JPH0376022B2 - - Google Patents

Info

Publication number
JPH0376022B2
JPH0376022B2 JP61068555A JP6855586A JPH0376022B2 JP H0376022 B2 JPH0376022 B2 JP H0376022B2 JP 61068555 A JP61068555 A JP 61068555A JP 6855586 A JP6855586 A JP 6855586A JP H0376022 B2 JPH0376022 B2 JP H0376022B2
Authority
JP
Japan
Prior art keywords
insulating film
silicon
forming
gas
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61068555A
Other languages
Japanese (ja)
Other versions
JPS62226631A (en
Inventor
Koji Shiozaki
Kogai Ootake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6855586A priority Critical patent/JPS62226631A/en
Publication of JPS62226631A publication Critical patent/JPS62226631A/en
Publication of JPH0376022B2 publication Critical patent/JPH0376022B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、光化学気相反応による例えば層間絶
縁膜等の形成方法の改良に関し、特に厚いシリコ
ン系絶縁膜を短時間に形成する絶縁膜形成方法に
関するものである。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to an improvement in a method for forming, for example, an interlayer insulating film using a photochemical vapor phase reaction, and in particular to an insulating film formation method for forming a thick silicon-based insulating film in a short time. It is about the method.

<従来の技術> 近年、定温で無損傷の膜が形成されるというこ
とで、光エネルギーを用いた光化学気相反応によ
る薄膜形成方法が注目されている。この光化学気
相反応により形成した絶縁膜は、常圧化学気相成
長法による絶縁膜に比して、段差被覆性、電気的
特性等において優れている。
<Prior Art> In recent years, thin film forming methods using photochemical vapor phase reactions using light energy have been attracting attention because damage-free films can be formed at constant temperatures. An insulating film formed by this photochemical vapor phase reaction is superior in step coverage, electrical properties, etc., compared to an insulating film formed by atmospheric pressure chemical vapor deposition.

<発明が解決しようとする問題点> しかしながら、直接励起光化学反応による薄膜
形成においては、成膜速度が低く、例えば層間絶
縁膜として必要とされる膜厚(例えば200nm)
を形成するのに非常に長い時間を要するという欠
点を備えている。
<Problems to be Solved by the Invention> However, in thin film formation by direct excitation photochemical reaction, the film formation rate is low, and the film thickness required for an interlayer insulating film (for example, 200 nm) is low.
The disadvantage is that it takes a very long time to form.

本発明は、上記の点に鑑みて創案されたもので
あり、基板上に低温で短時間に特性の優れた絶縁
膜を形成する絶縁膜形成方法を提供することを目
的としている。
The present invention was devised in view of the above points, and an object of the present invention is to provide an insulating film forming method for forming an insulating film with excellent characteristics on a substrate at low temperature in a short time.

<問題点を解決するための手段> 上記の目的を達成するため、本発明の絶縁膜形
成方法は、基板上に光化学気相反応によりシリコ
ン系絶縁膜を形成する工程において、電気的特性
に優れたSiH4/N2O系ガスによる第1のシリコ
ン系絶縁膜を形成する工程と、この第1のシリコ
ン系絶縁膜上に成膜速度の高いSi2H6/O2系ガス
による第2のシリコン系絶縁膜を形成するように
構成している。
<Means for Solving the Problems> In order to achieve the above-mentioned object, the insulating film forming method of the present invention has excellent electrical properties in the step of forming a silicon-based insulating film on a substrate by photochemical vapor phase reaction. A step of forming a first silicon-based insulating film using SiH 4 /N 2 O-based gas, and a second step using Si 2 H 6 /O 2- based gas, which has a high deposition rate, on the first silicon-based insulating film. The structure is such that a silicon-based insulating film is formed.

<作用> 上記のような構成により、絶縁膜形成の所望時
間を著しく短縮化することが出来、また上記した
実施態様にあつては、例えばSiH4/N2O系シリ
コン酸化膜のみによる層間絶縁膜の形成に比し
て、絶縁膜形成の所要時間を著しく短縮すること
が出来る。
<Function> With the above configuration, the required time for forming an insulating film can be significantly shortened, and in the above embodiment, for example, interlayer insulation using only a SiH 4 /N 2 O-based silicon oxide film can be achieved. The time required for forming an insulating film can be significantly shortened compared to forming a film.

