JPS62160732A - Forming method for silicon oxynitride films - Google Patents

Forming method for silicon oxynitride films

Info

Publication number
JPS62160732A
JPS62160732A JP145986A JP145986A JPS62160732A JP S62160732 A JPS62160732 A JP S62160732A JP 145986 A JP145986 A JP 145986A JP 145986 A JP145986 A JP 145986A JP S62160732 A JPS62160732 A JP S62160732A
Authority
JP
Japan
Prior art keywords
silicon
gas
film
silicon oxynitride
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP145986A
Other languages
Japanese (ja)
Inventor
Koji Shiozaki
宏司 塩崎
Hiroi Ootake
大竹 弘亥
Kazuhiko Shirakawa
一彦 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP145986A priority Critical patent/JPS62160732A/en
Publication of JPS62160732A publication Critical patent/JPS62160732A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to form silicon oxynitride films having good quality without ion damages at a low temperature, by projecting ultraviolet rays having a wavelength of 300nm or less in a reaction gas, and forming a film, whose thermal expansion coefficient is close to that of a silicon films, on a substrate. CONSTITUTION:On a wafer susceptor 2, a P-type (100) silicon substrate 3 is provided. The inside of a sample chamber 1 is evacuated to the vacuum state. Thereafter, SiH4 gas, N2O gas and NH3 gas are introduced. By using mercury lamp 6, ultraviolet rays (e.g., wavelength of 254nm) is projected. Silicon oxynitride films are formed on the silicon substrate 3. Then, a gas introducing port 7 is closed and the gases are exhausted. Thereafter N2 gas is introduced, and an atmospheric pressure is restored. The silicon oxide and nitride (SiOxNy) films, which are formed on the silicon substrate 3 in these processes, have the film compositions of X 1.1 and Y 0.6. The thermal expansion coefficient of the films is close to that of a silicon film.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は高誘電絶縁膜である酸窒化シリコン膜の形成方
法の改良に関するものであり、特に低温で熱膨張係数が
シリコン膜に近い値を有する膜組成の酸窒化シリコン膜
を形成する方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an improvement in the method of forming a silicon oxynitride film, which is a high dielectric insulating film, and in particular has a coefficient of thermal expansion close to that of a silicon film at low temperatures. The present invention relates to a method for forming a silicon oxynitride film having a film composition.

〈従来の技術〉 近年、積層構造SOIの形成において、熱膨張係数がシ
リコン膜の値に近い層間絶縁膜を用いることにより歪の
低減をはかり、欠陥のない再結晶化シリコン膜を形成す
ることが注目されている。
<Prior art> In recent years, in the formation of stacked SOI, it has become possible to reduce strain by using an interlayer insulating film whose coefficient of thermal expansion is close to that of a silicon film, and to form a defect-free recrystallized silicon film. Attention has been paid.

酸窒化シリコン膜は、その膜組成により熱膨張率をシリ
コン膜に近い値にでき、絶縁特性にも優れているため、
積層構造Solの層間絶縁膜として有望視されている。
Silicon oxynitride film can have a coefficient of thermal expansion close to that of silicon film due to its film composition, and has excellent insulation properties.
It is seen as promising as an interlayer insulating film for a laminated structure Sol.

この酸窒化シリコン膜は従来、スパッタリング法あるい
はプラズマCVD法により形成されている。
This silicon oxynitride film has conventionally been formed by a sputtering method or a plasma CVD method.

〈発明が解決しようとする問題点〉 しかしながら従来の酸窒化シリコン膜の形成方法は膜形
成時のイオン、電子等の荷電粒子による下地基板や形成
膜への!!r(耐損傷が生じるという間照点がある。
<Problems to be Solved by the Invention> However, the conventional method of forming a silicon oxynitride film causes charged particles such as ions and electrons during film formation to damage the base substrate and the formed film! ! r (There is a clearing point where damage resistance occurs.

本発明はこのような点にかんがみて創案されたものであ
り、光化学反応により良質な酸窒化シリコン膜を低温で
形成する酸窒化シリコン膜の形成方法を提供することを
目的としている。
The present invention was devised in view of the above points, and an object of the present invention is to provide a method for forming a silicon oxynitride film in which a high quality silicon oxynitride film is formed at a low temperature by a photochemical reaction.

