JPH06151421A - Formation of silicon nitride thin film - Google Patents

Formation of silicon nitride thin film

Info

Publication number
JPH06151421A
JPH06151421A JP29422992A JP29422992A JPH06151421A JP H06151421 A JPH06151421 A JP H06151421A JP 29422992 A JP29422992 A JP 29422992A JP 29422992 A JP29422992 A JP 29422992A JP H06151421 A JPH06151421 A JP H06151421A
Authority
JP
Japan
Prior art keywords
thin film
silicon nitride
nitrogen
plasma
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29422992A
Other languages
Japanese (ja)
Inventor
Iwao Sugimoto
岩雄 杉本
Satoko Nakano
聡子 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP29422992A priority Critical patent/JPH06151421A/en
Publication of JPH06151421A publication Critical patent/JPH06151421A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a silicon nitride the film, which has a low internal stress and is superior in chemical resistance, by a method wherein helium or neon are mixed in nitrogen gas plasma to activate the plasma. CONSTITUTION:A silicon wafer and a borosilicate glass are installed on a substrate holder 2 of a high-frequency magnetron sputtering device as a substrate 3. Moreover, a single crystal silicon film is installed on a high-frequency electrode 6 as a sputtering target 4. After the interior of a vacuum container 1 is evacuated to increase the degree of vacuum, helium and nitrogen bombs 15 and 16 are opened to introduce gas of a prescribed mixing ratio. A high-frequency voltage is applied to the electrode 6 to generate plasma and after an elapse of a prescribed time, a shutter 5 is shut to finish a film-forming process. There is no need to perform a post-treatment on a formed silicon nitride thin film, an internal stress of the thin film can be held very low and it becomes possible to form a silicon nitride thin film, which is superior in chemical resistance and is high in quality.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は反応性スパッタ法によ
り、内部応力が小さく優れた耐薬品性を有する高品質の
窒化ケイ素薄膜を形成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a high quality silicon nitride thin film having a small internal stress and excellent chemical resistance by a reactive sputtering method.

【0002】[0002]

【従来の技術】窒化ケイ素薄膜は、半導体(特に、ガリ
ウム−ヒ素系半導体)プロセスにおける絶縁材料あるい
は光学材料として優れた物性を有する観点から、主にプ
ラズマプロセスに基づいた薄膜作製方法が検討されてき
た。その中でも、高温プロセスである化学的気相堆積法
(CVD法)による形成方法が、薄膜の堆積速度や組成
の制御性などの有利性から数多く取り上げられている。
一方、反応性スパッタ法は、低温プロセスで高純度の薄
膜が形成できるという優れた特徴があることから研究開
発が活発に推進されている。しかし、これらのプラズマ
プロセスで形成した窒化ケイ素薄膜は内部応力による薄
膜の反りや歪、極端な場合には薄膜にクラックが入った
り、破壊されたりする場合が多く見られ、特に構造体と
して窒化ケイ素薄膜の利用を考えた時、これは重大な問
題となる。窒化ケイ素薄膜の内部応力を緩和する方法と
して、堆積させる基板温度を高くしたり、堆積した薄膜
をアニーリングする方法等が知られているが、これらの
高温加熱は微細加工プロセスにおいて、他の新たな問題
を引き起こしやすいので実用上有効な手段とは言えな
い。なお、従来の窒化ケイ素薄膜の形成方法の代表的な
公知例として、例えば「反応性スパッタリングによる窒
化ケイ素膜」〔S.M.Hu and L.V.Gregor:“SiliconNitri
de Films by Reactive Sputtering”,Journal of Elec
trochemical Society,Vol.114,No.8,pp.826〜833(196
7)〕が挙げられる。
2. Description of the Related Art A silicon nitride thin film has been examined mainly for a thin film forming method based on a plasma process from the viewpoint of having excellent physical properties as an insulating material or an optical material in a semiconductor (particularly gallium-arsenic based semiconductor) process. It was Among them, a forming method by a chemical vapor deposition method (CVD method), which is a high temperature process, has been widely taken up because of its advantages such as controllability of deposition rate and composition of a thin film.
On the other hand, the reactive sputtering method has an excellent feature that a high-purity thin film can be formed by a low temperature process, and therefore research and development are actively promoted. However, the silicon nitride thin films formed by these plasma processes are often warped or distorted due to internal stress, and in extreme cases, the thin films are often cracked or destroyed, especially as a structure. This becomes a serious problem when considering the use of thin films. As a method of relaxing the internal stress of the silicon nitride thin film, there are known methods such as increasing the temperature of the substrate to be deposited and annealing the deposited thin film. It is not a practically effective means because it easily causes problems. As a typical known example of a conventional method for forming a silicon nitride thin film, for example, “silicon nitride film by reactive sputtering” [SMHu and LVGregor: “SiliconNitri
de Films by Reactive Sputtering ”, Journal of Elec
trochemical Society, Vol.114, No.8, pp.826〜833 (196
7)].

