(1″)を挿入・配設し、真空引きをした後、
予め10−’torrまたはそれ以下に真空引きがされ
ている反応室(2)との間のゲート弁(6)を開とし、
基板(1)、ホルダ(1゛)を反応室(2)に移し、ま
たゲート弁(6)を閉として、反応室(2)と予備室(
4)とを互いに仕切った。
The film formation process used a load-lock method in which no pressure difference was created in moving the substrate from the preliminary chamber to the reaction chamber. First, the substrate (1) and holder (1″) are inserted and arranged in the preliminary chamber (4), and after vacuuming,
Open the gate valve (6) between the reaction chamber (2) which has been evacuated to 10-'torr or lower in advance,
Transfer the substrate (1) and holder (1゛) to the reaction chamber (2), close the gate valve (6), and separate the reaction chamber (2) and the preliminary chamber (
4) and were separated from each other.

その後、バッファ室(43)に対し逆流による反応生成
物の遮蔽板上面への被着防止のため、まず、非生成物気
体を(28)より100〜500cc/分の流量でバッ
ファ室(43)に導入し、同時に連結した加熱室(11
)にも流した。そしてそれらは複数の「よろい板状」遮
蔽板(10)の隙間をへて排気させる。その後反応性気
体(31)をノズル(3o)より供給した。
After that, in order to prevent reaction products from adhering to the upper surface of the shielding plate due to backflow into the buffer chamber (43), first, non-product gas is introduced into the buffer chamber (43) from (28) at a flow rate of 100 to 500 cc/min. A heating chamber (11
) was also released. They are then exhausted through gaps between a plurality of "armor plate-like" shielding plates (10). Thereafter, reactive gas (31) was supplied from the nozzle (3o).

ヒータ(3)は反応室(2)の上側に位置した「デイポ
ジッション・アンプ」方式とし、フレークが被形成面に
付着しピンホールの原因を作ることを避け、かつ基板(
1)を裏面側より所定の温度(室温〜500℃)にハロ
ゲンヒータにより加熱した。
The heater (3) is a "day-position amplifier" type located above the reaction chamber (2) to prevent flakes from adhering to the surface to be formed and causing pinholes, and to prevent the flakes from adhering to the substrate (
1) was heated from the back side to a predetermined temperature (room temperature to 500°C) using a halogen heater.

さらに、本発明による具体例を以下の実験例1〜4に示
す。
Further, specific examples according to the present invention are shown in Experimental Examples 1 to 4 below.

実験例1・・・・・シリコン窒化膜の形成側反応性気体
としてアンモニアを(25)より50cc/分、ジシラ
ンを(23)より8cc/分で供給し、基板温度350
℃とした。基板は直径5インチのウェハ4枚とした。反
応室(2)内圧力は3.0torrとした。
Experimental Example 1...Ammonia was supplied from (25) at a rate of 50 cc/min and disilane was supplied from (23) at a rate of 8 cc/min as reactive gases on the silicon nitride film formation side, and the substrate temperature was 350.
℃. The substrates were four 5-inch diameter wafers. The internal pressure of the reaction chamber (2) was 3.0 torr.

非生成物気体である窒素を(28)より200 cc/
分の流量で流し、第1の「よろい板状」遮蔽板上面への
窒化珪素の付着を防いだ。
Nitrogen, a non-product gas, was added at 200 cc/ from (28).
to prevent silicon nitride from adhering to the upper surface of the first "armor plate-like" shielding plate.

5分の反応で1500人の膜厚が基板上に形成された。A 1,500-layer film was formed on the substrate in a 5-minute reaction.

その被膜形成速度は300人7分であった。本発明は水
銀の蒸気等を用いないエキシマレーザによる直接光励起
である。被膜の5点のばらつきは±10%以内に入って
いた。
The film formation speed was 7 minutes for 300 people. The present invention uses direct optical excitation using an excimer laser without using mercury vapor or the like. The variation in the five points of the coating was within ±10%.

さらにこの後反応を停止するためには、反応性気体(3
1)の導入を停止し、反応室(2)内を真空引きして、
さらに非生成物気体(14)の導入をバルブ(22)に
より停止した後、ディト弁を開けて被膜形成を行った基
板を予備室に移した。
Furthermore, in order to stop the reaction after this, a reactive gas (3
Stop the introduction of 1), evacuate the inside of the reaction chamber (2),
Furthermore, after stopping the introduction of the non-product gas (14) using the valve (22), the Dito valve was opened and the substrate on which the film was formed was transferred to the preliminary chamber.

