JPS62226631A - Forming method for insulating film - Google Patents

Forming method for insulating film

Info

Publication number
JPS62226631A
JPS62226631A JP6855586A JP6855586A JPS62226631A JP S62226631 A JPS62226631 A JP S62226631A JP 6855586 A JP6855586 A JP 6855586A JP 6855586 A JP6855586 A JP 6855586A JP S62226631 A JPS62226631 A JP S62226631A
Authority
JP
Japan
Prior art keywords
film
insulating film
silicon
torr
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6855586A
Other languages
Japanese (ja)
Other versions
JPH0376022B2 (en
Inventor
Koji Shiozaki
宏司 塩崎
Hiroi Ootake
大竹 弘亥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6855586A priority Critical patent/JPS62226631A/en
Publication of JPS62226631A publication Critical patent/JPS62226631A/en
Publication of JPH0376022B2 publication Critical patent/JPH0376022B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To reduce leak current, and form an insulating film at a low temperature and in a short time period, by laminating a second film whose film forming speed is high on a first film whose electrical characteristics are excellent, at the time of forming on Si system insulating film on a substrate by a photochemical gas phase reaction. CONSTITUTION:An Si substrate 3 is mounted on a stand 2 in a sample chamber 1, which is exhausted at 10<-3> Torr by driving successively a rotary pump 10 and a mechanical booster pump 9. hluring the exhausting process, the temperature of the substrate is kept at 300 deg.C by an infrared ray lamp, and a specified amount of SiH4 and NO2 are introduced at equal to or lower than 10-3 Torr. Keeping 2.5 Torr, an Hg lamp 6 is operated, and a first SiO2 film is formed on the substrate 3. Then an inlet 7 is closed to keep the state equal to or lower than 10-3 Torr, and a specified amount of Si2H6 and O2 are introduced. While keeping 2.5 Torr, the Hg lamp is operated, and a second SiO2 film is continuously formed and laminated. According to this constitution, an insulating film of 200 nm thick can be formed in about 60 min. The first film of SiO2 and the second film of Si3N4 are also effective, both of which can be formed at a low temperature in a short time period.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、光化学気相反応による例えば層間絶縁膜等の
形成方法の改良に関し、特に厚いシリコン系絶縁膜を短
時間に形成する絶縁膜形成方法に関するものである。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to an improvement in a method for forming, for example, an interlayer insulating film by photochemical vapor phase reaction, and in particular to an insulating film formation method for forming a thick silicon-based insulating film in a short time. It is about the method.

〈従来の技術〉 近年、低温で無損傷の膜が形成され\ということで、光
エネルギーを用いた光化学気相反応に版j、1長法によ
る絶縁膜に比して、段差被覆性、電気的特性等において
優れている。
<Conventional technology> In recent years, damage-free films have been formed at low temperatures, and photochemical vapor phase reactions using light energy have been used to improve step coverage and electrical properties compared to insulating films produced by the one-length method. It has excellent physical characteristics, etc.

〈発明が解決しようとする問題点〉 しかしながら、直接励起光化学反応による薄膜゛形成に
おいては、成膜速度が低く、例えば層間絶縁膜として必
要とされる膜厚(例えば200 nm)を形成するのに
非常に長い時間を要するという欠点を備えている。
<Problems to be Solved by the Invention> However, in forming a thin film by direct excitation photochemical reaction, the film formation rate is low, and for example, it is difficult to form a film thickness required for an interlayer insulating film (for example, 200 nm). It has the disadvantage that it takes a very long time.

本発明は、上記の点に鑑みて創案されたものであり、基
板上に低温で短時間に絶縁膜を形成する絶縁膜形成方法
を提供することを目的としている。
The present invention was devised in view of the above points, and an object of the present invention is to provide an insulating film forming method for forming an insulating film on a substrate at low temperature in a short time.