<実施例> 以下、図面を参照して、本発明の一実施例を詳
細に説明する。
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の絶縁膜形成方法を実施するた
めに用いた薄膜形成装置の一例を示す模式図であ
り、第1図において、1は反応室(試料室)、2
はウエハーサセプタ、3はシリコンウエハ、4は
IRランプ、5は合成石英、6は水銀灯(Hgラン
プ)、7はガス導入口、8はゲートバルブ、9は
メカニカルブースタポンプ、10は油回転ポンプ
である。
FIG. 1 is a schematic diagram showing an example of a thin film forming apparatus used to carry out the insulating film forming method of the present invention. In FIG. 1, 1 is a reaction chamber (sample chamber);
is the wafer susceptor, 3 is the silicon wafer, and 4 is the wafer susceptor.
IR lamp, 5 is synthetic quartz, 6 is a mercury lamp (Hg lamp), 7 is a gas inlet, 8 is a gate valve, 9 is a mechanical booster pump, and 10 is an oil rotary pump.

上記のように構成された装置の試料室1内のウ
エハーサセプタ2上に、まずP型(100)シリコ
ン(Si)基板(15〜20Ω・cm)3を設置し、次に
ロータリーポンプ10を作動させて試料室1内の
圧力を粗引きした後、メカニカルブースタポンプ
9を用いて試料室1内を10-3〔Torr〕まで真空排
気した。この非気操作中にIRランプ4を用いて
基板3の温度を300〔℃〕まで上昇させて保持し
た。上記のメカニカルブースタポンプ9によつて
10-3〔Torr〕以下まで真空引きした後、シラン
(SiH4)ガス及びN2Oガスを、ガス導入口7より
例えばそれぞれ15〔SCCM〕及び250〔SCCM〕導
入し、試料室1内の圧力を2.5〔Torr〕に保持し、
水銀灯(Hgランプ)6を用いて、シリコン基板
3上に第1のシリコン系絶縁膜としてのシリコン
酸化膜を形成した。
First, a P-type (100) silicon (Si) substrate (15 to 20 Ω cm) 3 is placed on the wafer susceptor 2 in the sample chamber 1 of the apparatus configured as described above, and then the rotary pump 10 is activated. After roughly evacuation of the pressure inside the sample chamber 1, the inside of the sample chamber 1 was evacuated to 10 -3 [Torr] using the mechanical booster pump 9. During this non-air operation, the temperature of the substrate 3 was raised to 300 [° C.] and maintained using the IR lamp 4. By the above mechanical booster pump 9
After evacuation to 10 -3 [Torr] or less, silane (SiH 4 ) gas and N 2 O gas are introduced from the gas inlet 7 to, for example, 15 [SCCM] and 250 [SCCM], respectively, to the inside of the sample chamber 1. Maintain the pressure at 2.5 [Torr],
A silicon oxide film as a first silicon-based insulating film was formed on the silicon substrate 3 using a mercury lamp (Hg lamp) 6.

次にガス導入口7を閉じ、メカニカルブースタ
ポンプ9を用いて試料室1内を10-3〔Torr〕以下
まで真空排気した後、ジシラン(Si2H6)ガス及
びO2ガスを、ガス導入口7より例えばそれぞれ
3〔SCCM〕、250〔SCCM〕導入し、試料室1内の
圧力を2.5〔Torr〕に保持し、水銀灯(Hgランプ)
6を用いて、上記のSiH4/N2O系シリコン酸化
膜を形成した基板3上に第2のシリコン系絶縁膜
としてのシリコン酸化膜を連続的に160nm形成
した。
Next, the gas inlet 7 is closed and the inside of the sample chamber 1 is evacuated to 10 -3 [Torr] or less using the mechanical booster pump 9, and then disilane (Si 2 H 6 ) gas and O 2 gas are introduced. For example, 3 [SCCM] and 250 [SCCM] are introduced from port 7, the pressure inside sample chamber 1 is maintained at 2.5 [Torr], and a mercury lamp (Hg lamp) is introduced.
6 was used to continuously form a silicon oxide film of 160 nm as a second silicon-based insulating film on the substrate 3 on which the SiH 4 /N 2 O-based silicon oxide film was formed.

次にガス導入口7を閉じ、メカニカルブースタ
ーポンプ9を用いて、試料室1内を10-3〔Torr〕
以下まで排気した後、試料室1内にN2ガスを導
入して大気圧にもどし、試料室1を開いて試料3
を取り出した。
Next, close the gas inlet 7 and use the mechanical booster pump 9 to pump the inside of the sample chamber 1 to 10 -3 [Torr].
After exhausting the air to below, introduce N2 gas into the sample chamber 1 to return it to atmospheric pressure, open the sample chamber 1, and
I took it out.

