JPS61271819A - Thin film forming method - Google Patents

Thin film forming method

Info

Publication number
JPS61271819A
JPS61271819A JP11459185A JP11459185A JPS61271819A JP S61271819 A JPS61271819 A JP S61271819A JP 11459185 A JP11459185 A JP 11459185A JP 11459185 A JP11459185 A JP 11459185A JP S61271819 A JPS61271819 A JP S61271819A
Authority
JP
Japan
Prior art keywords
reaction
light
gas
reaction chamber
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11459185A
Other languages
Japanese (ja)
Other versions
JPH0548616B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Shinji Imato
今任 慎二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP11459185A priority Critical patent/JPS61271819A/en
Publication of JPS61271819A publication Critical patent/JPS61271819A/en
Publication of JPH0548616B2 publication Critical patent/JPH0548616B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/488Protection of windows for introduction of radiation into the coating chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To prevent ultraviolet rays from being intercepted owing to the reaction products produced on a plurality of ultraviolet ray transmitting shield plates, by arraying the light transmitting shield plates in a louver board shape, and by introducing non-productive gas from the light source chamber side through the gaps between the respective shield plates. CONSTITUTION:The holder 1' for holding substrates 1 having faces to be treated is mounted near the halogen heaters 3 above the reaction chamber 2. The reaction chamber 2, the light source chamber 5 having the ultraviolet ray source 9 arrayed therein, and the heating chamber 3' having the heaters 3 arrayed therein are kept at a vacuum below 100 torr respectively. Oxide gas and nitride gas being non-productive gas are supplied to the light source chamber 5 and the heating chamber 11 through the flow meters 21 and valves 22, and are introduced into the reaction chamber 2 through the gaps 40 between a plurality of the light transmitting shield plates 10 arrayed in a louver board shape. Moreover, a plurality of the strip shaped plates 11 are arrayed in parallel to the flowing direction 14 of the non-reactive gas, so that reactive gas and reaction products are prevented from being deposited onto the surfaces of the light transmitting shield plates 10 on the side of the reaction chamber. In this way, unrequired reaction products can be prevented from being deposited onto the light transmitting shield plates.

Description

【発明の詳細な説明】 「発明の利用分野1 本発明は、光化学反応により薄膜形成する方法であって
、大面積の被形成面上に均一に被膜を光照射用の透光性
遮蔽板上にオイル等をコートすることなく形成する手段
を有するCVD (気相反応)装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application of the Invention 1 The present invention is a method for forming a thin film by photochemical reaction. The present invention relates to a CVD (vapor phase reaction) device having means for forming a film without coating it with oil or the like.

r従来技術及びその問題点」 気相反応による薄膜形成技術として、光エネルギにより
反応性気体を活性にさせる光CVD法が知られている。
4. Prior Art and its Problems Photo-CVD is known as a technique for forming thin films through gas phase reactions, in which a reactive gas is activated by light energy.

この方法は、従来の熱CVD法またはプラズマCVD法
に比べ、低温での被膜形成が可能であるに加えて、被形
成面に損傷を与えないという点で優れたものである。
This method is superior to the conventional thermal CVD method or plasma CVD method in that it is possible to form a film at a low temperature and does not damage the surface on which it is formed.

かかる光CVD法を実施するに際し、その方法の−例を
第1図に示すが、反応室(2)内に保持された基板(1
)、その基板の加熱手段(3)、さらに基板に光照射す
る低圧水銀灯(9)とを有している。ドーピング系(7
)には、反応性気体の励起用の水根バブラ(13)及び
排気系(8)にはロータリーポンプ(19)を具備して
いる。ドーピング系よりの反応性気体例えばジシランが
反応室(2)に導入され、反応生成物である例えばアモ
ルファス珪素を基板(基板温度250℃)上に形成する
に際し、反応室の紫外光透光用の遮蔽板(10)、代表
的には石英窓にも同時に多量に珪素膜が形成されてしま
う。このためこの窓への被膜形成を防ぐため、この窓に
フォンブリンオイル(弗素系オイルの一例’) (16
)を薄くコートしている。
When carrying out such a photo-CVD method, an example of the method is shown in FIG.
), heating means (3) for the substrate, and a low-pressure mercury lamp (9) for irradiating light onto the substrate. Doping system (7
) is equipped with a water root bubbler (13) for excitation of the reactive gas, and the exhaust system (8) is equipped with a rotary pump (19). When a reactive gas such as disilane from the doping system is introduced into the reaction chamber (2) and a reaction product such as amorphous silicon is formed on the substrate (substrate temperature 250°C), the ultraviolet light transmitting portion of the reaction chamber is At the same time, a large amount of silicon film is also formed on the shielding plate (10), typically a quartz window. Therefore, in order to prevent the formation of a film on this window, apply Fomblin oil (an example of fluorinated oil) (16
) is thinly coated.

しかし、このオイルは、窓(10)への被膜形成を防ぐ
作用を有しつつも、被膜内に不純物として混入してしま
う。さらにこのオイル上にも少しづつ同時に反応生成物
が形成され、ここでの光吸収により被膜形成の厚さに制
限が生じてしまう欠点を有する。
However, although this oil has the effect of preventing the formation of a film on the window (10), it ends up being mixed into the film as an impurity. Furthermore, a reaction product is simultaneously formed little by little on this oil, and the thickness of the film formed is limited due to light absorption there.

r問題を解決するための手段j 本発明はこれらの問題を解決するため、光CVD法にお
いて、問題となっている紫外光透光可能な複数の遮蔽板
を「よろい板(一方の室(反応室)に通風のため、巾の
せまい板を複数枚一定の傾斜を保ってとりつけた装置)
状」に配役せしめ、複数の透光性遮蔽板のそれぞれの間
の隙間から光源室側より非生成物気体(反応または分解
により固体を形成しない気体、例えばHetAr+Hz
、 NZ+NH3+NzO,Ozまたはこれらの混合気
体)を導出せしめる方法としたものである。
Means for Solving Problems j In order to solve these problems, the present invention uses a plurality of shielding plates capable of transmitting ultraviolet light in the photoCVD method as "armor plates" (one chamber (reaction chamber)). A device in which multiple narrow boards are installed at a constant angle for ventilation in a room)
A non-product gas (a gas that does not form a solid by reaction or decomposition, such as HetAr+Hz
, NZ+NH3+NzO, Oz or a mixed gas thereof).

