JPH02220436A - Dry etching - Google Patents

Dry etching

Info

Publication number
JPH02220436A
JPH02220436A JP4212289A JP4212289A JPH02220436A JP H02220436 A JPH02220436 A JP H02220436A JP 4212289 A JP4212289 A JP 4212289A JP 4212289 A JP4212289 A JP 4212289A JP H02220436 A JPH02220436 A JP H02220436A
Authority
JP
Japan
Prior art keywords
gas
compound semiconductor
etching
temperature
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4212289A
Other languages
Japanese (ja)
Other versions
JPH0821569B2 (en
Inventor
Kiyoshi Asakawa
浅川 潔
Nobukazu Takado
高堂 宜和
Iwao Nishiyama
岩男 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4212289A priority Critical patent/JPH0821569B2/en
Publication of JPH02220436A publication Critical patent/JPH02220436A/en
Publication of JPH0821569B2 publication Critical patent/JPH0821569B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To realize an etching operation as a unit of an atomic layer of a semiconductor crystal by a method wherein it is controlled by a difference in an equilibrium vapor-pressure temperature whether a reaction product is evaporated or remains. CONSTITUTION:In a first process in which a reactive gas 16 is reacted with a constituent element of a compound semiconductor 11, a gas with which a gas 17 whose composition is identical to that of a reaction product 18 produced when the reactive gas 16 has been reacted with the constituent element of the compound semiconductor 11 has been mixed only in a saturated vapor-pressure amount is used as an etchant gas. As a result, an etching operation is stopped in a state that the surface of the compound semiconductor is covered with the reaction product 18. Then, in a second process, a temperature of the compound semiconductor is raised to a sufficiently high temperature; thereby, the reaction product 18 on the surface of the compound semiconductor formed in the first process is disconnected. Only one layer of an atomic layer or a molecular layer of the compound semiconductor is etched by using the first process and the second process as one cycle. Thereby, when a changeover operation of a substrate temperature is repeated, the atomic layer as a unit can be etched.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化合物半導体結晶の原子層単位でのドライエツ
チング方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for dry etching compound semiconductor crystals in atomic layer units.

〔従来の技術〕[Conventional technology]

従来のドライエツチングは主として、反応性ガスの放電
プラズマによって生成されたイオンや、中性2ジカルと
、基板表面の、衝突・吸着・反応・脱離によって行われ
ていた。イオンは通常数10eVないし数100eVに
加速されて基板に突入するため、原子層単位で基板表面
層部を剥ぎ取るにはエネルギーが過剰である上、基板表
面の欠陥が無視できなかった。欠陥が極力抑制されたエ
ツチング方式としては、中性の反応性ガスに適当な波長
の光(電磁波)を照射し、生成された中性ラジカルと基
板表面との光化学反応を利用する光励起エツチングが知
られている。光励起エツチングは、過剰エネルギーによ
る基板表面での欠陥が避けられ、されに製造プロセスの
低温化も実現できる。また、エツチング過程の精密制御
の点からも放電励起よりも優れている。
Conventional dry etching has been performed mainly by collision, adsorption, reaction, and desorption of ions and neutral diradicals generated by discharge plasma of a reactive gas with the substrate surface. Ions are normally accelerated to several tens of eV to several hundreds of eV and enter the substrate, which requires too much energy to strip off the surface layer of the substrate in units of atomic layers, and defects on the substrate surface cannot be ignored. A known etching method that minimizes defects is photo-excited etching, which irradiates a neutral reactive gas with light (electromagnetic waves) of an appropriate wavelength and utilizes a photochemical reaction between the generated neutral radicals and the substrate surface. It is being Photo-stimulated etching avoids defects on the substrate surface due to excessive energy, and can also lower the manufacturing process temperature. It is also superior to discharge excitation in terms of precise control of the etching process.

GaAsの光励起エラキングの例がガルウムアーセナイ
ド・アンド・リレイテドコンバウンド・インターナショ
ナル・フィジイクス・コンファレンス・シリーズ、ナン
バー60 (GalliumArsenide and
 Re1ated Compounds、Int、Ph
ys、Conf、ser、NO,60)に掲載のニス・
ヨコヤマ、ティー・イノウニ、ワイ・ヤマカゲ、アンド
、エム・ヒロス(S、Yokoyaw+a、T、Yam
akage、and M、Hirose)による論文「
レーザーインデユースト・フォトケミカル・エツチング
・オブ・ガリウムアーセナイド・アンド・イッツ・キャ
ラクタライゼーション・パイ・エックスレイ・フォトエ
レクトロン・スペクトロスコピー・アンド・ルミネッセ
ンス」(Laser−InducedPhotoche
mical Etching of GaAs and
Its Charactization by X−R
ay PhotoelectronSpectrosc
opyand Lum1nescence)に報告され
ている。この例は、GaAs結晶をHCI(5%)とH
e (95%)の混合ガス中で波長193nmのArF
エキシマレーザ光の照射によりエツチングする。混合ガ
ス圧6.65X10’ Pa、基板温度20℃の条件で
GaAsの絶縁性基板に対して約200人/分のエツチ
ング速度が得られている。反応の素過程としては、HC
Iがエキシマレーザ−光の照射により解離してC1ラジ
カルが発生ずる。このCIラジカルが、GaAsと反応
し、 GaAs+6HC1 一*GaC13+AsC13+3H2 の反応が進み、エツチングが進行する。
An example of photoexcited elaking in GaAs is presented in the GalliumArsenide and Related Combined International Physics Conference Series, No. 60.
Re1ated Compounds, Int, Ph
ys, Conf, ser, NO, 60)
Yokoyama, T Inouuni, Wai Yamakage, And, M Hiros (S, Yokoyaw+a, T, Yam
akage, and M, Hirose)
Laser-Induced Photochemical Etching of Gallium Arsenide and Its Characterization Pi
mical etching of GaAs and
Its Characterization by X-R
ay Photoelectron Spectrosc
opyand Luminescence). This example uses GaAs crystals with HCI (5%) and H
ArF with a wavelength of 193 nm in a mixed gas of e (95%)
Etching is performed by irradiation with excimer laser light. An etching rate of about 200 people/min was obtained for an insulating GaAs substrate under conditions of a mixed gas pressure of 6.65×10' Pa and a substrate temperature of 20° C. As an elementary process of the reaction, HC
I dissociates upon irradiation with excimer laser light, generating C1 radicals. This CI radical reacts with GaAs, and the reaction of GaAs+6HC1 -*GaC13+AsC13+3H2 progresses, and etching progresses.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の光励起エッ°キングでは、化合物半導体の1つの
元素のエツチングを起こす条件と別の元素のエツチング
を起こす条件は同じである。すなわちエツチング過程に
反応遇択性がない。このため、GaAsの場合でGa原
子層を1層はぎ取り、次にその下のAs原子層をはぎ取
り、次々と原子層単位でエツチングを行っていくことは
できない。
In conventional photo-excited etching, the conditions for etching one element of a compound semiconductor are the same as the conditions for etching another element. In other words, there is no reaction preference in the etching process. For this reason, in the case of GaAs, it is not possible to strip off one Ga atomic layer, then strip off the underlying As atomic layer, and perform etching one atomic layer at a time.

