JPH03139824A - Depositing method for semiconductor device - Google Patents

Depositing method for semiconductor device

Info

Publication number
JPH03139824A
JPH03139824A JP27793889A JP27793889A JPH03139824A JP H03139824 A JPH03139824 A JP H03139824A JP 27793889 A JP27793889 A JP 27793889A JP 27793889 A JP27793889 A JP 27793889A JP H03139824 A JPH03139824 A JP H03139824A
Authority
JP
Japan
Prior art keywords
hydrogen
thin film
substrate
film
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27793889A
Other languages
Japanese (ja)
Other versions
JPH0587171B2 (en
Inventor
Yutaka Hayashi
豊 林
Mitsuyuki Yamanaka
光之 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP27793889A priority Critical patent/JPH03139824A/en
Publication of JPH03139824A publication Critical patent/JPH03139824A/en
Priority to US07/800,711 priority patent/US5214002A/en
Publication of JPH0587171B2 publication Critical patent/JPH0587171B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve photoconductivity of a thin film, to regulate coupling hydrogen amount and to accelerate a depositing speed by supplying material gas and, as required, carrier gas to the surface of a heated substrate to deposit silicon, germanium, carbon or their mixture thin film, and supplying exciting hydrogen on the film without exposing with the atmosphere. CONSTITUTION:A quartz substrate 3 and a crystalline silicon substrate 3' are placed on a SiC coated susceptor 2, Si2H6 is mixed in H2, this material gas is supplied on the substrates, and heated by an infrared lamp 4. The pressure in a chamber is set to a predetermined pressure (e.g. 10Torr). The temperature of the substrate is set to approx. 440 deg.C, and a thin silicon film is deposited in predetermined thickness (300Angstrom or lower). Then, only the Si2H6 in the gas is stopped, a chamber is evacuated, hydrogen flow rate is regulated to a predetermined inner pressure in the chamber (e.g. 1-0.3Torr), an AC power source is turned ON by a switch SW13, and the hydrogen excited as hydrogen plasma 15 is supplied on the thin film.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体薄膜の堆積方法に関し、特に熱を用いて
ガス原料から半導体薄膜を堆積する方法の改良に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for depositing a semiconductor thin film, and more particularly to an improvement in a method for depositing a semiconductor thin film from a gas source using heat.

[従来の技術] 従来、熱を用いてガス原料からシリコン薄膜を堆積する
方法の1つとしてシラン系ガスからのアモルファスシリ
コン、結晶(多結晶も含む)シリ比べて2桁以上小さか
った。しかし一方、熱CVDアモルファスシリコンは光
劣化が少ないなど、優れた特性も有していた。
[Prior Art] Conventionally, as a method of depositing a silicon thin film from a gas source using heat, amorphous silicon from a silane-based gas was more than two orders of magnitude smaller than crystalline (including polycrystalline) silicon. However, on the other hand, thermal CVD amorphous silicon also had excellent properties such as less photodegradation.

[発明が解決しようとする課題] したがって、熱CVDの長所を生かし、かつ堆積速度の
速い半導体薄膜の堆積方法および光電特性の改善方法が
望まれていた。この問題はゲルマニウム薄膜、炭素を含
んだシリコン薄膜についても同揉であった。
[Problems to be Solved by the Invention] Therefore, a method for depositing a semiconductor thin film that takes advantage of the advantages of thermal CVD and has a high deposition rate, and a method for improving photoelectric characteristics has been desired. This problem also applies to germanium thin films and carbon-containing silicon thin films.