〈問題点を解決するための手段〉 本発明の酸窒化シリコン膜の形成方法は、反応ガス中に
おいて、波長300nm以下の紫外光を照射し、光化学
反応により基板上にその熱膨張係数がシリコン膜の熱膨
張係数に近い値となるような膜組成を有する酸窒化シリ
コン膜を形成するように構成している。
<Means for Solving the Problems> The method of forming a silicon oxynitride film of the present invention involves irradiating ultraviolet light with a wavelength of 300 nm or less in a reaction gas, and forming a silicon film on a substrate with a thermal expansion coefficient of 300 nm or less through a photochemical reaction. The structure is such that a silicon oxynitride film having a film composition having a value close to the coefficient of thermal expansion is formed.

本発明において、用いられる反応ガスはシラン(SIH
4)、亜酸化窒素(N20)、アンモニア(N H3)
を用いるのが適当であり、またNH3/(N 20 +
 N Hs )のガス流量比は0.5以下程度が適当で
ある。
In the present invention, the reaction gas used is silane (SIH
4), nitrous oxide (N20), ammonia (NH3)
It is appropriate to use NH3/(N 20 +
The gas flow rate ratio of N Hs ) is suitably about 0.5 or less.

また、波長300nm以下の紫外光の照射は低圧水銀灯
によって行なうのが適当である。
Further, it is appropriate that the irradiation with ultraviolet light having a wavelength of 300 nm or less be performed using a low-pressure mercury lamp.

本発明においては、上記のように特にNH3/(NH3
+N20)のガス流示比を0.5以下程度とするのが適
当であるが、これは、NH3ガスの分圧が高い条件では
窒化シリコン膜の反応速度が高く、熱膨張係数がシリコ
ン膜に近い値である膜組成の酸窒化シリコン膜が得られ
にくいため、N20ガヌの分圧を高い条件、すなわちN
H3/(NH3+N20)のガス流量比を0.5以下と
して酸窒化シリコン膜を形成するようにしたものである
In the present invention, as mentioned above, in particular NH3/(NH3
It is appropriate to set the gas flow ratio of +N20) to about 0.5 or less, but this is because the reaction rate of the silicon nitride film is high under conditions where the partial pressure of NH3 gas is high, and the coefficient of thermal expansion is higher than that of the silicon film. Since it is difficult to obtain a silicon oxynitride film with a film composition that is close to the value, the partial pressure of N20 is set to a high condition, that is, N
A silicon oxynitride film is formed by setting the gas flow rate ratio of H3/(NH3+N20) to 0.5 or less.

〈作 用〉 上記の如き構成により、熱膨張係数がシリコン膜に近い
値である膜組成(S i OxN、 : X’:1.1
゜Y’::0.6)で、イオン損傷などのない良質な酸
窒化シリコン膜を低温で形成することが出来る。
<Function> With the above configuration, a film composition having a thermal expansion coefficient close to that of a silicon film (S i OxN, : X': 1.1
°Y'::0.6), a high quality silicon oxynitride film without ion damage etc. can be formed at low temperature.

〈実施例〉 以下、本発明の一実施例を図面を参照して詳細に説明す
る。
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の酸窒化シリコン膜の形成方法を実施す
るために用いた薄膜形成装置の一例を示す模式図であり
、第1図において、1は反応室(試料室)、2はウェハ
ーサセプタ、3はシリコンウェハ、4はIRランプ、5
は合成石英、6は低圧水銀ランプ(Hgラング)、7は
ガス導入口、8はゲートパルプ、9はメカニカルブース
タポンプ、10は油回転ポンプである。
FIG. 1 is a schematic diagram showing an example of a thin film forming apparatus used to carry out the method of forming a silicon oxynitride film of the present invention. In FIG. 1, 1 is a reaction chamber (sample chamber), 2 is a wafer Susceptor, 3 is silicon wafer, 4 is IR lamp, 5
is synthetic quartz, 6 is a low-pressure mercury lamp (Hg rung), 7 is a gas inlet, 8 is gate pulp, 9 is a mechanical booster pump, and 10 is an oil rotary pump.

上記の如く構成された装置の試料室1内のウェハーサセ
プタ2上に、まfP型(100)シ’J=+ン(Si 
)基板(15〜25Ω・cIm)3を設置し、次にロー
タリーポンプ10を作動させて試料室1内の圧力を粗引
きした後、メカニカルブースタポンプ9を用いて試料室
1内を1 f3[Torr ]まで真空排気した。この
排気操作中にIRクランプを用いて基板3の温度を20
0 [’C]tで上昇させて保持した。上記ポンプ9に
よって10[Torr]以下まで真空引きした後、Si
H< ガス、N20ガス、NH3ガスを例えばそれぞれ
15 (SCCM)。
A fP type (100) silicon (Si
) A substrate (15 to 25 Ω/cIm) 3 is installed, and then the rotary pump 10 is activated to roughly reduce the pressure in the sample chamber 1.Then, the mechanical booster pump 9 is used to pump the inside of the sample chamber 1 to 1 f3[ Torr]. During this evacuation operation, the temperature of the substrate 3 is kept at 20°C using an IR clamp.
It was raised and held at 0 ['C]t. After evacuation to 10 [Torr] or less using the pump 9, the Si
H< gas, N20 gas, NH3 gas, for example, 15 each (SCCM).