この実施例で被膜形成後反応室を開けて、「よろい板状
」遮蔽板の上面の窒化珪素の生膜状態を調べた。しかし
その生膜はほとんどなかった。もちろん「よろい板状」
遮蔽板の隙間からの非生成物気体の導出を行わない場合
は、この遮蔽板上に約200人の窒化珪素被膜が形成さ
れ、紫外光を完全にブロッキングしてしまった。その結
果、基板の被形成面上にも200人の膜厚の窒化珪素膜
しか得ることができなかった。
In this example, after the film was formed, the reaction chamber was opened and the state of the silicon nitride biofilm on the upper surface of the "armor plate-like" shielding plate was examined. However, there was almost no biofilm. Of course “armor plate”
When the non-product gas was not led out from the gap in the shielding plate, a silicon nitride film of about 200 layers was formed on the shielding plate, completely blocking ultraviolet light. As a result, only a silicon nitride film with a thickness of 200 mm could be obtained on the surface of the substrate.

実験例2・・アモルファスシリコン膜の形成例ジシラン
(SiJh)を(23)より100cc/分の流量で供
給した。また、水素を(28)より「よろい板状」遮蔽
板の上面への付着を防ぐため200cc/分の流量で供
給した。温度は210℃、反応室圧力3torrとした
。被形成面に1200人の膜厚を8分間のデイボジッシ
ョンで形成させることができた。
Experimental Example 2 Formation example of amorphous silicon film Disilane (SiJh) was supplied from (23) at a flow rate of 100 cc/min. Further, hydrogen was supplied from (28) at a flow rate of 200 cc/min to prevent it from adhering to the upper surface of the "armor plate-like" shielding plate. The temperature was 210° C. and the reaction chamber pressure was 3 torr. A film of 1,200 layers thick could be formed on the surface to be formed in 8 minutes of deposition.

同じプロセスを繰り返しても、同じ膜厚の1000〜1
200人を得ることができた。
Even if the same process is repeated, the same film thickness of 1000~1
We were able to get 200 people.

実験例3・・・窒化アルミニュームの形成例^1 (C
H3) sを代表例とするメチルアルミニュームを(2
3)より30cc/分で供給した。(24)よりアンモ
ニアを300cc/分で希釈した。また(28)より水
素を50cc/分で供給した。するとメチルアルミニュ
ームは窒化アルミニューム膜を1300人の厚さに作る
ことができた。被膜形成速度は30人/分(圧力3to
rr+ 温度350℃)であった。また、エチルアルミ
ニュームAI (CzHs) :+等の他のアルキル化
合物でもよい。
Experimental example 3... Formation example of aluminum nitride ^1 (C
H3) Methyl aluminum with s as a representative example (2
3) at a rate of 30 cc/min. (24), ammonia was diluted at 300 cc/min. Further, hydrogen was supplied from (28) at a rate of 50 cc/min. As a result, methyl aluminum was able to create an aluminum nitride film with a thickness of 1,300 mm. Film formation speed is 30 people/min (pressure 3 to
rr+ temperature 350°C). Other alkyl compounds such as ethylaluminum AI (CzHs):+ may also be used.

実験例3・・・金属アルミニュームの形成側実験例2に
おいて(28)より水素を200cc/分の流量で加え
アンモニアを排除した。すると被形成面に金属アルミニ
ュームを約5000人の厚さに30分のディポジッショ
ンの結果得ることができた。その他は実験例2と同様で
ある。
Experimental Example 3: Formation of metallic aluminum In Experimental Example 2, hydrogen was added at a flow rate of 200 cc/min from (28) to eliminate ammonia. Then, metal aluminum was deposited on the surface to be formed to a thickness of about 5,000 mm after 30 minutes of deposition. The rest is the same as in Experimental Example 2.

「効果」 本発明は、以上の説明より明らかなごとく、基板上に被
膜を形成するにあたり、透光性遮蔽板上の不要反応生成
被膜をこの板を「よろい板状」の複数の遮蔽板とするこ
とにより、より完全に除去することができる。このため
窓上面にオイルをまったく用いる必要がない。このため
被膜内には炭素等の不純物がはいりにくく、かつ、排圧
を1O−7torrと高真空にし得、オイルフリーの高
純度の被膜作製が可能となった。
"Effects" As is clear from the above description, the present invention, when forming a film on a substrate, removes the unnecessary reaction-generated film on a light-transmitting shielding plate by using a plurality of "armor plate-like" shielding plates. By doing so, it can be removed more completely. Therefore, there is no need to use any oil on the top surface of the window. Therefore, it is difficult for impurities such as carbon to enter the coating, and the exhaust pressure can be set to a high vacuum of 10-7 torr, making it possible to produce an oil-free coating with high purity.