ン(Si3■a)の場合は400℃以上が実質成膜の温
度であるが、これらの温度では通常1時間に1000人
程度0堆積速度であり、実用的にはさらに50℃以上、
高温の堆積温度を必要としていた。このように高温にお
ける成膜は・使用する基板の種類に制限を来し、特にガ
ラス基板は使用できなくなる。さらに光導重度はプラズ
マを利用して堆積した膜によって薄膜を成膜した後、成
膜装置から一度外気へ取り出して、これを水素プラズマ
にあてても光導重度の改善はほとんど見られなかった。
In the case of silicon (Si3■a), the actual film formation temperature is 400°C or higher, but at these temperatures, the deposition rate is usually about 1,000 per hour, and in practical terms it is more than 50°C.
Required high deposition temperatures. In this way, film formation at high temperatures limits the types of substrates that can be used, and in particular, glass substrates cannot be used. Furthermore, even when a thin film was formed using a film deposited using plasma, the film was taken out of the film-forming apparatus to the outside air, and then exposed to hydrogen plasma, there was almost no improvement in the light conductivity.

[課題を解決するための手段] 本発明は、加熱された基板表面へ原料ガスと要すればキ
ャリアガスを供給し、シリコンまたはゲルマニウムまた
は炭素またはこれらの混合薄膜を堆積する工程と、この
薄膜を外気にさらすことなく励起水素を上記薄膜上へ供
給する工程とを有することを特徴とする。すなわち、本
発明においては、かかる工程によって、半導体薄膜の結
合水素を調節する方法をとる。
[Means for Solving the Problems] The present invention includes a step of supplying a raw material gas and, if necessary, a carrier gas to a heated substrate surface, and depositing a thin film of silicon, germanium, carbon, or a mixture thereof, and depositing this thin film. The method is characterized by comprising a step of supplying excited hydrogen onto the thin film without exposing it to the outside air. That is, in the present invention, a method is adopted in which the bonded hydrogen in the semiconductor thin film is adjusted through such a process.

゛°結合水素を調節する”とは、すでに水素が薄膜の中
へ含まれている場合でも、励起水素を供給る工程と、こ
の基板を外気にさらすことなく、基板を加熱して原料ガ
スを供給する工程を有することを特徴とする。かかる工
程によって、薄膜の堆積速度を増加させる。
``Adjusting bonded hydrogen'' means that even if hydrogen is already included in the thin film, it involves the process of supplying excited hydrogen and heating the substrate to release the raw material gas without exposing the substrate to the outside air. The present invention is characterized by comprising a step of supplying the thin film, thereby increasing the deposition rate of the thin film.

[作 用] 本発明によれば、以下の実施例でも示すように薄膜の光
導重度を改善し、薄膜の結合水素量を調節することがで
きるだけでなく、堆積速度は数倍にまで増加させること
も可能である。
[Function] According to the present invention, as shown in the following examples, it is possible not only to improve the light guiding strength of the thin film and adjust the amount of bound hydrogen in the thin film, but also to increase the deposition rate several times. is also possible.

′1本発明ではSt、Ge、炭素薄膜の原料ガスとして
は各々シラン系(Sit(4,Si2H6,5i3Ha
、・・・)、ゲルマンこの結合水素の調節される膜厚は
、温度によって変化はするが、たとえば450℃前後で
は300人程0までであるので、厚い膜の膜厚方向全体
にわたって改質するためには、300Å以下の膜を堆積
して次に励有することを特徴とする半導体薄膜を繰返す
ことか望ましい。
'1 In the present invention, the raw material gases for St, Ge, and carbon thin films are each silane-based (Sit(4, Si2H6, 5i3Ha
,...), german The film thickness to which this bonded hydrogen is adjusted changes depending on the temperature, but for example, at around 450°C, it is up to about 300%, so it is modified throughout the thickness direction of a thick film. In order to achieve this, it is desirable to repeat the semiconductor thin film process, which is characterized by depositing a film of 300 Å or less and then exciting it.