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、上述
した従来技術における問題点を解消するものであって、
窒素ガスプラズマ中でシリコンをスパッタリングし、い
わゆる反応性スパッタ法により窒化ケイ素薄膜を堆積す
る方法において、内部応力が低く、耐薬品性に優れた高
品質の窒化ケイ素薄膜の形成方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems in the prior art,
To provide a method for forming a high-quality silicon nitride thin film having low internal stress and excellent chemical resistance in a method of sputtering silicon in a nitrogen gas plasma and depositing a silicon nitride thin film by a so-called reactive sputtering method. is there.

【0004】[0004]

【課題を解決するための手段】反応性スパッタ法により
形成された窒化ケイ素薄膜は、体積膨張による圧縮応力
を示すものが大部分である。これは、薄膜中に未反応の
窒素が取り込まれたり、不完全なケイ素−窒素結合の形
成に起因した未秩序な膜分子構造に主だった原因がある
ものと考えられる。そこで、窒素プラズマを活性化して
反応性を増大させることが本発明の着目点であり、これ
を達成するためにプラズマ励起状態における内部エネル
ギーの大きいヘリウムやネオンを窒素ガスに混合するこ
とにより、窒素プラズマを活性化し反応性を増大させる
ものである。一般にプラズマ中には、準安定励起状態や
リュドベルグ状態などの高エネルギー状態に励起された
高活性な中性種が多量に存在する。これらの励起種は大
きな内部エネルギーを有し、基底状態への緩和は禁制遷
移過程であることにより寿命も長い。そこで、これらの
高エネルギー粒子との衝突を通してエネルギー移動によ
る励起が可能となる。ここで、エネルギー受容体の窒素
分子のイオン化エネルギーは15.58eV、解離エネ
ルギーは9.81eVであり、エネルギー供与体のヘリ
ウムの準安定励起状態における内部エネルギーは約20
eV、ネオンのそれは約17eVである。そこで、これ
ら準安定励起状態のヘリウムやネオンの内部エネルギー
状態が高く、エネルギー移動過程を通して窒素分子のイ
オン化や分解励起することができる。反応性スパッタリ
ングにおいて、窒素分子イオンは特に重要なプラズマ励
起種であって、シリコンターゲットへの化学吸着やスパ
ッタリング、さらにはシリコン固体表面との相互作用を
通じた高反応性窒素原子の生成など、窒化ケイ素骨格を
形成する上での基本過程を担うものである。従来用いら
れているアルゴンやそれより重い希ガスでは、その準安
定励起状態での内部エネルギーが窒素分子のイオン化エ
ネルギーよりも小さく、窒素分子のイオン化を引き起こ
す効果は期待できない。さらに、ヘリウムやネオン原子
は窒素分子よりも質量が小さく、窒素ガスにこれらを混
入することにより熱伝導度が増大する。これより、膜分
子形成表面での熱平衡状態が安定化し、熱揺ぎの緩和も
急速に起こることが期待される。この効果は薄膜の内部
応力の緩和に対して有効である。また、アルゴンやそれ
より重い希ガスでは、逆に熱伝導度が低下し上記の効果
は期待できない。これらプラズマ中での高反応性窒素種
の生成促進と熱伝導度の増大は、強固な窒化ケイ素分子
骨格を形成する上での基本要因であり、これにより薄膜
の低応力化および薬品耐性の向上をはかることができ
る。
Most of the silicon nitride thin films formed by the reactive sputtering method exhibit a compressive stress due to volume expansion. It is considered that this is mainly due to unreacted nitrogen being taken into the thin film or an unordered film molecular structure resulting from incomplete formation of a silicon-nitrogen bond. Therefore, it is the focus of the present invention to activate the nitrogen plasma to increase the reactivity, and in order to achieve this, by mixing helium or neon, which has a large internal energy in the plasma excited state, with the nitrogen gas, It activates plasma and increases reactivity. In general, a large amount of highly active neutral species excited in a high energy state such as a metastable excited state or a Ludberg state exists in plasma. These excited species have large internal energies, and their relaxation to the ground state is a forbidden transition process, so that they have a long lifetime. Therefore, excitation by energy transfer is possible through collision with these high-energy particles. Here, the ionization energy of the nitrogen molecule of the energy acceptor is 15.58 eV, the dissociation energy is 9.81 eV, and the internal energy in the metastable excited state of the energy donor helium is about 20.
eV, that of neon is about 17 eV. Therefore, the internal energy states of helium and neon in these metastable excited states are high, and ionization and decomposition excitation of nitrogen molecules can be performed through the energy transfer process. Nitrogen molecular ions are a particularly important plasma-excited species in reactive sputtering, and are used for chemical adsorption and sputtering on a silicon target, as well as generation of highly reactive nitrogen atoms through interaction with a silicon solid surface, such as silicon nitride. It is responsible for the basic process of forming the skeleton. In the conventionally used argon or a noble gas that is heavier than that, the internal energy in the metastable excited state is smaller than the ionization energy of the nitrogen molecule, and the effect of causing the ionization of the nitrogen molecule cannot be expected. Furthermore, helium and neon atoms have a smaller mass than nitrogen molecules, and mixing these into nitrogen gas increases the thermal conductivity. From this, it is expected that the thermal equilibrium state on the surface where the film molecules are formed is stabilized and the thermal fluctuation is rapidly relaxed. This effect is effective for relaxing the internal stress of the thin film. On the other hand, in the case of argon or a noble gas that is heavier than that, the thermal conductivity is decreased, and the above effect cannot be expected. The promotion of generation of highly reactive nitrogen species and the increase of thermal conductivity in these plasmas are the basic factors in forming a strong silicon nitride molecular skeleton, which reduces the stress of the thin film and improves the chemical resistance. Can be measured.