本発明はさらに加えて、この非生成物気体の反応室側の
透光性遮蔽板表面またはその近傍において、反応性気体
または活性反応生成物の分圧(存在確率)を下げる「減
分圧手段」を設けることにより、透光性遮蔽板上に反応
生成物が形成されて紫外光を遮光しないまたはされにく
いようにしたものである。
The present invention further provides a "depressurizing means" for lowering the partial pressure (probability of existence) of the reactive gas or active reaction product on or near the surface of the translucent shielding plate on the reaction chamber side of the non-product gas. '', a reaction product is formed on the light-transmitting shielding plate, so that ultraviolet light is not blocked or is not easily blocked.

「作用」 これらの特長のため、本発明方法による光CVD法で被
膜形成を行わんとする時、複数の透光性遮蔽板即ち「窓
」上に反応生成物が形成されることがない、またはきわ
めて少ない。即ち、紫外光は「よろい板状」の合成石英
よりなる窓を常時十分透過して、反応性気体を十分励起
(分解、および反応を含む)し、被形成面に反応生成物
を蓄積させ得る。その時、同時に同じ反応性気体および
活性反応生成物が透光性遮蔽板の上面にも飛来せんとす
るが、この生成物は本発明の減分圧手段により反応空間
に比べ透光性遮蔽板上またはその近傍の分圧を下げるこ
とができる。さらにまだ残っている逆流してくる反応性
気体及び活性反応生成物は透光性遮蔽板の隙間より反応
室側に導出される非生成物気体により反応空間側に押し
やられ、窓上面には被着し得ない。その結果、本発明の
「減分圧手段」と「よろい板状の隙間よりの非生成物気
体の導出」とにより、透光性遮蔽板の表面には反応生成
物が形成されず、結果として紫外光を反応室内の被形成
面が配設された反応空間にいつまでも十分な強度で放射
し、反応空間における反応性気体を励起させ続は得る。
"Function" Because of these features, when trying to form a film by the photo-CVD method according to the method of the present invention, reaction products are not formed on the plurality of light-transmitting shielding plates or "windows". Or very few. That is, ultraviolet light is always sufficiently transmitted through the window made of synthetic quartz in the form of a "shroud plate" to sufficiently excite the reactive gas (including decomposition and reaction), and to accumulate reaction products on the surface to be formed. . At that time, the same reactive gas and active reaction products are also prevented from flying to the upper surface of the light-transmitting shielding plate, but these products are removed from the reaction space by the pressure reduction means of the present invention. Or the partial pressure in the vicinity can be lowered. Furthermore, the remaining reactive gas and active reaction products flowing back are pushed toward the reaction space by the non-product gas led out to the reaction chamber through the gap between the light-transmitting shielding plates, and the upper surface of the window is covered. I can't arrive. As a result, due to the "partial pressure reduction means" and "leading out of non-product gas through the armor plate-like gap" of the present invention, no reaction products are formed on the surface of the light-transmitting shielding plate, and as a result, Ultraviolet light is emitted with sufficient intensity into the reaction space in which the surface to be formed is disposed in the reaction chamber, and the reactive gas in the reaction space is excited to obtain a reaction solution.

そして基板の被形成面上に十分な膜厚に被膜形成をさせ
得る。そして従来より公知の100〜200人(オイル
コートを行わない場合)または1000〜1500人(
オイルコートを行った場合)という厚さではなく、繰り
返し50人〜5μの範囲での所望の膜厚の被膜を形成さ
せ得る。
Then, a film can be formed to a sufficient thickness on the surface of the substrate. And conventionally known 100 to 200 people (if oil coating is not performed) or 1000 to 1500 people (
It is possible to repeatedly form a film with a desired thickness in the range of 50 μm to 5 μm, rather than the thickness of the oil coating (in the case of oil coating).

さらにこの先CVDの後、同じバッチでこの被膜上にプ
ラズマCVD法により同種または異種の被膜を同じ反応
室を用いて作製することが本発明では可能である。また
本発明の減分圧手段である複数の短冊状板それ自体をプ
ラズマCVD法またはプラズマエツチング法の一方の電
極とすることも有効である。
Further, in the present invention, after the CVD, it is possible to produce a film of the same type or a different type on this film in the same batch by plasma CVD using the same reaction chamber. It is also effective to use the plurality of strip-shaped plates themselves, which are the pressure reducing means of the present invention, as one electrode of the plasma CVD method or the plasma etching method.

さらに本発明は、非生成物気体の導出用量が不十分のた
めに窓上に付着した不要生成物をもプラズマエツチング
法で反応室を大気に触れさせずに除去し得る。
Further, according to the present invention, unnecessary products deposited on the window due to an insufficient amount of non-product gas being discharged can be removed by plasma etching without exposing the reaction chamber to the atmosphere.

また本発明装置は、フォンブリンオイル等をまったく用
いないオイルフリーの反応系であるため、バ・ツクグラ
ウンドレベルの真空度を10− ’ torr以下とす
ることができた。
Furthermore, since the apparatus of the present invention is an oil-free reaction system that does not use any Fomblin oil or the like, the degree of vacuum at the background level could be reduced to 10-' torr or less.

そして珪素等の半導体被膜、酸化珪素、窒化珪素、窒化
アルミニューム等の絶縁膜、金属アルミニューム、チタ
ン、タンデステン等の金属またはその珪化物の導体被膜
の光励起による光CVD被膜形成をさせ得る。
A photo-CVD film can be formed by photoexcitation of a semiconductor film such as silicon, an insulating film such as silicon oxide, silicon nitride, or aluminum nitride, or a conductive film made of a metal or its silicide such as metal aluminum, titanium, or tandestene.