さらに、本発明は、基板上へ励起水素を供給す内に水素
を導入して、チャンバー内または外に設けられた2つの
電極の間に直流、交流電圧を印加して水素プラズマを形
成し、このプラズマを薄膜表面または基板表面に導いて
もよい。水素ブラズマはチャンバーを絶縁性の材料で形
成した部分を作り、その部分からインダクティブな結合
で交流を結合しても、絶縁材料部分からマイクロ波を導
入しても形成することができる。プラズマは基板を含む
空間で作られても、別の空間で作られてもよい。さらに
減圧チャンバー内に水素を導入してこの水素に電子線、
X線を照射して励起水素を形成してもよい。さらに水素
に遠紫外線を照射するか励起Hgガスと混合するかして
励起水素を作ることもできる(こり場合Zよ常圧でもよ
い)。
Furthermore, the present invention introduces hydrogen while supplying excited hydrogen onto the substrate, and forms a hydrogen plasma by applying a DC or AC voltage between two electrodes provided inside or outside the chamber. This plasma may be directed to the thin film surface or the substrate surface. Hydrogen plasma can be formed by creating a chamber made of an insulating material and coupling alternating current from that part through inductive coupling, or by introducing microwaves from the insulating material part. The plasma may be created in a space containing the substrate or in a separate space. Furthermore, hydrogen is introduced into the decompression chamber, and this hydrogen is exposed to an electron beam.
Excited hydrogen may be formed by irradiation with X-rays. Furthermore, excited hydrogen can be produced by irradiating hydrogen with deep ultraviolet rays or mixing it with excited Hg gas (in this case, normal pressure may be used instead of Z).

に挿入された熱電対6により検出され、熱電対6の信号
を制御装置7へ供給し、制御装置7はこの信号の大小に
よりランプに供給する電力を調節して、最終的には基板
3.3′の温度を調節するようになっている。また、石
英チャンバー1はステンレスフランジ8によって真空シ
ールされ、接続した真空ポンプ9で減圧とすることがで
きる。基板の表面には、ガス混合装置10より予め設定
された(複数の)ガスが流量を調節されて供給される。
The signal from the thermocouple 6 is detected by a thermocouple 6 inserted into the substrate 3. The signal from the thermocouple 6 is supplied to a control device 7, and the control device 7 adjusts the power supplied to the lamp depending on the magnitude of this signal. It is designed to adjust the temperature at 3'. Further, the quartz chamber 1 is vacuum-sealed by a stainless steel flange 8, and can be reduced in pressure by a connected vacuum pump 9. A plurality of preset gases are supplied to the surface of the substrate from the gas mixing device 10 at controlled flow rates.

[実施例] 本発明の一実施例として、ジシラン(SiJa)を用い
た熱CvDの場合を示す。
[Example] As an example of the present invention, a case of thermal CvD using disilane (SiJa) will be shown.

実験に用いた装置は第1図に示すように、石英チャンバ
ー1内にサセプタ2を設け、このサセプタ2の上へ基板
3.3′を載せて、赤外ランプ4から赤外線を照射して
サセプタ2および基板3゜3′を加熱するように設計さ
れている。5は反射ミラーである。基板3.3′の温度
はサセプタ2周辺でプラズマ放電が生ずる。
As shown in FIG. 1, the apparatus used in the experiment is such that a susceptor 2 is provided in a quartz chamber 1, a substrate 3.3' is placed on top of the susceptor 2, and the susceptor is irradiated with infrared rays from an infrared lamp 4. 2 and the substrate 3°3'. 5 is a reflecting mirror. The temperature of the substrate 3.3' causes a plasma discharge to occur around the susceptor 2.