く問題点を解決するための手段〉 上記の目的を達成するため、本発明の絶縁膜形成方法は
、基板上に光化学気相反応によりシリコン系絶縁膜を形
成する工程において、電気的特性に優れた第1のシリコ
ン系絶縁膜を形成する工程と、この第1のシリコン系絶
縁膜上に成膜速度の高い第2のシリコン系絶縁膜を形成
するように構成している。
Means for Solving the Problems In order to achieve the above object, the insulating film forming method of the present invention provides a method for forming a silicon-based insulating film with excellent electrical properties in the process of forming a silicon-based insulating film on a substrate by photochemical vapor phase reaction. The second silicon-based insulating film is formed at a high deposition rate on the first silicon-based insulating film.

また本発明の実施態様として、第1の絶縁膜としてS 
iH4/N 20系ガスによりシリコン酸化膜を形成し
た後に、第2の絶縁膜として5i2Ha10z系ガスに
よりシリコン酸化膜を連続的に光化学気相成長によって
形成するように構成している。
Further, as an embodiment of the present invention, the first insulating film is S
After a silicon oxide film is formed using an iH4/N20-based gas, a silicon oxide film is continuously formed as a second insulating film by photochemical vapor deposition using a 5i2Ha10z-based gas.

く作 用〉 上記αような構成により、絶縁膜形成の所要時間を著し
く短縮化することが出来、また上記した絶縁膜形成の所
要時間を著しく短縮することが出来る0 〈実施例〉 以下、図面を参照して、本発明の一実施例を詳細に説明
する。
Function> With the above configuration α, the time required to form the insulating film can be significantly shortened, and the time required to form the insulating film described above can be significantly shortened. An embodiment of the present invention will be described in detail with reference to FIG.

第1図は本発明の絶縁膜形成方法を実施するために用い
た薄膜形成装置の一例を示す模式図であり、第1図にお
いて、1は反応室(試料室)、2はウェハーサセプタ、
3はシリコンウェハ、4はIRクランプ5は合成石英、
6は水銀灯(Hgランプ)、7I−iガス導入口、8は
ゲートパルプ、9はメカニカルブースタポンプ、IOI
/′i油回転ポンプである。
FIG. 1 is a schematic diagram showing an example of a thin film forming apparatus used to carry out the insulating film forming method of the present invention. In FIG. 1, 1 is a reaction chamber (sample chamber), 2 is a wafer susceptor,
3 is a silicon wafer, 4 is an IR clamp 5 is a synthetic quartz,
6 is a mercury lamp (Hg lamp), 7 is an I-i gas inlet, 8 is a gate pulp, 9 is a mechanical booster pump, IOI
/'i It is an oil rotary pump.

上記のように構成された装置の試料室l内のウェハーサ
セプタ2上に、まずP型(+oO)シリコン(Si)基
板(15−20Ω−crn) l設置し、次にロータリ
ーポンプlOを作動させて試料室l内の圧力を粗引きし
た後、メカニカルブースタポンプ9を用いて試料室l内
を10−3[Torr]  まで真空排気した。この排
気操作中にIRランプ4を用いて基板3の温度1aoo
(’c)まで上昇させて保持した。上記のメカニカルブ
ースタポンプ9によって+o  [Torr]以下まで
真空引きした後、シラン(5iH4)ガス及びN20ガ
スを、ガス導入ロアより例えばそれぞれ15(SCCM
〕及び250[:SCCM]導入し、試料室I内の圧力
を2.5 (Torr)に呆持し、水銀灯(Hgランプ
)6を用いて、シリコン基板3上に第1のシリコン系絶
縁膜としてのシリコン酸化膜を形成した。
First, a P-type (+oO) silicon (Si) substrate (15-20Ω-crn) is placed on the wafer susceptor 2 in the sample chamber of the apparatus configured as described above, and then the rotary pump is operated. After roughly reducing the pressure in the sample chamber 1, the mechanical booster pump 9 was used to evacuate the sample chamber 1 to 10 -3 Torr. During this exhaust operation, the temperature of the substrate 3 is 1aoo using the IR lamp 4.
('c) and held. After evacuation to below +o [Torr] using the mechanical booster pump 9, silane (5iH4) gas and N20 gas are introduced from the gas introduction lower, for example, at 15 (SCCM) or less.
] and 250[:SCCM], the pressure in the sample chamber I was kept at 2.5 (Torr), and a first silicon-based insulating film was deposited on the silicon substrate 3 using a mercury lamp (Hg lamp) 6. A silicon oxide film was formed.