「実施例」 以下本発明を第2図に示した実施例により、その詳細を
記す。
``Example'' The present invention will be described in detail below using an example shown in FIG.

第2図において、被形成面を有する基板(1)はホルダ
(1”)に保持され、反応室(2)上のハロゲンヒータ
(3)(上面を水冷(32))に近接して設けられてい
る。反応室(2)、および紫外光源(9)が配設された
光源室(5)及びヒータ(3)が配設された加熱室(3
″)は、それぞれの圧力を100torr以下の概略同
一の真空度に保持した。このために、反応に支障のない
反応にあずからない非生成物気体(窒素、水素、ヘリュ
ームまたはアルゴン)を(27)より、また反応にあず
かる非生成物気体である酸化物気体(0□、N、O,N
O,No□)または窒化物気体(NII3゜NzHa、
NFi)を(28)より流量計(21)、バルブ(22
)をへて光源室(5)、加熱室(11)に供給した。そ
してその非生成物気体を「よろい板状」に配設された複
数の透光性遮蔽板(lO)の隙間(40)より反応室内
に導出(14) した。さらに減分圧手段の1つである
複数の短冊状板(11)を非反応性気体の導出(14)
の方向に平行(そって)に配設し、反応室側の反応性気
体および反応生成物の透光性遮蔽板(10)の表面への
付着を防いだ。特に、遮蔽板(10)に向かって(逆流
)飛翔せんとする気体を減分圧手段によりこの手段表面
上に付着せしめることにより反応性気体および反応生成
物の遮蔽板表面またはその近傍への到達を防ぐことがで
きた。
In Fig. 2, a substrate (1) having a surface to be formed is held in a holder (1''), and is placed close to a halogen heater (3) (the upper surface of which is water-cooled (32)) above a reaction chamber (2). A reaction chamber (2), a light source chamber (5) in which an ultraviolet light source (9) is disposed, and a heating chamber (3) in which a heater (3) is disposed.
'') were maintained at approximately the same degree of vacuum of 100 torr or less. For this purpose, non-product gases (nitrogen, hydrogen, helium, or argon) that do not interfere with the reaction and do not participate in the reaction were kept at (27 ), and oxide gas (0□, N, O, N
O, No□) or nitride gas (NII3°NzHa,
NFi) from (28) to the flowmeter (21) and valve (22).
) and was supplied to the light source chamber (5) and the heating chamber (11). The non-product gas was then led out (14) into the reaction chamber through gaps (40) between a plurality of light-transmitting shielding plates (lO) arranged in a "shroud-like" manner. Furthermore, a plurality of strip-shaped plates (11), which are one of pressure reduction means, are used to extract non-reactive gas (14).
was arranged parallel to (along) the direction of , to prevent reactive gas and reaction products on the reaction chamber side from adhering to the surface of the light-transmitting shielding plate (10). In particular, reactive gases and reaction products can reach the surface of the shielding plate (10) or its vicinity by causing the gas that is intended to fly (backward) toward the shielding plate (10) to be deposited on the surface of this means by means of reduced partial pressure. could be prevented.

この実施例においては、反応性気体のうち、生成物気体
(分解、反応後置体を形成する気体)をノズル(30)
より反応空間(1°)へと導出(31)させた。
In this embodiment, among the reactive gases, a product gas (gas that decomposes and forms a post-reaction body) is passed through the nozzle (30).
It was led out (31) further into the reaction space (1°).

例えとして、反応生成物として珪素の如き半導体を作る
場合、生成物気体として珪化物気体であるシラン(Si
nllzn−z)、弗化珪素(SiF2.SiF4.5
izF、。
For example, when producing a semiconductor such as silicon as a reaction product, the product gas is silane (Si), which is a silicide gas.
nllzn-z), silicon fluoride (SiF2.SiF4.5
izF,.

HlSih)を用いた。さらに非生成物気体として水素
、アルゴンまたはヘリュームを用い(27)より供給し
た。
HlSih) was used. Furthermore, hydrogen, argon, or helium was used as a non-product gas and was supplied from (27).

反応生成物として窒化物(窒化珪素、窒化アルミニュー
ム、窒化ガリューム、窒化インジューム、窒化アンチモ
ン)を作る場合には、生成物気体としてそれぞれ5iJ
b、AI(Hs)3.Ga(C)Is)t、 In(C
Hs)*。
When producing nitrides (silicon nitride, aluminum nitride, gallium nitride, indium nitride, antimony nitride) as reaction products, 5 iJ each as a product gas.
b, AI(Hs)3. Ga(C)Is)t, In(C
Hs)*.

5n(CHs)4,5b(CH3)sを用い(2)より
供給した。また反応にあずかる非生成物気体としてアン
モニアまたはヒドラジンを(27)より供給した。また
反応にあずからない非生成物気体(水素またはへリュー
ム)をキャリアガスとして(24)および(28)より
供給した。
5n(CHs)4,5b(CH3)s was used and supplied from (2). Ammonia or hydrazine was also supplied from (27) as a non-product gas participating in the reaction. In addition, a non-product gas (hydrogen or helium) that does not participate in the reaction was supplied as a carrier gas from (24) and (28).

反応生成物として酸化物(酸化珪素、酸化アルミニュー
ム、酸化インジューム、酸化スズ、酸化アンチモン、ま
たはこれらの混合物)を作る場合、反応にあずかる非生
成物気体として酸化物(NtO。
When producing an oxide (silicon oxide, aluminum oxide, indium oxide, tin oxide, antimony oxide, or a mixture thereof) as a reaction product, the oxide (NtO.