【0005】[0005]

【実施例】以下に本発明の実施例を挙げ、図面を用いて
さらに詳細に説明する。図1に、本実施例で用いた平行
平板2極タイプの高周波マグネトロンスパッタ装置の構
成の一例を示す。図に示すごとく、高周波マグネトロン
スパッタ装置は、真空容器1、基板ホルダ2、基板3、
スパッタターゲット4、シャッタ5、高周波電極6、マ
ッチングボックス7、高周波電源8、油拡散ポンプ9、
油回転ポンプ10、排気系メインバルブ11、粗引きバ
ルブ12、油拡散ポンプ用吸引バルブ13、マスフロー
コントローラ14、ヘリウムボンベ15、窒素ボンベ1
6およびヒータ17等によって構成されている。上記の
スパッタ装置を使用しプラズマ励起窒化ケイ素薄膜の形
成方法について述べる。基板ホルダ2に、基板3とし
て、シリコンウェハ(1×3×0.01cm)およびホウケイ酸
ガラス(コーニング#0211,1×3×0.05cm)を設置
する。さらに、スパッタターゲット4として、単結晶シ
リコンを高周波電極6上に設置する。油回転ポンプ10
を作動させ、油拡散ポンプ用吸引バルブ13を開いた
後、油拡散ポンプ9のヒータ17を作動させ、ポンプの
立ち上げを行う。油拡散ポンプ用吸引バルブ13を閉じ
た後、粗引きバルブ12を開いて真空排気を開始する。
10Pa程度まで真空度が上がると、粗引きバルブ12
を閉じて、油拡散ポンプ用吸引バルブ13および排気系
メインバルブ11を開き、油拡散ポンプ9による高真空
排気を行う。ヒータ17を用いて、真空容器1のベーキ
ングも併せて行う。5×10~6Pa付近まで真空度が上
昇すると、ヘリウムボンベ15および窒素ボンベ16を
開き、所定の混合比となるように、各々独立にマスフロ
ーコントローラ14により1〜50cc(cm3)/分
の流量で導入し、真空容器1内のガス圧を調節する。こ
こで、高周波電源8により高周波電極6に高周波電圧を
印加し、プラズマを発生させる。安定したプラズマ状態
が得られるように、マッチングボックス7内のコンデン
サを調節する。所定の時間、放電を行った後、シャッタ
5を閉じて、高周波電圧の印加を止め成膜プロセスを終
える。成膜中の基板ホルダ2は50℃に保持し、印加電
力密度は2.83W/cm2で、堆積した平均膜厚は約
0.7μmであった。プラズマ粒子の励起状態に関する
情報を得るため、成膜プロセス中にプラズマ発光分光を
行った。サファイヤ窓より輻射されるプラズマ発光を、
石英ファイバを通してツェルニ・ターナ型回折格子分光
器に導入し、分光測定を200〜800nmの波長範囲
で行った。膜応力は、膜堆積前後でのシリコンウェハ基
板の曲率の変化量より算出した。薄膜の分子構造は、水
銀・カドミウム・テルル(MCT)検出器を備えたフー
リエ変換赤外分光光度計(JASCO,FT/IR-5M)により分析
した。さらに、薄膜の光学特性はシリコンフォトダイオ
ード検出器を備えた紫外可視分光光度計(SHIMAZU,UV-1
60A)により計測した。ヘリウムと窒素のガス流量比を
パラメータとした時の膜応力を図2に示す。すべてにお
いて、膜の体積膨張による圧縮応力が基板に加わってい
る。窒素のみの時(He/N2=0)の圧縮応力は、1
32kg/mm2である。これに比べて、ヘリウムを少
量加えた0<He/N2<1の範囲においては応力が約
90kg/mm2付近に下がる。さらに、ガス流量比H
e/N2=11.5(この時、ヘリウムおよび窒素の分
圧は共に1Pa)を中心として、応力は約40kg/m
2付近にまで大きく低下する領域がある。この領域で
は、膜堆積速度が窒素のみの場合に比べて約半分とな
り、緻密な分子骨格が形成されているものと考えられ
る。さらに、ガス流量比He/N2=11.5で、ガス
圧を3Paに上げて形成した薄膜の圧縮応力は8kg/
mm2まで低下できることが確認できた。また、ネオン
を用いて同一条件(ガス圧:2Pa,ガス流量比:Ne
/N2=11.5)のもとで形成した薄膜の圧縮応力は
約13kg/mm2であり、これらの希ガスの膜応力低
下に対する効果が確認できた。次に、上記の低応力を示
す窒化ケイ素薄膜の耐薬品性を、強酸および強アルカリ
水溶液中でのエッチング速度より調べた。20℃のフッ
化水素酸緩衝溶液(フッ化アンモニウム:フッ化水素酸
=6.7:1)中に20分間浸した時のエッチング速度
は約2nm/分であった。また、70℃の8規定水酸化
カリウム溶液中に30分間浸した時、精度0.1μmの
触針式段差計(Talystep)では検出できないくらいの耐
薬品性を示した。上述のごとく、反応性スパッタ法によ
る窒化ケイ素薄膜の形成過程において、ヘリウムまたは
ネオンもしくはその混合ガスを導入することにより、基
板温度50℃といった低温で、後処理を施す必要もなく
薄膜の内部応力を極めて低く保持することができ、かつ
耐薬品性に優れた窒化ケイ素薄膜の形成が可能となっ
た。
Embodiments of the present invention will be described below in more detail with reference to the drawings. FIG. 1 shows an example of the configuration of a parallel plate 2-pole type high frequency magnetron sputtering apparatus used in this example. As shown in the figure, the high frequency magnetron sputtering apparatus includes a vacuum container 1, a substrate holder 2, a substrate 3,
Sputter target 4, shutter 5, high frequency electrode 6, matching box 7, high frequency power supply 8, oil diffusion pump 9,
Oil rotary pump 10, exhaust system main valve 11, roughing valve 12, oil diffusion pump suction valve 13, mass flow controller 14, helium cylinder 15, nitrogen cylinder 1
6 and the heater 17 and the like. A method for forming a plasma-excited silicon nitride thin film using the above sputtering apparatus will be described. A silicon wafer (1 × 3 × 0.01 cm) and borosilicate glass (Corning # 0211, 1 × 3 × 0.05 cm) are placed on the substrate holder 2 as the substrate 3. Further, as the sputtering target 4, single crystal silicon is placed on the high frequency electrode 6. Oil rotary pump 10
After opening the oil diffusion pump suction valve 13, the heater 17 of the oil diffusion pump 9 is operated to start up the pump. After the suction valve 13 for the oil diffusion pump is closed, the roughing valve 12 is opened to start evacuation.
When the vacuum level rises to about 10 Pa, the roughing valve 12