次にガス導入ロアを閉じ、メカニカルブースタポンプ9
を用いて試料室!内を10  (Torr)以下まで真
空排気した後、ジシラン(5izHs )ガス及び02
ガスを、ガス導入ロアより例えばそれぞれ3 [SCC
M]、250[:SCCM]導入し、試料室l内の圧力
f 2.5 (Torr 〕に保持し、水銀灯(Hg 
ランプ)6を用いて、上記のSiH4/N20系シリコ
ン酸化膜を形成した基板3上に!2のシリコン系絶縁膜
としてのシリコン酸化膜を連続的に160nm形成した
Next, close the gas introduction lower and mechanical booster pump 9
Sample chamber using! After evacuating the inside to 10 (Torr) or less, disilane (5izHs) gas and 02
For example, 3 [SCC
M], 250 [:SCCM] was introduced, the pressure in the sample chamber l was maintained at f2.5 (Torr), and a mercury lamp (Hg
lamp) 6 on the substrate 3 on which the SiH4/N20-based silicon oxide film was formed! A silicon oxide film serving as the silicon-based insulating film No. 2 was continuously formed to a thickness of 160 nm.

次にガス導入ロアを閉じ、メカニカルブースターポンプ
9を用いて、試料室I内を10  [:Torr]以下
まで排気した後、試料室1内にN2ガスを導入して大気
圧にもどし、試料室1全開いて試料8を取り出した。
Next, the gas introduction lower is closed, and the inside of the sample chamber I is evacuated to below 10 [:Torr] using the mechanical booster pump 9. After that, N2 gas is introduced into the sample chamber 1 to return it to atmospheric pressure, and the sample chamber I is returned to atmospheric pressure. 1. Fully opened and sample 8 was taken out.

なお、第2図はSiH4/N20系、5i2H6102
系シリコン酸化膜の成長速度の基板温度依存性を示した
ものであり、@3図けSiH4/N20系、5i2H6
102系のシリコン酸化膜を形成した試料について、そ
れぞれMISキャパシタを作製して、電気−電圧特性を
示したものである。
In addition, Fig. 2 shows SiH4/N20 system, 5i2H6102
Figure 3 shows the dependence of the growth rate of silicon oxide films on substrate temperature.
MIS capacitors were fabricated for each sample in which a 102-based silicon oxide film was formed, and the electric-voltage characteristics were shown.

時間を要した。It took time.

また高次シランガスを用いた場合所望の膜厚の絶縁膜を
より短時間に形成することが出来るが、この場合、第3
図からも明らかなように絶縁耐圧等の電気的特性が劣化
したものになり好ましくない。
Furthermore, when using high-order silane gas, an insulating film of a desired thickness can be formed in a shorter time;
As is clear from the figure, electrical characteristics such as dielectric strength voltage deteriorate, which is not preferable.

これに対して、上記した実施例にあってはgIJ+の絶
縁膜として電気的特性に優れたSiH4/N20系によ
るシリコン酸化膜を用い、その@lの絶縁膜の上に成膜
速度の速い5izH6102系によるシリコン酸化膜を
用いるようにし、結果として所望の膜厚の絶縁膜を短時
間に、しかも電気的特性を劣化させることなく形成され
ることになる。
On the other hand, in the above embodiment, a silicon oxide film based on SiH4/N20 with excellent electrical properties is used as the gIJ+ insulating film, and 5izH6102, which has a fast deposition rate, is used on the @l insulating film. As a result, an insulating film of a desired thickness can be formed in a short time without deteriorating electrical characteristics.