0□、NOまたはN(h)を用い(27)より供給した
。この場合、生成物気体としてそれぞれ、珪化物(Si
Jh。
0□, NO or N(h) were used and supplied from (27). In this case, silicide (Si
Jh.

5izFb)、アルミニューム化物(A I (Cll
 a) 3) 、インジューム化物(In(CH:+)
 !+ InC1z) 、スズ化物(SnC14゜5n
(CHs)t)、アンチモン化物(Sb(CH:+)s
、5bc1z)を用い、(23)より供給した。そして
反応にあずからない非生成物気体としての水素またはへ
リュームを(25)よりキャリアガスとして供給した。
5izFb), aluminum compound (A I (Cll
a) 3) Indium compound (In(CH:+)
! + InC1z), stannide (SnC14゜5n
(CHs)t), antimonide (Sb(CH:+)s
, 5bc1z) was used and supplied from (23). Hydrogen or helium as a non-product gas not participating in the reaction was supplied as a carrier gas from (25).

導体(アルミニューム、タングステン、モリブデン、チ
タンまたはその珪化物)を作る場合は非生成気体として
水素、アルゴンまたはへリュームを用いた。生成物気体
としてそれぞれAl(CHx)z。
When making conductors (aluminum, tungsten, molybdenum, titanium, or their silicides), hydrogen, argon, or helium was used as the non-product gas. Al(CHx)z respectively as product gas.

WF、MoCl5.TiCl4又はそれらと5i84.
5iHz+5iHzC1z+SiF、との混合物を(2
3)および(24)より供給した。
WF, MoCl5. TiCl4 or them and 5i84.
5iHz+5iHzC1z+SiF, (2
3) and (24).

反応にあずからない非生成物気体である水素を(27)
および(25)よりキャリアガスとして供給した。
Hydrogen, a non-product gas that does not participate in the reaction (27)
and (25) were supplied as a carrier gas.

反応室の圧力制御は、コントロールバルブ(17)。The pressure in the reaction chamber is controlled by a control valve (17).

コック(20)を経てターボ分子ポンプ(大阪真空製P
G550を使用)(18)、ロータリーポンプ(19)
を経、排気させることにより成就した。
A turbo molecular pump (Osaka Vacuum P
using G550) (18), rotary pump (19)
This was accomplished by exhausting the air.

排気系(8)はコック(20)により予備室を真空引き
をする際はそちら側を開とし、反応室側を閉とする。ま
た反応室を真空引きまたは光化学反応をさせる際は、反
応室側を開とし、予備室側を閉とした。
When the preliminary chamber is evacuated using the cock (20), the exhaust system (8) is opened on that side and closed on the reaction chamber side. Furthermore, when the reaction chamber was evacuated or a photochemical reaction was performed, the reaction chamber side was opened and the preliminary chamber side was closed.

被膜の形成プロセスは、基板の予備室より反応室への移
動に関し、圧力差が生じないようにしたロード・ロック
方式を用いた。まず、予備室(4)にて基板(1)およ
びホルダ(lo)を挿入・配設し、真空引きをした後、
予め10−’torrまたはそれ以下に真空引きがされ
ている反応室(2)との間のゲート弁(6)を開とし、
基板(1)、ホルダ(1゛)を反応室(2)に移し、ま
たゲート弁(6)を閉として、反応室軸)と予備室(4
)とを互いに仕切った。
The film formation process used a load-lock method in which no pressure difference was created in moving the substrate from the preliminary chamber to the reaction chamber. First, the substrate (1) and holder (lo) are inserted and arranged in the preliminary chamber (4), and after vacuuming,
Open the gate valve (6) between the reaction chamber (2) which has been evacuated to 10-'torr or lower in advance,
Transfer the substrate (1) and holder (1゛) to the reaction chamber (2), close the gate valve (6), and open the reaction chamber (axis) and preliminary chamber (4).
) were separated from each other.

その後、光源室に対し逆流による反応性気体の光源室内
への混入防止のため、まず非生成物気体を100〜15
00cc/分の流量で光源室に導入し、同時に連結した
加熱室にも供給した。そしてそれらは複数の「よろい板
状」遮蔽板(10)の隙間(40)をへて反応室に導出
(14)させる。その後反応性気体(31)をノズル(
30)より供給した。
After that, in order to prevent reactive gases from entering the light source chamber due to backflow, first add 100 to 150% of the non-product gas.
It was introduced into the light source chamber at a flow rate of 00 cc/min, and was also supplied to the connected heating chamber at the same time. They are then led out (14) into the reaction chamber through gaps (40) between a plurality of "armor plate-like" shielding plates (10). After that, the reactive gas (31) is introduced into the nozzle (
30).

この実施例では「よろい板状」の透光性遮蔽板は合成石
英製とし、3cm (巾)  X 34cm (長さ)
x2mm(厚さ)とし、それぞれを互いに3IlIIm
重合わせた。
In this example, the "armor plate-like" translucent shielding plate is made of synthetic quartz, and is 3 cm (width) x 34 cm (length).
x2mm (thickness), and each is 3IlIIm from each other.
Superimposed.

その隙間(40)は0.1mmとした。減分圧手段は高
さ1.5cm長さ34cmの金属板を互いに3〜201
I11例えば10mm離して設置した。その結果、隙間
(40)での平均風速は反応室の圧力が3torr、 
100cc/分の気体の導出でlllI分となる。その
結果、3cmの巾の遮蔽板の領域に励起した反応性気体
が被着するのを防ぐには十分の風速(50cm/分〜5
0m/分)を得ることができる。
The gap (40) was 0.1 mm. The pressure reducing means is a metal plate with a height of 1.5 cm and a length of 34 cm.
I11 were placed, for example, 10 mm apart. As a result, the average wind speed in the gap (40) is 3 torr, and the pressure in the reaction chamber is 3 torr.
Derivation of gas at 100 cc/min results in lllI minutes. As a result, the wind speed (50 cm/min to 5 cm
0 m/min).