Is closed, the suction valve 13 for the oil diffusion pump and the exhaust system main valve 11 are opened, and high vacuum exhaust is performed by the oil diffusion pump 9. Baking of the vacuum container 1 is also performed using the heater 17. When the degree of vacuum rises to around 5 × 10 to 6 Pa, the helium cylinder 15 and the nitrogen cylinder 16 are opened, and the mass flow controller 14 independently adjusts the mixing ratio to 1 to 50 cc (cm 3 ) / min so as to obtain a predetermined mixing ratio. It is introduced at a flow rate, and the gas pressure inside the vacuum container 1 is adjusted. Here, a high frequency voltage is applied to the high frequency electrode 6 by the high frequency power supply 8 to generate plasma. The condenser in the matching box 7 is adjusted so that a stable plasma state can be obtained. After discharging for a predetermined time, the shutter 5 is closed, application of the high frequency voltage is stopped, and the film forming process is completed. The substrate holder 2 during film formation was kept at 50 ° C., the applied power density was 2.83 W / cm 2 , and the average film thickness deposited was about 0.7 μm. Plasma emission spectroscopy was performed during the deposition process to obtain information on the excited states of the plasma particles. Plasma emission radiated from the sapphire window,
It was introduced into a Zerni-Turna type diffraction grating spectroscope through a quartz fiber, and spectroscopic measurement was performed in the wavelength range of 200 to 800 nm. The film stress was calculated from the amount of change in the curvature of the silicon wafer substrate before and after the film deposition. The molecular structure of the thin film was analyzed by a Fourier transform infrared spectrophotometer (JASCO, FT / IR-5M) equipped with a mercury-cadmium-tellurium (MCT) detector. In addition, the optical properties of the thin film are determined by an ultraviolet-visible spectrophotometer (SHIMAZU, UV-1) equipped with a silicon photodiode detector.
60A). FIG. 2 shows the film stress when the gas flow rate ratio of helium and nitrogen is used as a parameter. In all, compressive stress is applied to the substrate due to the volume expansion of the film. The compressive stress when nitrogen alone (He / N 2 = 0) is 1
It is 32 kg / mm 2 . In comparison, the stress is reduced in the vicinity of about 90 kg / mm 2 in a small amount added was 0 <He / N2 <1 range helium. Furthermore, the gas flow rate ratio H
e / N 2 = 11.5 (at this time, the partial pressures of helium and nitrogen are both 1 Pa), and the stress is about 40 kg / m.
There is a region that drops significantly to around m 2 . In this region, the film deposition rate is about half that in the case of only nitrogen, and it is considered that a dense molecular skeleton is formed. Further, when the gas flow rate ratio He / N 2 = 11.5, the compressive stress of the thin film formed by increasing the gas pressure to 3 Pa is 8 kg /
It was confirmed that it could be reduced to mm 2 . In addition, neon is used under the same conditions (gas pressure: 2 Pa, gas flow rate ratio: Ne.
/ N 2 = 11.5), the compressive stress of the thin film formed was about 13 kg / mm 2 , and the effect of these rare gases on the film stress reduction could be confirmed. Next, the chemical resistance of the above-mentioned low-stress silicon nitride thin film was investigated by the etching rate in a strong acid and strong alkaline aqueous solution. The etching rate when immersed in a hydrofluoric acid buffer solution (ammonium fluoride: hydrofluoric acid = 6.7: 1) at 20 ° C. for 20 minutes was about 2 nm / minute. Further, when immersed in an 8N potassium hydroxide solution at 70 ° C. for 30 minutes, it showed chemical resistance that could not be detected by a stylus type step gauge (Talystep) having an accuracy of 0.1 μm. As described above, by introducing helium or neon or a mixed gas thereof in the process of forming a silicon nitride thin film by the reactive sputtering method, it is possible to reduce the internal stress of the thin film at a low substrate temperature of 50 ° C. without the need for post-treatment. It has become possible to form a silicon nitride thin film which can be kept extremely low and has excellent chemical resistance.