因11」1 本実施例では原料ガスとしてジシラン(SfJa)を用
いてシリコン薄膜を堆積する例を示す。なお、キャリア
ガスとして水素を用いている。第1図に示したSiCコ
ートサセプタ2の上へ石英基板3と結晶シリコン基板3
′ (結合水素量測定用)を載せて、8240sccr
n中へ512)1.12secmを混入して基板上へこ
の原料ガスを供給し、赤外ランプ4により加熱する。チ
ャンバー内の圧力は規定圧力(本実施例では10Tor
r)とする。基板の温度は約440℃としてシリコン薄
膜を規定厚さ堆積する。
Factor 11"1 This example shows an example in which a silicon thin film is deposited using disilane (SfJa) as a source gas. Note that hydrogen is used as a carrier gas. A quartz substrate 3 and a crystalline silicon substrate 3 are placed on top of the SiC coated susceptor 2 shown in FIG.
' (for measuring the amount of bonded hydrogen) and 8240sccr
512) 1.12 sec into the substrate, this raw material gas is supplied onto the substrate, and heated by an infrared lamp 4. The pressure inside the chamber is a specified pressure (10 Torr in this example).
r). The temperature of the substrate is set at about 440° C., and a silicon thin film is deposited to a specified thickness.

次に原料ガス中のSi、H6のみ停止し、チャンバー内
を真空引きをして、水素の流量を調節して規定のチャン
バー内圧力(本実施例では1〜0.3Torr)とし、
交流電源を5W13によりONとし、水素プラズマ15
として励起された水素を薄膜上へ供給する。
Next, only Si and H6 in the source gas are stopped, the chamber is evacuated, and the hydrogen flow rate is adjusted to a specified chamber pressure (1 to 0.3 Torr in this example).
Turn on the AC power supply with 5W13, and hydrogen plasma 15
The excited hydrogen is supplied onto the thin film.

このような工程で堆積したシリコン薄膜は水素化された
アモルファスシリコンであった。
The silicon thin film deposited through this process was hydrogenated amorphous silicon.

まず、励起された水素を供給しないシリコン膜の光導電
度は、へM1.5スペクトル、強度60mW/cm2の
光の下で10−’S/cm以下であった。しかし、約6
0人堆積する毎に励起水素を3分間ずつ供給したシリコ
ン膜の光導電度は4 x 10−’S/cm以上になっ
た。光導電度は水素プラズマ源に近づく程大きくなった
。結合水素量も水素プラズマ源に近づく程大きい。水素
プラズマ源から遠い(10cm程度)部分のシリコン膜
では結合水素量は励起水素を供給しなかった膜より却っ
て結合水素量は小さい。また、F#膜堆積の工程でキャ
リアガスとして水素を用いたからと言って、必ずしも結
合水素量の大きな膜は得られていない。また、結合水素
量は水素プラズマ源に近い試料でも励起水素を供給しな
かった試料より結合水素量が少ないものもあった。
First, the photoconductivity of the silicon film to which no excited hydrogen was supplied was less than 10-'S/cm under light with an M1.5 spectrum and an intensity of 60 mW/cm2. However, about 6
The photoconductivity of the silicon film to which excited hydrogen was supplied for 3 minutes each time it was deposited was 4 x 10-'S/cm or more. The photoconductivity increased closer to the hydrogen plasma source. The amount of bound hydrogen also increases as it approaches the hydrogen plasma source. The amount of bound hydrogen in a portion of the silicon film far from the hydrogen plasma source (approximately 10 cm) is actually smaller than that in a film to which no excited hydrogen is supplied. Furthermore, even if hydrogen is used as a carrier gas in the F# film deposition process, a film with a large amount of bound hydrogen is not necessarily obtained. In addition, even in samples close to the hydrogen plasma source, the amount of bound hydrogen was lower than that of samples to which no excited hydrogen was supplied.

本発明の方法で得られたシリコン膜は、第2図に1O−
5〜10−’S/cmであるのに対して、本発明の実施
例の方法によれば熱CVDのアモルファスシリコン膜の
結合水素量のレベルが3〜4原子%で1O−5S/cm
、 4〜5原子%でto−’S/cmの光導電度が得ら
れるポテンシャルを有する。現在の装置のリーク、不純
物の混入を改善し、励起水素の純度を上げれば10−’
S/cmに至る値は得られるものと思われる。
The silicon film obtained by the method of the present invention is shown in FIG.
5 to 10-'S/cm, whereas according to the method of the embodiment of the present invention, the amount of bonded hydrogen in the thermal CVD amorphous silicon film is 10-5S/cm at a level of 3 to 4 at%.
, has the potential to obtain a photoconductivity of to-'S/cm at 4 to 5 atomic %. If we improve the leakage and impurity contamination of the current equipment and increase the purity of excited hydrogen, it will be 10-'
Values up to S/cm are expected to be obtained.