反応用光源は合成石英管の低圧水銀灯(9)とし、水冷
(32’)を設けた。その紫外光源は、合成石英製の低
圧水銀灯(185no+、 254n−の波長を発光す
る発光長40CI11.照射強度20+++W/cm”
、ランプ電力45−)ランプ数16本である。
The light source for the reaction was a low-pressure mercury lamp (9) made of a synthetic quartz tube, and water cooling (32') was provided. The ultraviolet light source was a low-pressure mercury lamp made of synthetic quartz (emitting wavelengths of 185no+, 254n-, emission length 40CI11, irradiation intensity 20+++W/cm).
, lamp power 45-) number of lamps is 16.

この紫外光は、合成石英製の透光性遮蔽板である「よろ
い板状」石英(10)を経て反応室(2)の反応区間(
2)中の反応性気体(31)および基板(1)の被形成
面(1゛)上を照射する。
This ultraviolet light passes through the "shroud" quartz (10), which is a transparent shielding plate made of synthetic quartz, and passes through the reaction section (2) of the reaction chamber (2).
2) Irradiate the reactive gas (31) in the substrate (1) and the formation surface (1') of the substrate (1).

ヒータ(3)は反応室(2)の上側に位置した「ディポ
ジッション・アップ」方式とし、フレークが被形成面に
付着しピンホールの原因を作ることを避け、かつ基板(
1)を裏面側より所定の温度(室温〜700℃)にハロ
ゲンヒータにより加熱した。
The heater (3) is a "deposition up" type located above the reaction chamber (2) to prevent flakes from adhering to the surface to be formed and causing pinholes, and to
1) was heated from the back side to a predetermined temperature (room temperature to 700°C) using a halogen heater.

反応室はステンレスであり、紫外光源も真空下に保持さ
れた光源室と反応室とを囲んだステンレス容器内に減圧
雰囲気に保持された。このため、5cmX5cmの小さ
い被膜形成面積ではなく 30ca+ x30cmの大
きさの基板上にも何等の工業的な問題もなく被膜形成さ
せることができ得る。
The reaction chamber was made of stainless steel, and the ultraviolet light source was also kept in a reduced pressure atmosphere in a stainless steel container surrounding the light source chamber and the reaction chamber, which were kept under vacuum. Therefore, a coating can be formed on a substrate with a size of 30 ca+ x 30 cm without any industrial problems, instead of on a small coating area of 5 cm x 5 cm.

第2図における透光性遮蔽板及び減分圧手段の部分のみ
を拡大し、その斜視図を第3図に示す。
FIG. 3 is an enlarged perspective view of only the light-transmitting shielding plate and the pressure reducing and dividing means in FIG. 2.

またそのA−A’断面、B−8’断面を第4図(A) 
、 (B)に示す。第4図(B)には減分圧手段である
短冊状板における隙間より導出される非生成物気体の相
対的な流速分布と活性反応生成物または反応性気体が遮
蔽板方向に逆流してしまう場合の流れの方向をも示して
いる。
In addition, the A-A' cross section and the B-8' cross section are shown in Figure 4 (A).
, shown in (B). FIG. 4(B) shows the relative flow velocity distribution of non-product gas derived from the gap in the strip-shaped plate that is the pressure reducing means and the fact that the active reaction product or reactive gas flows back toward the shielding plate. It also shows the direction of flow when it is put away.

第3図における斜視図より明らかなごとく、合成石英で
できた複数の透光性遮蔽板(10)はそれぞれが互いに
重なりあい、隙間(40)を構成し、よろい板状((1
0−1)、(10−2)、(10−3)を構成している
As is clear from the perspective view in FIG.
0-1), (10-2), and (10-3).

さらに本発明において、この遮蔽板(lO)の反応室側
の表面にそって減分圧手段(11)を複数の短冊状板(
11−1) 、 (11−2) 、 (11−3)によ
り、遮蔽板(10)の表面に垂直方向(図面上下方向)
に構成させた。それにより互いに一定の間隔(42)を
有して配設している。ここでは間隔10cm短冊状1枚
は高さ15IIIII+を有し、その巾は34cmとし
た。その結果、活性反応生成物は(41)、(41’)
の方向に流れ、この減分圧手段表面上への付着が助長さ
れる。その結果、画板(10)上面に生成物気体及び生
成物の到達をこの減分圧手段のない時に比べはるかに高
い効率で防ぐことができる。その結果、減分圧手段のな
い時に隙間の流速は3(1m/秒も必要であったものが
、30+a/分の高速が必要とされる非反応性気体の消
費量を約十分の−に節約することができた。
Furthermore, in the present invention, a plurality of strip-shaped plates (
11-1), (11-2), and (11-3), the direction perpendicular to the surface of the shielding plate (10) (vertical direction in the drawing)
It was configured as follows. Thereby, they are arranged at a constant distance (42) from each other. Here, one strip having an interval of 10 cm had a height of 15III+ and a width of 34 cm. As a result, the active reaction products are (41), (41')
, and the adhesion on the surface of this pressure reducing means is promoted. As a result, it is possible to prevent the product gas and products from reaching the upper surface of the drawing plate (10) with much higher efficiency than when there is no pressure reducing means. As a result, the flow rate in the gap was 3 (1 m/sec) when there was no pressure reducing means, but the consumption of non-reactive gas, which required a high speed of 30+ a/min, was reduced to about 10 -100 m/sec. I was able to save money.

即ち第4図(B)に示される如く、隙間より導出された
気体は、その相対的な流速において減分圧手段の近< 
(14−1)、 (14−3)は流速が遅く、中央部(
14−2)が速い。その結果、反応生成物または反応性
気体が中央より減分圧手段側に矢印(41) 、 (4
1°)に示されるようにおしやられる。そして反応性気
体はこの短冊状板の表面に多量に付着し合成石英板上へ
の付着を防ぐことができる。
That is, as shown in FIG. 4(B), the gas led out from the gap is close to the pressure reducing means at its relative flow velocity.
In (14-1) and (14-3), the flow velocity is slow, and the central part (
14-2) is fast. As a result, the reaction product or reactive gas moves from the center toward the pressure reducing means as shown by the arrows (41) and (4
1°). A large amount of the reactive gas adheres to the surface of the strip-shaped plate, and can be prevented from adhering to the synthetic quartz plate.