【0006】図3に、ガス流量比He/N2=11.5
の条件下で形成した最低応力を示した窒化ケイ素薄膜の
透過法により測定した赤外分光スペクトルを示す。 8
80cm~1を中心としてSi−N結合の伸縮振動に起因
した強い吸収が見られ、窒化ケイ素骨格により膜分子が
構成されていることが確認できる。さらに、極めて弱い
ながらも3320cm~1にN−H結合の伸縮振動に起因
した吸収が認められ、また2180cm~1にSi−H結
合の伸縮振動に起因した吸収が認められ、非晶質構造を
示唆している。さらに、透過法で測定した紫外可視スペ
クトルに現れる干渉パターンより、200〜1100n
mの波長領域における上記窒化ケイ素薄膜の屈折率は
2.198と算出された。この結果も、非晶質窒化ケイ
素の膜構造を支持するものであった。
FIG. 3 shows the gas flow rate ratio He / N 2 = 11.5.
3 shows an infrared spectroscopy spectrum measured by a transmission method of a silicon nitride thin film showing the lowest stress formed under the condition of. 8
Strong absorption due to stretching vibration of the Si—N bond is observed around 80 cm −1 , and it can be confirmed that the film molecule is composed of the silicon nitride skeleton. Furthermore, observed absorption caused while very weak 3320 cm ~ 1 on the stretching vibration of N-H bonds and 2180 cm ~ 1 absorption due to stretching vibration of Si-H bonds found in the amorphous structure Suggests. Furthermore, from the interference pattern appearing in the UV-visible spectrum measured by the transmission method, 200 to 1100n
The refractive index of the silicon nitride thin film in the wavelength region of m was calculated to be 2.198. This result also supports the film structure of amorphous silicon nitride.