なお、本発明は上記実施例に限定されるものではなく、
その要旨を逸脱しない範囲で種々の変形で実施すること
が可能であり、例えば膜構成としては、SiH4/N2
0系、5i2H6102系のシリコン酸化膜の2層構造
に限定されるものではなく、例えば3層構造を用いても
良いことは言うまでもない。
Note that the present invention is not limited to the above embodiments,
It is possible to carry out various modifications without departing from the gist; for example, the film structure may be SiH4/N2
It goes without saying that the structure is not limited to the two-layer structure of silicon oxide films of the 0 series and 5i2H6102 series, and for example, a three-layer structure may be used.

また用いる絶縁膜もシリコン酸化膜に限定されるもので
はなく、例えばシリコン酸化膜とシリコン窒化膜の2層
構造となしても良く、例えば膜厚200nmの絶縁膜を
、第1の絶縁膜を40nmのシリコン酸化膜とし、第2
の絶縁膜を160nmのシリコン窒化膜としたシリコン
酸化膜/シリコン窒化膜の2層構造となしても良い。
Furthermore, the insulating film used is not limited to a silicon oxide film, and may have a two-layer structure of, for example, a silicon oxide film and a silicon nitride film. a silicon oxide film, and a second silicon oxide film.
A two-layer structure of silicon oxide film/silicon nitride film may be used in which the insulating film is a 160 nm silicon nitride film.

更に、上記した試料室内のガス圧力や基板加熱温度、各
酸化膜の膜厚等の条件は仕様等に応じて適宜定めれば良
いことは言うまでもない。
Furthermore, it goes without saying that conditions such as the gas pressure in the sample chamber, the substrate heating temperature, and the film thickness of each oxide film may be determined as appropriate according to specifications and the like.

〈発明の効果〉 以上のように本発明によれば、リーク電流の低減をはか
ると共に、低温での絶縁膜の形成を短時間で行なうこと
が出来、その結果として層間絶縁ために用いる薄膜形成
装置の一構成例を示す模式図、第2図はSiH4/N2
0系、5i2H6102系シリコン酸化膜の成膜速度の
基板温度依存性を示す図、第3図は各シリコン酸化膜の
電流−電圧特性を示す図である。
<Effects of the Invention> As described above, according to the present invention, it is possible to reduce leakage current and form an insulating film at low temperatures in a short time, and as a result, a thin film forming apparatus used for interlayer insulation can be improved. A schematic diagram showing an example of the configuration of the SiH4/N2
FIG. 3 is a diagram showing the substrate temperature dependence of the deposition rate of 0 series and 5i2H6102 series silicon oxide films, and FIG. 3 is a diagram showing the current-voltage characteristics of each silicon oxide film.

I・・・試料室、2・・・ウェハーサセプタ、3・・・
シリコンウェハ、4・・・IRランプ、6・・・水銀灯
(Hgランプ)、7・・・ガス導入口。
I...sample chamber, 2...wafer susceptor, 3...
Silicon wafer, 4...IR lamp, 6...Mercury lamp (Hg lamp), 7...Gas inlet.

特許出願人 工業技術院長 等々力  達第1図 103/Tsub (K7’) A友がユ芙天苛ト循/)T 第2図 S              10 E  (M/cm) υシだ−匁圧眸准Patent applicant: Todoroki, director of the Agency of Industrial Science and Technology Figure 1 103/Tsub (K7’) A friend is Yufu Tenraito Circulation/)T Figure 2 S           10 E (M/cm) υshida-monme pressure eyesjunction

Claims (1)