さらにこの光CVD法による被膜形成に加えて、この上
に重ねて同じまたは異なる被膜を一対の電極(第2図(
29)及びホルダ(1′))間に高周波エネルギ(13
,56MHz)を加えたプラズマ気相法で形成させんと
することが可能である。かかる場合、光CVD法で被膜
を形成して被形成面をスパツクさせず、さらにプラズマ
気相法によりこの上に重ねて同じまたは他の同様の膜を
作ることも可能である。即ち被膜形成速度を遅くさせる
ことなく、再現性のよい被膜形成をさせることができた
Furthermore, in addition to coating formation by this photo-CVD method, the same or different coatings are layered on top of this by a pair of electrodes (see Figure 2).
High frequency energy (13) is applied between the
, 56 MHz) by a plasma vapor phase method. In such a case, it is also possible to form a film using the photo-CVD method without causing any spatter on the surface on which it is formed, and then to form the same or another similar film on top of it using the plasma vapor phase method. That is, it was possible to form a film with good reproducibility without slowing down the film formation rate.

さらにこの窓上面または反応室に付着したフレーク等も
同様にプラズマエッチにより除去することにより、反応
室に完全にオイルレスの環境を得、連続形成を初めて可
能にした。
Furthermore, flakes adhering to the upper surface of the window or the reaction chamber were similarly removed by plasma etching, creating a completely oil-free environment in the reaction chamber, making continuous formation possible for the first time.

なお本発明は、珪素および窒化珪素、窒化アルミニュー
ム、金属アルミニュームにおいてその実験例を示したが
、それ以外にM(CHs)−即ちMとしてIn、Sn、
Cr、Sn、Mo、Ga、−を用い、Mの金属またはそ
れに酸化物気体を導入し、MSiz等の珪化物を作製し
てもよい。また鉄、ニッケル、コバルトのカルボニル化
物を反応性気体として用い、鉄、ニッケル、コバルトま
たはその化合物の被膜また珪化物とこれらとの化合物を
形成することは有効である。
Although the present invention has shown experimental examples using silicon, silicon nitride, aluminum nitride, and metal aluminum, M(CHs) - that is, M as In, Sn,
A silicide such as MSiz may be produced by using Cr, Sn, Mo, Ga, or -, and introducing the metal M or an oxide gas into it. It is also effective to use a carbonylated product of iron, nickel, or cobalt as a reactive gas to form a film of iron, nickel, cobalt, or a compound thereof, or a compound of silicide and these.

前記した実験例において、珪素半導体の形成に際し、ド
ーパントを同時に添加できる。また光源として低圧水銀
灯ではな(他の光源も用い得る。
In the experimental examples described above, dopants can be added at the same time when forming a silicon semiconductor. Also, the light source should not be a low-pressure mercury lamp (other light sources can also be used).

例えばエキシマレーザ(波長100〜300nm) 、
 ArC1(175nm) 、 h (157nm) 
、 ArF (193nm) 、にrcl (222n
m) 、 KrF (249nm)が代表的なものであ
る。しかしこれに併用して低圧水銀等を下側より照射し
てもよい。
For example, excimer laser (wavelength 100-300 nm),
ArC1 (175nm), h (157nm)
, ArF (193nm), rcl (222n
m), KrF (249 nm) is typical. However, in combination with this, low-pressure mercury or the like may be irradiated from below.

本発明において、被膜形成を水銀バブラを通すことによ
り被膜成長速度を向上させてもよい。
In the present invention, the rate of film growth may be improved by passing the film through a mercury bubbler.

本発明において、「よろい板状」遮蔽板は反応室のうち
反応部より十分離れた位置に配設した。
In the present invention, the "armor plate-like" shielding plate was disposed in the reaction chamber at a position sufficiently distant from the reaction section.

しかしこの距離は設計により決めればよい。またエキシ
マ光は基板表面に平行に照射面積を大きくするため照射
した。しかし基板に垂直にまたは斜め垂直に加えてもよ
いことはいうまでもない。
However, this distance may be determined by design. In addition, the excimer light was irradiated parallel to the substrate surface in order to increase the irradiation area. However, it goes without saying that it may be applied perpendicularly or diagonally perpendicularly to the substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来より公知の光励起CVD装置を示す。 第2図は本発明のCVO装置を示す。 FIG. 1 shows a conventionally known photoexcited CVD apparatus. FIG. 2 shows a CVO device of the present invention.