10100(SCC,10100(SCC導入して試料
室1内の圧力を2.5 (Torr )に保持し、水銀
灯(Hgランプ)6を用いて、紫外光(例えば波長25
4nm)を照射してシリコン基板3上に酸窒化シリコン
膜を85nm形成した。
10100 (SCC, 10100 (SCC) is introduced to maintain the pressure inside the sample chamber 1 at 2.5 (Torr), and using a mercury lamp (Hg lamp) 6, ultraviolet light (for example, wavelength 25
4 nm) to form a silicon oxynitride film with a thickness of 85 nm on the silicon substrate 3.

次にガス導入ロアを閉じ、メカニカルブースターポンプ
9を使用して10  (Torr)以下まで排気した後
、試料室1内にN2ガスを導入して大気圧にもどし、試
料室1を開いて試料3を取シ出した。
Next, the gas introduction lower is closed and the mechanical booster pump 9 is used to exhaust the air to below 10 (Torr), then N2 gas is introduced into the sample chamber 1 to return it to atmospheric pressure, the sample chamber 1 is opened, and the sample 3 I took it out.

上記の工程によりリコン基板3上に形成した酸窒化シリ
コン(S i OX Ny )の膜はX:1.1゜Y二
0.6の膜組成のものが得られ、熱膨張係数がシリコン
膜に近い値を有する膜組成の酸窒化シリコン膜が形成さ
れた。
Through the above process, the silicon oxynitride (S i OX Ny ) film formed on the silicon substrate 3 has a film composition of X:1.1°Y20.6, and the thermal expansion coefficient is similar to that of the silicon film. A silicon oxynitride film with a film composition having similar values was formed.

なお、第2図は光化学気相反応により形成した酸窒化シ
リコン膜の屈折率及び成膜速度のNHJ/(NH3+N
20 )ガス流景比依存性を示したものである。
Furthermore, Figure 2 shows the refractive index and film formation rate of NHJ/(NH3+N
20) This shows the dependence on gas flow ratio.

なお、本発明は上記実施例に限定されるものではなく、
その要旨を逸脱しない範囲で種々の変形で実施すること
が出来、例えば紫外光源は低圧水銀灯に限定されるもの
ではなく、例えばエキシマレーザ−等でも良く、反応ガ
スはSiH4ガスに限定されるものではなく、例えばS
1□H6ガヌを用いても良いことは言うまでもない。
Note that the present invention is not limited to the above embodiments,
Various modifications can be made without departing from the spirit of the invention; for example, the ultraviolet light source is not limited to a low-pressure mercury lamp, but may also be an excimer laser, and the reaction gas is not limited to SiH4 gas. For example, S
It goes without saying that 1□H6 Ganu may be used.

〈発明の効果〉 以上のように、本発明によればイオン損傷などのない良
質な酸窒化シリコン膜を低温で形成することができ、積
層構造SOIの層間絶縁膜などへの応用ができ、題めて
有効なものである。
<Effects of the Invention> As described above, according to the present invention, a high-quality silicon oxynitride film without ion damage can be formed at a low temperature, and it can be applied to an interlayer insulating film of a stacked structure SOI. It is very effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の酸窒化シリコン膜の形成方法を実施す
るために用いた薄膜形成装置の一構成例を示す模式図、
第2図は酸窒化シリコン膜の屈折率のN H3/ (N
 H3+ N 20 )ガス流量比依存性を示す図であ
る。 1・・・試料室、 2・・・ウェハーサセプタ、 3・
・・シリコンウェハ、 4・・・低圧水銀灯、 7・・
・ガヌ導入口。 出願人 工業技術院長  等々力  達第1図
FIG. 1 is a schematic diagram showing an example of the configuration of a thin film forming apparatus used to carry out the method of forming a silicon oxynitride film of the present invention;
Figure 2 shows the refractive index of the silicon oxynitride film, N H3/(N
FIG. 3 is a diagram showing dependence on gas flow rate ratio (H3+N 20 ). 1... Sample chamber, 2... Wafer susceptor, 3.
・・・Silicon wafer, 4...Low pressure mercury lamp, 7...
・Ganu inlet. Applicant Todoroki Director General of the Agency of Industrial Science and Technology Figure 1