来」C江ス このように光導電度の改善を有効に得るためには、励起
水素を薄膜表面に供給する前に薄膜をどのくらいの厚さ
まで堆積すればよいかを調べる実験を行った。第1図の
ように、薄膜の真上でプラズマを発生させない方法、ま
たは励起水素を加速しない方法ではその膜厚は小さく限
定される。真速の励起水素の場合は1回の堆積膜厚が3
00Å以下となるとさらに1桁近く光導電度が改善され
ることがわかる。なお、この実施例ではシリコン薄膜は
Si2H612sccl+H240SCCmの原料ガス
+キャリアガスから440℃で石英基板上に堆積し、励
起水素は水素40secm 0.33Torr 、放電
電力30W (13,56MHz)で放電した水素プラ
ズマより供給した。
In order to effectively obtain this improvement in photoconductivity, an experiment was conducted to determine how thick a thin film should be deposited before supplying excited hydrogen to the surface of the thin film. As shown in FIG. 1, the thickness of the thin film is limited by a method that does not generate plasma directly above the thin film or a method that does not accelerate excited hydrogen. In the case of real-speed excited hydrogen, the thickness of one deposition film is 3
It can be seen that when the thickness is less than 00 Å, the photoconductivity is further improved by nearly an order of magnitude. In this example, the silicon thin film was deposited on a quartz substrate at 440°C from raw material gas of Si2H612sccl+H240SCCm + carrier gas, and the excited hydrogen was generated from hydrogen plasma discharged at 40 seconds of hydrogen at 0.33 Torr and a discharge power of 30 W (13.56 MHz). supplied.

実施例3 本発明の他の態様を示す実施例として、励起本積した実
施例で、1回に堆積する膜厚を変化させて光導電度の変
化を測定した結果を示す。
Example 3 As an example showing another aspect of the present invention, the results of measuring changes in photoconductivity by changing the thickness of a film deposited at one time in an example in which an excitation layer was used are shown.

1回に堆積する膜厚は500人を超えても、単純な熱C
VD (励起水素を供給しない)の場合よりも光導電度
が1桁よく改善されているので膜厚限定の必要は不可欠
ではないが、第3図の結果より非加バー圧を約0.6T
δrrに調節した。5W13をONとして、交流電圧を
放電電極に印加し、40Wの交流電力で水素プラズマを
発生させ、5分間励起水素を基板上に供給する(このと
き、基板はすでに425℃に加熱されている)。この後
5i2H,を流してチャンバー圧を10Torrとし、
 425℃に加熱された基板上へ5f2H,を供給した
。得られたシリコン薄膜の堆積速度は70〜40人/分
であり、励起水素供給後3分から10分までは堆積速度
には上述の範囲内の変化しかなかった。しかし、これら
の堆積速度は同一装置で励起水素を予め基板に供給しな
い通常の熱CVD実験を行ったときの堆積速度の5〜3
倍であった。シリコン薄膜の堆積時の原料ガスを5i2
116.12sccm十82(キャリアガス) 40s
ecmとし、堆積温度を440℃とすると、堆積速度改
善率は1.7〜2倍となった。
Even if the film thickness deposited at one time exceeds 500 people, simple thermal C.
Since the photoconductivity is improved by an order of magnitude compared to the case of VD (no supply of excited hydrogen), it is not necessary to limit the film thickness, but from the results shown in Figure 3, the non-pressure is approximately 0.6T.
Adjusted to δrr. Turn on 5W13, apply AC voltage to the discharge electrode, generate hydrogen plasma with 40W AC power, and supply excited hydrogen onto the substrate for 5 minutes (at this time, the substrate is already heated to 425°C). . After that, the chamber pressure was set to 10 Torr by flowing 5i2H,
5f2H was supplied onto the substrate heated to 425°C. The deposition rate of the obtained silicon thin film was 70 to 40 persons/min, and the deposition rate varied only within the above-mentioned range from 3 minutes to 10 minutes after the supply of excited hydrogen. However, these deposition rates are 5 to 3 times lower than those obtained when performing normal thermal CVD experiments in which excited hydrogen is not supplied to the substrate in advance using the same equipment.
It was double that. 5i2 raw material gas during deposition of silicon thin film
116.12sccm 182 (carrier gas) 40s
ecm and the deposition temperature was 440° C., the deposition rate improvement rate was 1.7 to 2 times.