さらに、本発明による具体例を以下の実験例1〜4に示
す。
Further, specific examples according to the present invention are shown in Experimental Examples 1 to 4 below.

実験例1・・・・・シリコン窒化膜の形成例第2図にお
いて、反応性気体としてアンモニアを(25)より50
cc/分、ジシランを(23)より8cc/分で供給し
、基板温度250℃とした。基板は直径5インチのウェ
ハ4枚とした。反応室(2)内圧力は3、Qtorrと
した。
Experimental example 1...Example of forming a silicon nitride film In Fig. 2, ammonia was used as a reactive gas at 50
cc/min, disilane was supplied from (23) at 8 cc/min, and the substrate temperature was set at 250°C. The substrates were four 5-inch diameter wafers. The internal pressure of the reaction chamber (2) was set at 3, Qtorr.

反応にあずからない非生成物気体として窒素を200 
cc/分および反応にあずかり得る非生成物気体のアン
モニアを200cc/分それぞれ(27) 、 (28
)より導入した。その場合、平均流速1017分の流量
で流した。その結果、よろい板状遮蔽板上面への窒化珪
素の付着を防ぐことができた。
Nitrogen is used as a non-product gas that does not participate in the reaction.
cc/min and ammonia, a non-product gas that can participate in the reaction, at 200 cc/min, respectively (27), (28
) was introduced. In that case, it was flowed at an average flow rate of 1017 minutes. As a result, it was possible to prevent silicon nitride from adhering to the upper surface of the armor plate-like shielding plate.

30分間の反応で1500人の膜厚の窒化珪素が基板上
に形成された。その被膜形成速度は50人/分であった
。本発明は水銀の蒸気等を用いない直接光励起である。
A 1,500-layer thick silicon nitride film was formed on the substrate in a 30-minute reaction. The film formation rate was 50 people/min. The present invention uses direct optical excitation without using mercury vapor or the like.

被膜の5点のばらつきは±lO%以内に入っていた。The variation of the 5 points of the coating was within ±10%.

また減分圧手段が配設されていない場合、このよろい板
の表面への付着を防ぐには30鵠/秒の流速を必要とし
た。そのため、装置としては排気速度の限界に近くなっ
てしまった。しかしこのよろい板状遮蔽板に加えて減分
圧手段を配設してその付着防止用の気体の流れを上記し
たごとく約l/10に節約することが可能となった。
In addition, in the case where a pressure reducing means was not provided, a flow rate of 30 mm/sec was required to prevent adhesion to the surface of the armor plate. As a result, the pumping speed of the device was close to its limit. However, by providing pressure reducing means in addition to this armor plate-like shielding plate, it has become possible to reduce the flow of gas for preventing adhesion to about 1/10 as described above.

もちろんこの減分圧手段の短冊状板の間隔(42)を1
0s+sより5ms+とすると隙間よりの流速は5−7
分とさらに少なくすることが可能となった。
Of course, the interval (42) between the strip-like plates of this pressure reducing and dividing means is set to 1
If 5ms+ is set from 0s+s, the flow velocity from the gap is 5-7
Now it is possible to reduce the amount even further.

実験例2・・・シリコン酸化膜の形成側実験例1と同様
の条件で酸化珪素被膜を形成させた。但し光源室より導
出する反応にあずかる非生成物気体としてNtOをNH
3の代わりに用いた。
Experimental Example 2: Formation of silicon oxide film A silicon oxide film was formed under the same conditions as in Experimental Example 1. However, NtO is used as a non-product gas taking part in the reaction derived from the light source chamber.
Used instead of 3.

そして(25)および(26)よりそれぞれ50cc/
分及び300cc/分を供給した。すると5000人の
膜厚の酸化珪素を1時間で作ることができた。このとき
P)13゜B、H,を同時に加え、リンガラスまたはホ
ウ素ガラスとしてもよい。
And from (25) and (26) each 50cc/
min and 300 cc/min. As a result, they were able to make a silicon oxide film the thickness of 5,000 people in one hour. At this time, P) 13°B and H may be added at the same time to form phosphorus glass or boron glass.

実験例3・・アモルファスシリコン膜の形成例ジシラン
(SiJ&)を(23)より100cc/分の流量で供
給した。また、水素を(28)より「よろい板状」遮蔽
板の上面への付着を防ぐため500cc/分の流量で供
給した。温度は210℃、反応室圧力10torrとし
た。被形成面に2500人の膜厚を60分間のディポジ
ッションで形成させることができた。
Experimental Example 3 Formation example of amorphous silicon film Disilane (SiJ&) was supplied from (23) at a flow rate of 100 cc/min. Further, hydrogen was supplied from (28) at a flow rate of 500 cc/min to prevent it from adhering to the upper surface of the "armor plate-like" shielding plate. The temperature was 210° C. and the reaction chamber pressure was 10 torr. A film thickness of 2,500 layers could be formed on the surface to be formed in 60 minutes of deposition.

同じプロセスを繰り返しても、同じ膜厚の2300〜2
700人を得ることができた。
Even if the same process is repeated, the same film thickness of 2300~2
We were able to get 700 people.

実験例4・・・窒化アルミニュームの形成例Al(CH
3)3を代表例とするメチルアルミニュームを(23)
より30cc/分で供給した。(24)より水素を30
cc/分で希釈した。また(28)よりアンモニアを3
00cc/分で供給した。するとメチルアルミニューム
は光源室に水銀蒸気を導入しなくても分解し、窒化アル
ミニューム膜を1300人の厚さに作ることができた。
Experimental example 4... Formation example of aluminum nitride Al(CH
3) Methyl aluminum with 3 as a representative example (23)
It was supplied at a rate of 30 cc/min. 30 hydrogen from (24)
Diluted at cc/min. Also, from (28), ammonia is
00 cc/min. As a result, the methyl aluminum decomposed without introducing mercury vapor into the light source chamber, and it was possible to create an aluminum nitride film 1,300 times thick.