【0007】プラズマ発光分光は、プラズマ粒子の励起
状態に関する情報をプラズマ状態をじょう乱させること
なく提供してくれる。 ヘリウムを用いた場合、発光強
度の大きなものとして窒素分子の B3Πg−A3Σu+
遷移や窒素分子イオンのB2Σu+ −X2Σg+ 遷移によ
る励起分子種に特徴的なプログレッションバンドがヘリ
ウムの輝線と共に観測された。さらに、励起原子種の輝
線が窒素原子で746.9nmに、シリコン原子では2
88.1nmに認められた。ここで確認された窒素分子
イオンや窒素原子は、窒素分子のイオン化や解離励起過
程により生成されるもので、窒素プラズマの活性度に大
きく依存する。また、シリコンは質量の大きな窒素分子
種、特に窒素分子イオンのスパッタリングが重要な生成
過程となる。さらに、窒素分子イオンは化学吸着を通し
て生成した活性窒素原子によるシリコンとの反応性が極
めて高く、窒化ケイ素骨格形成を担う中心的粒子とな
る。そこで、窒素分子の発光強度で規格化した窒素分子
イオン、窒素原子、シリコンの発光強度は、プラズマの
活性度や反応性を知るうえでの重要な指標となる。さら
に、得られた薄膜の分子構造や物性を考察する際の有力
な情報となる。その結果を、図4に示す。すべての発光
相対強度は、He/N2のガス流量比と共に増大する傾
向にあり、ヘリウムの存在が窒素プラズマの活性化を促
進していることが理解できる。窒素分子イオンの発光相
対強度は、ガス流量比とほぼ比例関係でもって増大する
が、He/N2=11.5でその直線の傾きが変わる。
この点から、ガス流量比が大きな領域ではヘリウムの導
入量に対する窒素分子イオンの生成量が低下する。ま
た、窒素原子の発光相対強度は上記のガス流量比まで
は、それ以下の場合と顕著な違いを示さない。上記のH
e/N2=11.5の点からHe/N2=20まで増大
し、そこから再び一定となる。これらの活性窒素種が生
成される割合を、ヘリウム導入量(ガス流量比)に基づ
いて考察すると、He/N2<11.5の領域では、ヘ
リウムによる窒素分子の励起過程の中で窒素分子イオン
の生成が優先して行われていることが理解できる。He
/N2=11.5では、この窒素分子イオンのプラズマ
中での相対的存在量が最大となり、窒化ケイ素骨格を形
成するための最適条件となっている。このプラズマ状態
のもとに形成された窒化ケイ素薄膜は強固な分子構造を
有し、圧縮応力が低く耐薬品性の優れた膜物性を示した
ものと考えられる。
Plasma emission spectroscopy provides information about the excited state of plasma particles without disturbing the plasma state. When helium is used, B 3 Π g- A 3 Σ u +
A progression band characteristic of the excited molecular species due to the transition and the B 2 Σ u + −X 2 Σ g + transition of the nitrogen molecular ion was observed together with the helium emission line. In addition, the emission line of excited atomic species is 746.9 nm for nitrogen atoms and 2 for silicon atoms.
It was observed at 88.1 nm. The nitrogen molecule ions and nitrogen atoms confirmed here are generated by the ionization and dissociation excitation process of the nitrogen molecules, and depend largely on the activity of nitrogen plasma. Further, in the case of silicon, a sputtering process of nitrogen molecular species having a large mass, particularly nitrogen molecular ions is an important generation process. Furthermore, nitrogen molecule ions have extremely high reactivity with silicon due to active nitrogen atoms generated through chemisorption, and become central particles responsible for the formation of a silicon nitride skeleton. Therefore, the emission intensity of nitrogen molecule ions, nitrogen atoms, and silicon standardized by the emission intensity of nitrogen molecules is an important index for knowing the plasma activity and reactivity. Furthermore, it will be useful information when considering the molecular structure and physical properties of the obtained thin film. The result is shown in FIG. It can be seen that all emission relative intensities tend to increase with the He / N 2 gas flow ratio and the presence of helium promotes activation of the nitrogen plasma. The emission relative intensity of nitrogen molecular ions increases in a substantially proportional relationship with the gas flow rate ratio, but the slope of the straight line changes when He / N 2 = 11.5.
From this point, in the region where the gas flow rate ratio is large, the production amount of nitrogen molecular ions decreases with respect to the introduction amount of helium. Further, the emission relative intensity of nitrogen atoms does not show a significant difference up to the above gas flow rate ratio as compared with the case below that. H above
From the point of e / N 2 = 11.5, it increases to He / N 2 = 20, and then becomes constant again. Considering the ratio of these active nitrogen species generated based on the amount of introduced helium (gas flow rate ratio), in the region of He / N 2 <11.5, nitrogen molecules are excited during the process of excitation of nitrogen molecules by helium. It can be understood that the ions are preferentially generated. He
When / N 2 = 11.5, the relative abundance of the nitrogen molecule ions in the plasma becomes maximum, which is the optimum condition for forming the silicon nitride skeleton. It is considered that the silicon nitride thin film formed under this plasma condition has a strong molecular structure, has a low compressive stress, and exhibits excellent chemical resistance.