なお、第2図はSiH4/N2O系、Si2H6/O2系シ
リコン酸化膜の成長速度の基板温度依存性を示し
たものであり、第3図はSiH4/N2O系、Si2H6
O2系のシリコン酸化膜を形成した試料について、
それぞれMISキヤパシタを作製して、電気−電圧
特性を示したものである。
Furthermore, Figure 2 shows the substrate temperature dependence of the growth rate of SiH 4 /N 2 O-based and Si 2 H 6 / O 2 - based silicon oxide films. system, Si 2 H 6 /
Regarding the sample in which an O 2 -based silicon oxide film was formed,
MIS capacitors were fabricated and their electrical-voltage characteristics were shown.

上記した本発明の実施例によれば、例えば膜厚
200nmの絶縁膜を約60分で形成することが出来
る。
According to the embodiment of the present invention described above, for example, the film thickness
A 200nm insulating film can be formed in about 60 minutes.

これに対してSiH4/N2O系ガスのみを用いて
膜厚200nmの絶縁膜を形成した場合、約250分の
時間を要した。
On the other hand, when an insulating film with a thickness of 200 nm was formed using only SiH 4 /N 2 O-based gas, it took about 250 minutes.

また高次シランガスを用いた場合所望の膜厚の
絶縁膜をより短時間に形成することが出来るが、
この場合、第3図からも明らかなように絶縁耐圧
等の電気的特性が劣化したものになり好ましくな
い。
Furthermore, when using high-order silane gas, an insulating film of a desired thickness can be formed in a shorter time.
In this case, as is clear from FIG. 3, electrical characteristics such as dielectric strength voltage deteriorate, which is not preferable.

これに対して、上記した実施例にあつては第1
の絶縁膜として電気的特性に優れたSiH4/N2O
系によるシリコン酸化膜を用い、その第1の絶縁
膜の上に成膜速度の速いSi2H6/O2系によるシリ
コン酸化膜を用いるようにし、結果として所望の
膜厚の絶縁膜を短時間に、しかも電気的特性を劣
化させることなく形成されることになる。
On the other hand, in the above embodiment, the first
SiH 4 /N 2 O has excellent electrical properties as an insulating film for
A Si 2 H 6 /O 2 based silicon oxide film, which has a high deposition rate, is used on top of the first insulating film, and as a result, the desired thickness of the insulating film can be shortened. It can be formed in a short time and without deteriorating the electrical characteristics.

なお、本発明は上記実施例に限定されるもので
はなく、その要旨を逸脱しない範囲で種々の変形
で実施することが可能であり、例えば膜構成とし
ては、SiH4/N2O系、Si2H6/O2系のシリコン酸
化膜の2層構造に限定されるものではなく、例え
ば3層構造を用いても良いことは言うまでもな
い。
It should be noted that the present invention is not limited to the above embodiments, and can be implemented in various modifications without departing from the gist thereof. For example, the film structure may be SiH 4 /N 2 O system, Si It goes without saying that the structure is not limited to the two-layer structure of the 2 H 6 /O 2 -based silicon oxide film, and for example, a three-layer structure may be used.

更に、上記した試料室内のガス圧力や基板加熱
温度、各酸化膜の膜厚等の条件は仕様等に応じて
適宜定めれば良いことは言うまでもない。
Furthermore, it goes without saying that conditions such as the gas pressure in the sample chamber, the substrate heating temperature, and the film thickness of each oxide film may be determined as appropriate according to specifications and the like.

<発明の効果> 以上のように本発明によれば、リーク電流の低
減をはかると共に、低温での絶縁膜の形成を短時
間で行なうことが出来、その結果として層間絶縁
膜への応用ができ、極めて有効なものである。
<Effects of the Invention> As described above, according to the present invention, leakage current can be reduced and an insulating film can be formed at low temperatures in a short time, and as a result, it can be applied to interlayer insulating films. , is extremely effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の絶縁膜形成方法を実施する
ために用いる薄膜形成装置の一構成例を示す模式
図、第2図はSiH4/N2O系、Si2H6/O2系シリコ
ン酸化膜の成膜速度の基板温度依存性を示す図、
第3図は各シリコン酸化膜の電流−電圧特性を示
す図である。 1……試料室、2……ウエハーサセプタ、3…
…シリコンウエハ、4……IRランプ、6……水
銀灯(Hgランプ)、7……ガス導入口。
FIG . 1 is a schematic diagram showing a configuration example of a thin film forming apparatus used to carry out the insulating film forming method of the present invention . FIG . A diagram showing the dependence of silicon oxide film deposition rate on substrate temperature,
FIG. 3 is a diagram showing the current-voltage characteristics of each silicon oxide film. 1...Sample chamber, 2...Wafer susceptor, 3...
...Silicon wafer, 4...IR lamp, 6...Mercury lamp (Hg lamp), 7...Gas inlet.