被膜形成速度は30人/分(圧力3torr。Film formation rate was 30 people/min (pressure 3 torr).

温度350℃)であった。また、エチルアルミニューム
Al (CJs) 3等の他のアルキル化合物でもよい
The temperature was 350°C). Other alkyl compounds such as ethylaluminum Al (CJs) 3 may also be used.

実験例5・・・金属アルミニュームの形成側実験例3に
おいて(24) 、 (28)より水素をそれぞれ30
cc/分、 300cc/分の流量で加えた。すると被
形成面に金属アルミニュームを約500人の厚さに3時
間のディボジソションの結果得ることができた。その他
は実験例3と同様である。
Experimental Example 5: Formation of metallic aluminum In Experimental Example 3, hydrogen was added at 30% each from (24) and (28).
cc/min, at a flow rate of 300 cc/min. After 3 hours of deposition, a metal aluminum layer with a thickness of approximately 500 mm was obtained on the surface to be formed. The rest was the same as in Experimental Example 3.

「効果」 本発明は、以上の説明より明らかなごとく、大面積の基
板上に被膜を形成するにあたり、透光性遮蔽板上への不
要反応生成被膜をこの板を「よろい板状」の複数の遮蔽
板とし、加えてその反応室、側に減分圧手段を併設する
ことにより、より完全に除去することができる。またよ
ろい板の隙間より反応室に流す非生成物気体の流速を1
/10に節約することもできた。このため窓上面にオイ
ルをまったく用いる必要がない。このため、被膜内には
炭素等の不純物がはいりにくく、かつ排圧を1O−1t
orrと高真空にし得、オイルフリーの高純度の被膜作
製が可能となった。
"Effects" As is clear from the above description, the present invention, when forming a film on a large-area substrate, eliminates the unnecessary reaction-generated film on a light-transmitting shielding plate by using this plate in the form of a plurality of "armor plate-like" More complete removal can be achieved by using a shielding plate and also installing a partial pressure reducing means on the side of the reaction chamber. In addition, the flow rate of the non-product gas flowing into the reaction chamber through the gap between the armor plates is 1
I was able to save up to /10. Therefore, there is no need to use any oil on the top surface of the window. Therefore, it is difficult for impurities such as carbon to enter the coating, and the exhaust pressure is reduced to 1O-1t.
It is possible to create a high vacuum of 100 mA, and it is now possible to produce an oil-free, high-purity film.

さらにこの窓上面に落下したフレーク等も同じ反応室で
プラズマエッチにより除去することにより、反応室に完
全にオイルレスの環境を得、連続形成を初めて可能にし
た。
Furthermore, by removing flakes that fell onto the top surface of the window using plasma etching in the same reaction chamber, we created a completely oil-free environment in the reaction chamber, making continuous formation possible for the first time.

なお本発明は、実施例1に示した多くの種類の半導体、
絶縁物、導体を同じ技術思想を用いて形成することがで
きる。またこれ等に示されていない鉄、ニッケル、コバ
ルトのカルボニル化物を反応性気体として用い、鉄、ニ
ッケル、コバルトまたはその化合物の磁性物被膜を形成
することは有効である。
Note that the present invention applies to many types of semiconductors shown in Example 1,
Insulators and conductors can be formed using the same technical idea. It is also effective to form a magnetic film of iron, nickel, cobalt, or a compound thereof by using a carbonylated product of iron, nickel, or cobalt, which is not shown above, as a reactive gas.

前記した実験例において、珪素半導体の形成に際し、ド
ーパントを同時に添加できる。また光源として低圧水銀
灯ではなくエキシマレーザ(波長100〜400nm)
 、アルゴンレーザ、窒素レーザ等を低圧水銀灯の代わ
りにまたはこれと併用して用いてもよいことはいうまで
もない。
In the experimental examples described above, dopants can be added at the same time when forming a silicon semiconductor. Also, the light source is not a low-pressure mercury lamp but an excimer laser (wavelength 100 to 400 nm).
It goes without saying that , argon laser, nitrogen laser, etc. may be used in place of or in combination with the low-pressure mercury lamp.

本発明におい°て、被膜形成を水銀バブラを通すことに
より被膜成長速度を向上させてもよい。
In the present invention, the film growth rate may be improved by passing the film through a mercury bubbler.

本発明における実験例はよろい板状の遮蔽板を一方の側
、第2図では右下側より左上側に傾けるように配設した
。しかしこれはノズルを中央部に配設し、中央部より左
右の上側に向けて傾けた遮蔽板を配設するよろい板であ
ってもよい、その場合、減分圧手段の形状は第2図と同
様に流れにそう方向に向けたガス流が中央部より外周に
向けて配設する場合、逆に中央部より同心円状に中央部
がある場合は外側より同心円状によろい板状の遮蔽板を
配設すればよい。そして減分圧手段を中央より外部に放
射状に配設しなければならない。
In an experimental example of the present invention, a shielding plate in the form of an armor plate was arranged to be tilted from one side, in FIG. 2, from the lower right side to the upper left side. However, this may be a shroud plate in which the nozzle is disposed in the center and a shielding plate is disposed tilted upward from the center to the left and right. In that case, the shape of the pressure reducing means is as shown in Fig. 2. Similarly, if the gas flow is directed in that direction from the center toward the outer periphery, and conversely, if the center is concentrically arranged from the center, a brittle plate-shaped shield plate is installed concentrically from the outside. All you have to do is set up the . The pressure reducing and dividing means must be arranged radially outward from the center.