ばよい。水素の全部を弗素に置換した原料ガスに対して
はシラン系のガスを混合して、ゲルマニウム主体の薄膜
を堆積することができる。
Bye. A thin film mainly composed of germanium can be deposited by mixing a silane-based gas with a raw material gas in which all of the hydrogen has been replaced with fluorine.

メタン(C114) 、エタン(C2Ha)等の炭化水
素を原料ガスとして同様の方法で炭素膜を堆積すること
ができる。
A carbon film can be deposited by a similar method using a hydrocarbon such as methane (C114) or ethane (C2Ha) as a raw material gas.

さらに上述したシラン系ガス、ゲルマン系ガス、アルキ
ル・シラン系ガス等の原料ガスを混合して、シリコン、
ゲルマニウム、炭素をそれぞれ任意の割合で混合した薄
膜を、上述した実施例とたが、モノシラン(Sin4)
、  トリシラン(Si3t+、)その他のシラン系ガ
ス、シリコンにアルキル基が結合したガスを用いること
もできる。
Furthermore, by mixing the raw material gases such as silane gas, germane gas, alkyl silane gas, etc., silicon,
A thin film containing germanium and carbon mixed in arbitrary proportions was prepared using monosilane (Sin4) as in the above embodiment.
, trisilane (Si3t+), other silane-based gases, and gases in which an alkyl group is bonded to silicon can also be used.

ゲルマニウムの堆積のためには、前に述べたように、ゲ
ルマン系(GeH4,Ge2u6・・・)ガスおよびこ
の水素のいくつかを弗素に置換したガスを用いれ以上説
明したように、本発明によれば、(1)結合水素が有効
に光電特性(光導電度)の改善に使われている、 (2)結合水素が少ないので、光学バンドギャップは1
.6eV程度に小さくでき、それだけ長波長光の変換が
可能である、 (3)光劣化が熱CVO膜と同様小さい、(4)従来の
熱CVD れる、 より低温でも堆積速度が改善さ 12・・・放電電極、 14・・・交流電源。
For the deposition of germanium, as described above, a germane-based (GeH4, Ge2u6...) gas and a gas in which some of the hydrogen has been replaced with fluorine are used, and as explained above, according to the present invention. For example, (1) bound hydrogen is effectively used to improve photoelectric properties (photoconductivity), (2) because there are few bound hydrogens, the optical band gap is 1.
.. (3) Photodeterioration is as small as a thermal CVO film, (4) Deposition rate is improved even at lower temperatures than conventional thermal CVD.12. -Discharge electrode, 14...AC power supply.