【特許請求の範囲】 1、基板上に光化学気相反応によりシリコン系絶縁膜を
形成する工程において、 第1のシリコン系絶縁膜を形成する工程と、上記第1の
シリコン系絶縁膜上に上記成膜工程の成膜速度より速い
成膜速度によって第2のシリコン系絶縁膜を形成する工
程と を含み、多層構造の絶縁膜を形成してなることを特徴と
する絶縁膜形成方法。 2、前記第1のシリコン系絶縁膜をSiH_4/N_2
O系ガスにより形成し、前記第2のシリコン系絶縁膜を
Si_2H_6/O_2系ガスにより形成してなること
を特徴とする特許請求の範囲第1項記載の絶縁膜形成方
法。 3、前記第1のシリコン系絶縁膜としてシリコン酸化膜
を形成し、前記第2のシリコン系絶縁膜としてシリコン
窒化膜を形成してなることを特徴とする特許請求の範囲
第1項記載の絶縁膜形成方法。
[Claims] 1. In the step of forming a silicon-based insulating film on a substrate by photochemical vapor phase reaction, a step of forming a first silicon-based insulating film, and a step of forming the above-mentioned silicon-based insulating film on the first silicon-based insulating film. A method for forming an insulating film, comprising the step of forming a second silicon-based insulating film at a film-forming rate faster than the film-forming rate of the film-forming step, and forming an insulating film with a multilayer structure. 2. The first silicon-based insulating film is SiH_4/N_2
2. The method of forming an insulating film according to claim 1, wherein the second silicon-based insulating film is formed using an O-based gas and the second silicon-based insulating film is formed using an Si_2H_6/O_2-based gas. 3. The insulation according to claim 1, wherein a silicon oxide film is formed as the first silicon-based insulating film, and a silicon nitride film is formed as the second silicon-based insulating film. Film formation method.
JP6855586A 1986-03-28 1986-03-28 Forming method for insulating film Granted JPS62226631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6855586A JPS62226631A (en) 1986-03-28 1986-03-28 Forming method for insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6855586A JPS62226631A (en) 1986-03-28 1986-03-28 Forming method for insulating film

Publications (2)

Publication Number Publication Date
JPS62226631A true JPS62226631A (en) 1987-10-05
JPH0376022B2 JPH0376022B2 (en) 1991-12-04

Family

ID=13377122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6855586A Granted JPS62226631A (en) 1986-03-28 1986-03-28 Forming method for insulating film

Country Status (1)

Country Link
JP (1) JPS62226631A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024593A (en) * 1973-07-03 1975-03-15
JPS5958819A (en) * 1982-09-29 1984-04-04 Hitachi Ltd Formation of thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024593A (en) * 1973-07-03 1975-03-15
JPS5958819A (en) * 1982-09-29 1984-04-04 Hitachi Ltd Formation of thin film

Also Published As

Publication number Publication date
JPH0376022B2 (en) 1991-12-04

Similar Documents

Publication Publication Date Title
US4394401A (en) Method of plasma enhanced chemical vapor deposition of phosphosilicate glass film
WO2017070192A1 (en) METHODS OF DEPOSITING FLOWABLE FILMS COMPRISING SiO and SiN
JPS61127121A (en) Formation of thin film
KR970067542A (en) Manufacturing Method of Semiconductor Device
KR20050028321A (en) Film forming method and heat treating device
JPH04255221A (en) Plasma chemical phase growth method for tantalum oxide film
JPH0641631B2 (en) Chemical vapor deposition method and chemical vapor deposition apparatus for tantalum oxide film
JPS62226631A (en) Forming method for insulating film
JPH0290568A (en) Manufacture of thin film transistor
JPS62160732A (en) Forming method for silicon oxynitride films
JP2606318B2 (en) Method of forming insulating film
JP2004103688A (en) Method for forming insulating film and gate insulating film
US6642117B1 (en) Method for forming composite dielectric layer
JPS61232626A (en) Formation of insulating film
JPS62271437A (en) Formation of insulating film
JPS60211847A (en) Forming method of insulating film
KR970023824A (en) Method of manufacturing insulating film of semiconductor device
JPH06342786A (en) Forming method of insulating film and vacuum cvd device
JP2977150B2 (en) Method for manufacturing silicon dioxide insulating film
JPS6234139B2 (en)
JPH02148843A (en) Manufacture of semiconductor device
JPS61256625A (en) Manufacture of thin film semiconductor element
KR100451507B1 (en) Method for manufacturing semiconductor device
JPS6390138A (en) Method for cleaning semiconductor surface
KR940009596B1 (en) Forming method of multi-layer gate oxide film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term