【0008】[0008]

【発明の効果】本発明の窒化ケイ素薄膜の形成方法によ
れば、低温で後処理を施す必要がなく、内部応力が低く
耐薬品性に優れた高品質の窒化ケイ素薄膜を得ることが
できる。また、本発明の窒化ケイ素薄膜の形成方法は、
LSIプロセス過程に組み込むことが可能であり、構造
材料、光学材料、絶縁材料などの幅広い分野での利用が
期待できる。特に、近年研究が加速しているマイクロマ
シーニング分野において基盤をなす構造材料として好適
に用いられる。また、X線リソグラフィー用のマスク材
料として適用する場合においても本発明の内部応力の低
い窒化ケイ素薄膜は極めて有効である。
According to the method for forming a silicon nitride thin film of the present invention, a high quality silicon nitride thin film having low internal stress and excellent chemical resistance can be obtained without the need for post-treatment at low temperature. Further, the method for forming a silicon nitride thin film of the present invention,
It can be incorporated into the LSI process, and can be expected to be used in a wide range of fields such as structural materials, optical materials, and insulating materials. In particular, it is suitably used as a structural material that forms the basis in the field of micromachining, where research has accelerated in recent years. Further, when applied as a mask material for X-ray lithography, the silicon nitride thin film having low internal stress of the present invention is extremely effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で例示したプラズマ励起窒化ケ
イ素薄膜形成装置の構造を示す模式図。
FIG. 1 is a schematic diagram showing a structure of a plasma-excited silicon nitride thin film forming apparatus exemplified in an example of the present invention.

【図2】本発明の実施例で例示した窒化ケイ素薄膜の内
部応力とガス流量比との関係を示す図。
FIG. 2 is a diagram showing the relationship between the internal stress and the gas flow rate ratio of the silicon nitride thin film exemplified in the example of the present invention.

【図3】本発明の実施例で例示したHe/N2=11.
5のガス流量比の条件下で形成した窒化ケイ素薄膜の赤
外分光スペクトルを示す図。
FIG. 3 shows He / N 2 = 11.
5 is a diagram showing an infrared spectroscopy spectrum of a silicon nitride thin film formed under the condition of the gas flow rate ratio of 5. FIG.

【図4】本発明の実施例で例示した窒素分子で規格化し
た窒素分子イオン、窒素原子およびシリコン原子の発光
相対強度とガス流量比との関係を示す図。
FIG. 4 is a diagram showing the relationship between the emission relative intensities of nitrogen molecule ions, nitrogen atoms and silicon atoms normalized by the nitrogen molecules exemplified in the examples of the present invention, and the gas flow rate ratio.

【符号の説明】[Explanation of symbols]

1…真空容器 2…基板ホルダ 3…基板 4…スパッタターゲット 5…シャッタ 6…高周波電極 7…マッチングボックス 8…高周波電源 9…油拡散ポンプ 10…油回転ポンプ 11…排気系メインバルブ 12…粗引きバルブ 13…油拡散ポンプ用吸引バルブ 14…マスフローコントローラ 15…ヘリウムボンベ 16…窒素ボンベ 17…ヒータ DESCRIPTION OF SYMBOLS 1 ... Vacuum container 2 ... Substrate holder 3 ... Substrate 4 ... Sputter target 5 ... Shutter 6 ... High frequency electrode 7 ... Matching box 8 ... High frequency power source 9 ... Oil diffusion pump 10 ... Oil rotary pump 11 ... Exhaust system main valve 12 ... Roughing Valve 13 ... Suction valve for oil diffusion pump 14 ... Mass flow controller 15 ... Helium cylinder 16 ... Nitrogen cylinder 17 ... Heater

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】窒素ガスプラズマ中でシリコンをスパッタ
リングし、反応性スパッタ法により窒化ケイ素薄膜を形
成する方法において、上記窒素ガスプラズマ中にヘリウ
ムまたはネオンもしくはその混合ガスを導入してプラズ
マ励起状態を高め反応性を増大させて窒化ケイ素薄膜を
堆積することを特徴とする窒化ケイ素薄膜の形成方法。
1. A method for forming a silicon nitride thin film by a reactive sputtering method by sputtering silicon in a nitrogen gas plasma, wherein helium, neon, or a mixed gas thereof is introduced into the nitrogen gas plasma to bring about a plasma excited state. A method for forming a silicon nitride thin film, which comprises depositing a silicon nitride thin film with an increased reactivity.
JP29422992A 1992-11-02 1992-11-02 Formation of silicon nitride thin film Pending JPH06151421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29422992A JPH06151421A (en) 1992-11-02 1992-11-02 Formation of silicon nitride thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29422992A JPH06151421A (en) 1992-11-02 1992-11-02 Formation of silicon nitride thin film