Claims (1)

【特許請求の範囲】 1 基板上に光化学気相反応によりシリコン系絶
縁膜を形成する工程において、 SiH4/N2O系ガスを用いて第1のシリコン系
絶縁膜を形成する第1工程と、 前記第1のシリコン系絶縁膜上に前記第1工程
より速い成膜速度により、Si2H6/O2系ガスを用
いて第2のシリコン系絶縁膜を形成する第2工程
と、 を含み、多層構造の絶縁膜を形成してなることを
特徴とする絶縁膜形成方法。
[Scope of Claims] 1. In the step of forming a silicon-based insulating film on a substrate by photochemical vapor phase reaction, a first step of forming a first silicon-based insulating film using SiH 4 /N 2 O-based gas; a second step of forming a second silicon-based insulating film on the first silicon-based insulating film using a Si 2 H 6 /O 2- based gas at a deposition rate faster than that in the first step; 1. A method for forming an insulating film, comprising: forming an insulating film with a multilayer structure.
JP6855586A 1986-03-28 1986-03-28 Forming method for insulating film Granted JPS62226631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6855586A JPS62226631A (en) 1986-03-28 1986-03-28 Forming method for insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6855586A JPS62226631A (en) 1986-03-28 1986-03-28 Forming method for insulating film

Publications (2)

Publication Number Publication Date
JPS62226631A JPS62226631A (en) 1987-10-05
JPH0376022B2 true JPH0376022B2 (en) 1991-12-04

Family

ID=13377122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6855586A Granted JPS62226631A (en) 1986-03-28 1986-03-28 Forming method for insulating film

Country Status (1)

Country Link
JP (1) JPS62226631A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024593A (en) * 1973-07-03 1975-03-15
JPS5958819A (en) * 1982-09-29 1984-04-04 Hitachi Ltd Formation of thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024593A (en) * 1973-07-03 1975-03-15
JPS5958819A (en) * 1982-09-29 1984-04-04 Hitachi Ltd Formation of thin film

Also Published As

Publication number Publication date
JPS62226631A (en) 1987-10-05

Similar Documents

Publication Publication Date Title
KR100287985B1 (en) Output control device of laser device
KR100289859B1 (en) Manufacturing method of semiconductor device
US5412246A (en) Low temperature plasma oxidation process
JP3141553B2 (en) Method for manufacturing semiconductor device
JP3937892B2 (en) Thin film forming method and semiconductor device manufacturing method
KR100222455B1 (en) Semiconductor device and method of fabricating method
US4588610A (en) Photo-chemical vapor deposition of silicon nitride film
JP2004523885A (en) Surface adjustment method before deposition
JP2000200881A (en) Formation of ferroelectric memory circuit
JP2828152B2 (en) Method of forming thin film, multilayer structure film, and method of forming silicon thin film transistor
KR960036060A (en) High dielectric film / electrode of semiconductor device and manufacturing method thereof
US6524918B2 (en) Method for manufacturing a gate structure incorporating therein aluminum oxide as a gate dielectric
KR920007106A (en) Solid state electronic device and manufacturing method thereof
JPH08330256A (en) Processing of nitridation titanium to improve resistance forhigh temperature
JPH07221201A (en) Manufacture of semiconductor device and equipment of manufacturing semiconductor device
JPH05243524A (en) Manufacture of semiconductor device
KR20020037337A (en) Method for forming crystalline silicon nitride
JPH0376022B2 (en)
JP2770856B2 (en) Method of forming high dielectric constant oxide thin film
JPH06163519A (en) Formation of tantalum oxide thin film
JPH0290568A (en) Manufacture of thin film transistor
JPH05114698A (en) Manufacture of semiconductor device
JP2002540628A (en) Method of fabricating high dielectric constant dielectric stack with low buffer oxide
JPS61232626A (en) Formation of insulating film
JPH10223629A (en) Method of forming oxide film on semiconductor surface and manufacturing method of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term