第2図は光源を下方向に反応方向を上側に設定した。し
かしこの逆に反応空間を下側に配設してもよい。また光
源を横方向に配設してもよい。
In FIG. 2, the light source was set downward and the reaction direction was set upward. However, it is also possible to arrange the reaction space on the lower side. Further, the light sources may be arranged laterally.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来より公知の光励起CVD装置を示す。 第2図は本発明のCVD装置を示す。 第3図は本発明の遮蔽板および減分圧手段の拡大斜視図
を示す。 第4図は第3図のA−A”、B−B’の縦断面図を示す
。 glの 2a
FIG. 1 shows a conventionally known photoexcited CVD apparatus. FIG. 2 shows a CVD apparatus of the present invention. FIG. 3 shows an enlarged perspective view of the shielding plate and pressure reducing means of the present invention. Fig. 4 shows a vertical cross-sectional view taken along lines A-A'' and B-B' in Fig. 3. 2a of gl

Claims (1)

【特許請求の範囲】 1、反応性気体の励起用の光源と、被形成面を有する基
板が配設される反応室とを有し、前記光源と反応室との
間には複数に分割して配設した透光性遮蔽板を有する薄
膜形成装置において、透光性遮蔽板表面またはその近傍
の反応性気体または反応生成物の分圧を下げる減分圧手
段を具備せしめ、非生成物気体を前記透光性遮蔽板の隙
間より反応室側に導出せしめることにより、反応生成物
を前記透光性遮蔽板上に付着させない、またはさせにく
いようにせしめることを特徴とする薄膜形成方法。 2、特許請求の範囲第1項において、複数の透光性遮光
板をよろい板状に配設せしめることにより非生成物気体
を反応室側の透光性遮蔽板の表面にそって導出せしめる
ことを特徴とする薄膜形成方法。 3、特許請求の範囲第1項において、透光性遮蔽板表面
の反応性気体の分圧を下げる減分圧手段として導出され
る非生成物基体の流れを妨げない方向に複数の短冊状板
を互いに離間して配設したことを特徴とする薄膜形成方
法。
[Scope of Claims] 1. A light source for excitation of a reactive gas and a reaction chamber in which a substrate having a surface to be formed is disposed, and between the light source and the reaction chamber are divided into a plurality of sections. In a thin film forming apparatus having a light-transmitting shielding plate disposed at A method for forming a thin film, characterized in that reaction products are prevented from adhering to the light-transmitting shielding plate, or are made difficult to adhere to the light-transmitting shielding plate, by guiding the reaction product through the gap between the light-transmitting shielding plates to the reaction chamber side. 2. In claim 1, by arranging a plurality of light-transmitting light-shielding plates in the form of armor plates, the non-product gas is led out along the surface of the light-transmitting light-shielding plates on the reaction chamber side. A thin film forming method characterized by: 3. In claim 1, a plurality of strip-shaped plates are provided in a direction that does not impede the flow of the non-product substrate derived as means for reducing the partial pressure of the reactive gas on the surface of the transparent shielding plate. A method for forming a thin film, characterized in that: are arranged at a distance from each other.
JP11459185A 1985-05-27 1985-05-27 Thin film forming method Granted JPS61271819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11459185A JPS61271819A (en) 1985-05-27 1985-05-27 Thin film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11459185A JPS61271819A (en) 1985-05-27 1985-05-27 Thin film forming method

Publications (2)

Publication Number Publication Date
JPS61271819A true JPS61271819A (en) 1986-12-02
JPH0548616B2 JPH0548616B2 (en) 1993-07-22

Family

ID=14641690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11459185A Granted JPS61271819A (en) 1985-05-27 1985-05-27 Thin film forming method

Country Status (1)

Country Link
JP (1) JPS61271819A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114848A (en) * 2004-10-18 2006-04-27 Apex Corp Equipment and method for ultraviolet irradiation processing and semiconductor manufacturing equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593931A (en) * 1982-06-29 1984-01-10 Fujitsu Ltd Forming of thin film
JPS607936A (en) * 1983-06-24 1985-01-16 Anelva Corp Photochemical surface treatment device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593931A (en) * 1982-06-29 1984-01-10 Fujitsu Ltd Forming of thin film
JPS607936A (en) * 1983-06-24 1985-01-16 Anelva Corp Photochemical surface treatment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114848A (en) * 2004-10-18 2006-04-27 Apex Corp Equipment and method for ultraviolet irradiation processing and semiconductor manufacturing equipment

Also Published As

Publication number Publication date
JPH0548616B2 (en) 1993-07-22

Similar Documents

Publication Publication Date Title
EP0252667B1 (en) Chemical vapour deposition methods
US5753320A (en) Process for forming deposited film
JPH0752718B2 (en) Thin film formation method
US4597986A (en) Method for photochemical vapor deposition
JPH05267177A (en) Optical chemical vapor deposition system
WO1993013244A1 (en) Surface reaction film formation apparatus
KR850001974B1 (en) Improved photochemical vapor deposition apparatus and method
US4500565A (en) Deposition process
EP0223787B1 (en) Selective chemical vapor deposition method and apparatus
JPS60245217A (en) Thin film formation equipment
US4910044A (en) Ultraviolet light emitting device and application thereof
JPS61271819A (en) Thin film forming method
JPS61271820A (en) Thin film forming method
JPS625633A (en) Thin film forming method
JPS61196528A (en) Thin film forming apparatus
JPS61272384A (en) Formation of thin film
JPS61196529A (en) Thin film forming apparatus
JP2639616B2 (en) Semiconductor film formation method
JP3174787B2 (en) Optical CVD equipment
JP2555209B2 (en) Thin film manufacturing method
JPS61196527A (en) Thin film forming apparatus
JP3064407B2 (en) Light source for photo-excitation process equipment
JPH0331481A (en) Ecr plasma cvd device
US20020012749A1 (en) Method and apparatus for coating and/or treating substrates
JPS62213118A (en) Formation of thin film and device therefor