Publications (1)

Publication Number Publication Date
JPH06151421A true JPH06151421A (en) 1994-05-31

Family

ID=17805016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29422992A Pending JPH06151421A (en) 1992-11-02 1992-11-02 Formation of silicon nitride thin film

Country Status (1)

Country Link
JP (1) JPH06151421A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787478B2 (en) 2002-04-05 2004-09-07 Canon Kabushiki Kaisha Method of forming deposited film
KR100634713B1 (en) * 1998-07-06 2006-11-17 닛폰 이타가라스 가부시키가이샤 Method for coating insulating film and glass substrate for image display using the same
JP2007094435A (en) * 2006-12-22 2007-04-12 Hoya Corp Method for manufacturing photomask blank
JP2007308799A (en) * 2006-05-15 2007-11-29 Vladimir Yakovlevich Shiripov Method of application of silicon-nitride film under vacuum and its variant
JP2010250344A (en) * 2010-06-21 2010-11-04 Hoya Corp Method for manufacturing photomask blank
JP2013216957A (en) * 2012-04-11 2013-10-24 Canon Inc Method and apparatus for film formation
JP2017106058A (en) * 2015-12-08 2017-06-15 三井造船株式会社 Thin film producing method, film deposition apparatus, and thin film forming material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100634713B1 (en) * 1998-07-06 2006-11-17 닛폰 이타가라스 가부시키가이샤 Method for coating insulating film and glass substrate for image display using the same
US6787478B2 (en) 2002-04-05 2004-09-07 Canon Kabushiki Kaisha Method of forming deposited film
JP2007308799A (en) * 2006-05-15 2007-11-29 Vladimir Yakovlevich Shiripov Method of application of silicon-nitride film under vacuum and its variant
JP2007094435A (en) * 2006-12-22 2007-04-12 Hoya Corp Method for manufacturing photomask blank
JP4707068B2 (en) * 2006-12-22 2011-06-22 Hoya株式会社 Photomask blank manufacturing method
JP2010250344A (en) * 2010-06-21 2010-11-04 Hoya Corp Method for manufacturing photomask blank
JP2013216957A (en) * 2012-04-11 2013-10-24 Canon Inc Method and apparatus for film formation
JP2017106058A (en) * 2015-12-08 2017-06-15 三井造船株式会社 Thin film producing method, film deposition apparatus, and thin film forming material

Similar Documents

Publication Publication Date Title
US5376223A (en) Plasma etch process
US4664747A (en) Surface processing apparatus utilizing local thermal equilibrium plasma and method of using same
US6383346B2 (en) Method for forming thin films
US20020132101A1 (en) Deposited thin film void-column network materials
JPH06507942A (en) Method for depositing SiO↓x films with low intrinsic stress and/or low hydrogen content
US20090071371A1 (en) Silicon Oxynitride Coating Compositions
JPH1098032A (en) Formation of thin film and thin film forming device
JPH06151421A (en) Formation of silicon nitride thin film
Tristant et al. Microwave plasma enhanced CVD of aluminum oxide films: OES diagnostics and influence of the RF bias
JPH08115912A (en) Manufacture of silicon nitride film
Zhang et al. Ultrathin high-quality tantalum pentoxide films grown by photoinduced chemical vapor deposition
JPH06158304A (en) Formation of thin silicon nitride film
JP2002110551A (en) Method and apparatus for forming semiconductor thin film
JP2885547B2 (en) Method for producing silicon dioxide thin film
JPH0543393A (en) Method for preparing carbon material
Sugimoto et al. Tensilely-stressed SiN films reactively sputtered in Kr N2 plasmas for producing free-standing devices
KR20020046232A (en) Deposited Thin Film Void-Column Network Materials
Etemadi et al. Optical and compositional study of silicon oxide thin films deposited in a dual-mode (microwave/radiofrequency) plasma-enhanced chemical vapor deposition reactor
JPH06330305A (en) Film forming method by sputtering
JP3190100B2 (en) Carbon material production equipment
Ishikawa et al. In vacuo electron-spin-resonance study on amorphous fluorinated carbon films for understanding of surface chemical reactions in plasma etching
JPH01104763A (en) Production of thin metal compound film
Kruzelecky et al. In-situ monitoring of DC saddle-field plasma-assisted deposition of amorphous silicon and silicon nitride
JPS60178622A (en) Manufacture of semiconductor device
JPS60211847A (en) Forming method of insulating film