という効果がある。There is an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いる装置の概要を示す図、 第2図は光導重度と結合水素量の関係を示す特性図、 2・・・サセプタ、 3.3”・・・基板、 4・・・赤外ランプ、 6・・・熱電対、 7・・・制御装置、 lO・・・ガス混合装置、 n含水−t、((赤子%) 第3図 第2図 FIG. 1 is a diagram showing an outline of the apparatus used in the present invention; Figure 2 is a characteristic diagram showing the relationship between the degree of light guiding and the amount of bound hydrogen. 2...susceptor, 3.3”...board, 4...Infrared lamp, 6...Thermocouple, 7...control device, lO...gas mixing device, n water content - t, ((baby%) Figure 3 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)加熱された基板表面へ原料ガスと、要すればキャ
リアガスを供給し、シリコンまたはゲルマニウムまたは
炭素またはこれらの任意の混合薄膜を堆積する工程と、 前記薄膜を外気にさらすことなく励起水素を前記薄膜上
へ供給する工程と を有することを特徴とする半導体薄膜の堆積方法。
(1) A step of supplying a raw material gas and, if necessary, a carrier gas to the heated substrate surface, and depositing a thin film of silicon, germanium, carbon, or any mixture thereof, and excitation hydrogen without exposing the thin film to the outside air. A method for depositing a semiconductor thin film, comprising the step of: supplying a substance onto the thin film.
(2)請求項1に記載の堆積方法において、前記励起水
素を供給する工程の前または工程間に堆積する薄膜の厚
さが300Å以下であることを特徴とする半導体薄膜の
堆積方法。
(2) The method of depositing a semiconductor thin film according to claim 1, wherein the thickness of the thin film deposited before or between the steps of supplying excited hydrogen is 300 Å or less.
(3)基板上へ励起水素を供給する工程と、前記基板を
外気にさらすことなく加熱して原料ガスを供給する工程
と を有することを特徴とする半導体薄膜の堆積方法。
(3) A method for depositing a semiconductor thin film, comprising a step of supplying excited hydrogen onto a substrate, and a step of heating the substrate without exposing it to the outside air and supplying a source gas.
JP27793889A 1989-10-25 1989-10-25 Depositing method for semiconductor device Granted JPH03139824A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27793889A JPH03139824A (en) 1989-10-25 1989-10-25 Depositing method for semiconductor device
US07/800,711 US5214002A (en) 1989-10-25 1991-12-03 Process for depositing a thermal CVD film of Si or Ge using a hydrogen post-treatment step and an optional hydrogen pre-treatment step

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27793889A JPH03139824A (en) 1989-10-25 1989-10-25 Depositing method for semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP09125182A Division JP3084395B2 (en) 1997-05-15 1997-05-15 Semiconductor thin film deposition method

Publications (2)

Publication Number Publication Date
JPH03139824A true JPH03139824A (en) 1991-06-14
JPH0587171B2 JPH0587171B2 (en) 1993-12-15

Family

ID=17590376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27793889A Granted JPH03139824A (en) 1989-10-25 1989-10-25 Depositing method for semiconductor device

Country Status (1)

Country Link
JP (1) JPH03139824A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010555A1 (en) * 1991-11-14 1993-05-27 Kanegafuchi Chemical Industry Co., Ltd. Polycristalline silicon thin film and process for forming it at low temperature
JPH0897159A (en) * 1994-09-29 1996-04-12 Handotai Process Kenkyusho:Kk Method and system for epitaxial growth
US5624873A (en) * 1993-11-12 1997-04-29 The Penn State Research Foundation Enhanced crystallization of amorphous films
KR20000048288A (en) * 1998-12-22 2000-07-25 마찌다 가쯔히꼬 Method for forming crystalline sillicon-based semiconductor thin film
US6773762B1 (en) 1997-11-20 2004-08-10 Tokyo Electron Limited Plasma treatment method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7186630B2 (en) 2002-08-14 2007-03-06 Asm America, Inc. Deposition of amorphous silicon-containing films