Claims (1)

【特許請求の範囲】 1、反応ガス中において、波長300nm以下の紫外光
を照射し、 光化学反応により基板上に、その熱膨張係数がシリコン
膜の熱膨張係数に近い値となるような膜組成を有する酸
窒化シリコン膜を形成することを特徴とする酸窒化シリ
コン膜の形成方法。 2、前記紫外光が低圧水銀灯による紫外光であり、前記
反応ガスがシラン(SiH_4)、亜酸化窒素(N_2
O)、アンモニア(NH_3)からなる混合ガスであり
、NH_3/(N_2O+NH_3)のガス流量比が0
.5以下であることを特徴とする特許請求の範囲第1項
記載の酸窒化シリコン膜の形成方法。
[Claims] 1. A film composition that is irradiated with ultraviolet light with a wavelength of 300 nm or less in a reactive gas and whose thermal expansion coefficient becomes close to that of a silicon film is formed on a substrate through a photochemical reaction. 1. A method for forming a silicon oxynitride film, the method comprising forming a silicon oxynitride film having the following properties. 2. The ultraviolet light is ultraviolet light from a low-pressure mercury lamp, and the reaction gas is silane (SiH_4), nitrous oxide (N_2
O), ammonia (NH_3), and the gas flow ratio of NH_3/(N_2O+NH_3) is 0.
.. 5 or less, the method for forming a silicon oxynitride film according to claim 1.
JP145986A 1986-01-09 1986-01-09 Forming method for silicon oxynitride films Pending JPS62160732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP145986A JPS62160732A (en) 1986-01-09 1986-01-09 Forming method for silicon oxynitride films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP145986A JPS62160732A (en) 1986-01-09 1986-01-09 Forming method for silicon oxynitride films

Publications (1)

Publication Number Publication Date
JPS62160732A true JPS62160732A (en) 1987-07-16

Family

ID=11502036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP145986A Pending JPS62160732A (en) 1986-01-09 1986-01-09 Forming method for silicon oxynitride films

Country Status (1)

Country Link
JP (1) JPS62160732A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461026A (en) * 1987-09-01 1989-03-08 Nec Corp Manufacture of semiconductor device
JPH04159716A (en) * 1990-10-23 1992-06-02 Nec Corp Manufacture of semiconductor device
KR100532358B1 (en) * 1998-09-21 2006-02-08 삼성전자주식회사 Gas supply device and gas supply method of semiconductor manufacturing equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206129A (en) * 1982-05-27 1983-12-01 Seiko Epson Corp Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206129A (en) * 1982-05-27 1983-12-01 Seiko Epson Corp Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461026A (en) * 1987-09-01 1989-03-08 Nec Corp Manufacture of semiconductor device
JPH04159716A (en) * 1990-10-23 1992-06-02 Nec Corp Manufacture of semiconductor device
KR100532358B1 (en) * 1998-09-21 2006-02-08 삼성전자주식회사 Gas supply device and gas supply method of semiconductor manufacturing equipment

Similar Documents

Publication Publication Date Title
US4495218A (en) Process for forming thin film
JPS61127121A (en) Formation of thin film
US7981810B1 (en) Methods of depositing highly selective transparent ashable hardmask films
US5045346A (en) Method of depositing fluorinated silicon nitride
JPS62160732A (en) Forming method for silicon oxynitride films
JPS60117712A (en) Forming method of thin film
JP2874241B2 (en) Dry cleaning method for semiconductor device
JPH06151421A (en) Formation of silicon nitride thin film
JPS6234139B2 (en)
JPS60211847A (en) Forming method of insulating film
JPH0341731A (en) Formation of silicon oxide film
JPH01129972A (en) Formation of silicon oxynitride film
JP3153644B2 (en) Thin film formation method
JPH042125A (en) Surface treatment of silicon
JPS61143585A (en) Thin film forming method
JPS62226631A (en) Forming method for insulating film
JP2681481B2 (en) Method of forming silicon oxide film
JPH08262251A (en) Film forming device for optical waveguide
JPS61196528A (en) Thin film forming apparatus
JPS61127120A (en) Formation of thin film
JPS62159417A (en) Vapor growth of thin film by light irradiation
JPH0463278A (en) Formation of functional silicon nitride film having general purpose characteristic
JPH07235530A (en) Formation of insulating film
JPS61127122A (en) Formation of thin film
JPS6390138A (en) Method for cleaning semiconductor surface