Claims (1)

【特許請求の範囲】 1、反応性気体の励起用の光源と、被形成面を有する基
板を配設する反応室とを有し、該反応室と前記光源との
間には第1の複数の透光性遮蔽板と第2の透光性遮蔽と
を有し、前記第1の透光性遮蔽板はよろい板状に配設さ
れて設けられたことを特徴とする薄膜形成装置。 2、特許請求の範囲第1項において、反応室側のよろい
板上面に反応性気体が蓄積されない、またはされにくい
ように第1および第2の遮蔽板の間より非生成物気体を
反応室内に導出する手段を具備したことを特徴とする薄
膜形成装置。 3、特許請求の範囲第1項において、第1および第2の
透光性遮蔽板は石英により設けられたことを特徴とする
薄膜形成装置。
[Claims] 1. A light source for excitation of a reactive gas and a reaction chamber in which a substrate having a surface to be formed is disposed, and a first plurality of light sources are provided between the reaction chamber and the light source. 1. A thin film forming apparatus comprising: a light-transmitting shielding plate; and a second light-transmitting shielding plate, wherein the first light-transmitting shielding plate is arranged in the shape of a shroud. 2. In claim 1, non-product gas is led into the reaction chamber from between the first and second shielding plates so that reactive gases do not accumulate or are difficult to accumulate on the upper surface of the armor plate on the reaction chamber side. A thin film forming apparatus characterized by comprising means. 3. The thin film forming apparatus according to claim 1, wherein the first and second light-transmitting shielding plates are made of quartz.
JP3726985A 1985-02-25 1985-02-25 Thin film forming apparatus Pending JPS61196529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3726985A JPS61196529A (en) 1985-02-25 1985-02-25 Thin film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3726985A JPS61196529A (en) 1985-02-25 1985-02-25 Thin film forming apparatus

Publications (1)

Publication Number Publication Date
JPS61196529A true JPS61196529A (en) 1986-08-30

Family

ID=12492951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3726985A Pending JPS61196529A (en) 1985-02-25 1985-02-25 Thin film forming apparatus

Country Status (1)

Country Link
JP (1) JPS61196529A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981722A (en) * 1988-08-12 1991-01-01 Veb Elektromat Dresden Apparatus for the gas-phase processing of disk-shaped workpieces
US5263264A (en) * 1990-01-25 1993-11-23 Speedfam Clean System Company Limited Method and apparatus for drying wet work

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037267A (en) * 1983-04-08 1985-02-26 フアウ・エー・ベー・コムビナート・メタルアウフ ベライトウング Method and device for cutting metallic material by heat

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037267A (en) * 1983-04-08 1985-02-26 フアウ・エー・ベー・コムビナート・メタルアウフ ベライトウング Method and device for cutting metallic material by heat

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981722A (en) * 1988-08-12 1991-01-01 Veb Elektromat Dresden Apparatus for the gas-phase processing of disk-shaped workpieces
US5263264A (en) * 1990-01-25 1993-11-23 Speedfam Clean System Company Limited Method and apparatus for drying wet work

Similar Documents

Publication Publication Date Title
JPS61127121A (en) Formation of thin film
US4702936A (en) Gas-phase growth process
KR850001974B1 (en) Improved photochemical vapor deposition apparatus and method
JPS61196529A (en) Thin film forming apparatus
JPH04299515A (en) X-ray transmission film for x-ray lithography mask and manufacture thereof
JPS61196528A (en) Thin film forming apparatus
JPS61232611A (en) Forming device for thin film
JPS593931A (en) Forming of thin film
JPS61196527A (en) Thin film forming apparatus
JPS61271819A (en) Thin film forming method
JPH0689455B2 (en) Thin film formation method
JPS6118125A (en) Thin film forming apparatus
JPS6118124A (en) Thin film forming apparatus
JPS61255015A (en) Thin film forming method
JPS6161665B2 (en)
JPS625633A (en) Thin film forming method
JPS634915B2 (en)
JPS6246515A (en) Thin film forming method
JPS61271820A (en) Thin film forming method
JPS6129120A (en) Thin film forming device
JPS61255014A (en) Thin film growing method
JPS6118123A (en) Thin film forming apparatus
JPH03271372A (en) Method for forming oxide thin film using excimer laser
JPS61127122A (en) Formation of thin film
JPS62160732A (en) Forming method for silicon oxynitride films