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118122A (en) * 1984-07-04 1986-01-27 Hitachi Ltd Semiconductor manufacturing apparatus
JPS6126774A (en) * 1984-07-16 1986-02-06 Canon Inc Apparatus for forming amorphous silicon film
JPS61151092A (en) * 1984-12-24 1986-07-09 Hitachi Ltd Thin film formation and system therefor
JPS62213118A (en) * 1986-03-13 1987-09-19 Nec Corp Formation of thin film and device therefor
JPH01238112A (en) * 1988-03-18 1989-09-22 Sanyo Electric Co Ltd Treating method of semiconductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118122A (en) * 1984-07-04 1986-01-27 Hitachi Ltd Semiconductor manufacturing apparatus
JPS6126774A (en) * 1984-07-16 1986-02-06 Canon Inc Apparatus for forming amorphous silicon film
JPS61151092A (en) * 1984-12-24 1986-07-09 Hitachi Ltd Thin film formation and system therefor
JPS62213118A (en) * 1986-03-13 1987-09-19 Nec Corp Formation of thin film and device therefor
JPH01238112A (en) * 1988-03-18 1989-09-22 Sanyo Electric Co Ltd Treating method of semiconductor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010555A1 (en) * 1991-11-14 1993-05-27 Kanegafuchi Chemical Industry Co., Ltd. Polycristalline silicon thin film and process for forming it at low temperature
US5387542A (en) * 1991-11-14 1995-02-07 Kanegafuchi Chemical Industry Co., Ltd. Polycrystalline silicon thin film and low temperature fabrication method thereof
US5624873A (en) * 1993-11-12 1997-04-29 The Penn State Research Foundation Enhanced crystallization of amorphous films
JPH0897159A (en) * 1994-09-29 1996-04-12 Handotai Process Kenkyusho:Kk Method and system for epitaxial growth
US5769942A (en) * 1994-09-29 1998-06-23 Semiconductor Process Laboratory Co. Method for epitaxial growth
US6110290A (en) * 1994-09-29 2000-08-29 Semiconductor Process Laboratory Co. Method for epitaxial growth and apparatus for epitaxial growth
US6773762B1 (en) 1997-11-20 2004-08-10 Tokyo Electron Limited Plasma treatment method
KR20000048288A (en) * 1998-12-22 2000-07-25 마찌다 가쯔히꼬 Method for forming crystalline sillicon-based semiconductor thin film

Also Published As

Publication number Publication date
JPH0587171B2 (en) 1993-12-15

Similar Documents

Publication Publication Date Title
US5214002A (en) Process for depositing a thermal CVD film of Si or Ge using a hydrogen post-treatment step and an optional hydrogen pre-treatment step
JPS61127121A (en) Formation of thin film
JPH03139824A (en) Depositing method for semiconductor device
JPS60117711A (en) Forming apparatus of thin film
JPS60117712A (en) Forming method of thin film
JP3084395B2 (en) Semiconductor thin film deposition method
JPH05144741A (en) Formation of amorphous silicon film
JP2002110551A (en) Method and apparatus for forming semiconductor thin film
JPH07221026A (en) Method for forming quality semiconductor thin film
JPS634454B2 (en)
JPS63317675A (en) Plasma vapor growth device
JPH04342121A (en) Manufacture of hydrogenated amorphous silicon thin film
JPH02259076A (en) Formation of deposited film
JPS62240768A (en) Formation of deposited film
JPS59215731A (en) Manufacture of silicon oxide film
JP3040247B2 (en) Manufacturing method of silicon thin film
JPH0682616B2 (en) Deposited film formation method
JP2654456B2 (en) Manufacturing method of high quality IGFET
JPS62180074A (en) Formation of deposited film by plasma cvd method
JPS6126773A (en) Formation of accumulated film
JPS6216512A (en) Manufacture of semiconductor thin film
JPS61230325A (en) Vapor growth apparatus
Sawado et al. Contributions of Silicon-Hydride Radicals to Hydrogenated Amorphous Silicon Film Formation in Windowless Photochemical Vapor Deposition System
JPH03229871A (en) Production of insulating film and production of semiconductor device using this insulating film
JPS62243767A (en) Formation of deposited film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term