本発明はこのような従来の閏題点を解決するためになさ
れたもので、化学物半導体のエツチング過程に制御性の
高い反応選択性を与えて原子層単位でのエツチング技術
を提供すること目的とする。
The present invention has been made to solve these conventional problems, and its purpose is to provide an etching technology in atomic layer units by providing highly controllable reaction selectivity to the etching process of chemical semiconductors. shall be.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、二元素から構成される化合物半導体を、この
化合物半導体と反応する反応性ガスに、該反応性ガスと
前記化合物半導体の構成元素とから成る反応生成物のガ
スを混合したエッチャントガス(混合ガス)中で前記反
応性ガスと反応させる第1の工程と、第1の工程を経た
化合物半導体の温度を、当該添加反応生成ガスに加えら
れた分圧に等しい飽和蒸気圧を与える温度よりも高い状
態で前記化合物半導体表面上の第1の工程で生じた反応
生成物を脱離させる第2の工程とを交互にくり返すこと
を特徴とする原子層単位でのエツチング方式である。
In the present invention, a compound semiconductor composed of two elements is treated with an etchant gas ( a first step of reacting with the reactive gas in a mixed gas) and a temperature of the compound semiconductor that has undergone the first step to a temperature that gives a saturated vapor pressure equal to the partial pressure added to the added reaction product gas. This is an etching method in units of atomic layers, in which a second step of removing reaction products generated in the first step on the surface of the compound semiconductor is alternately repeated in a state where the etching rate is high.

[作用] 本発明では、反応性ガスと化合物半導体の構成元素とが
反応する第1の工程で、エッチャントガスとして、反応
性ガスに該反応性ガスと化学物半導体の構成元素とが反
応した場合に生成される反応生成物と同じ組成のガスを
飽和蒸気圧量だけ混合したガスを用いる。このため、化
合物半導体表面ではエッチャントガスに含まれる反応ガ
スと同種の反応生成物が表面から脱離せず、該反応生成
物が表面をおおった状態でエツチングが停止する。
[Operation] In the present invention, in the first step in which the reactive gas and the constituent elements of the compound semiconductor react, when the reactive gas and the constituent elements of the chemical semiconductor react with the reactive gas as an etchant gas. A gas with the same composition as the reaction product produced in the saturated vapor pressure is used. Therefore, the reaction product of the same type as the reaction gas contained in the etchant gas does not desorb from the surface of the compound semiconductor, and etching stops with the reaction product covering the surface.

次に第2の工程で化合物半導体の温度を十分高い温度と
することにより第1の工程で形成された化合物半導体表
面上の反応生成物が脱離する。この第1の工程と第2の
工程を1サイクルとして化合物半導体の原子層または分
子層が1層だけエツチングされる。
Next, in the second step, the temperature of the compound semiconductor is raised to a sufficiently high temperature, so that the reaction products on the surface of the compound semiconductor formed in the first step are desorbed. The first step and the second step constitute one cycle, and only one atomic layer or molecular layer of the compound semiconductor is etched.

従って基板温度の切り変えをくり返すことにより原子層
単位でのエツチングが可能となる。
Therefore, by repeatedly changing the substrate temperature, etching can be performed in units of atomic layers.

〔実施例〕 以下、本発明の一実施例について図面を参照して詳細に
説明する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は反発明の一実施例を示した加工装置の断面図で
あり、GaAsの分子層単位のエツチングを示す。Ga
AsとC12ガスとの反応生成物GaCl3とAsC1
3である。したがって低温側のエツチングチャンバー1
2および高温側のチャンバー13内に導入するエッチャ
ントガスは、CI□ガス16に加えGaC1,ガス17
をGaAs基板温度に対する飽和蒸気正分だけ混合する
。基板温度25℃ではC1,ガス16とGaC1,ガス
17の全圧をITo r r、GaC13ガス17の分
圧をlXl0−’Torrに設定する。第2図にGaC
13とAsCI、の平衡蒸気圧を示す、上記の設定は、
第2図の◎印で示したガス圧(ITorr)となり基板
温度25℃でエッチャントガス圧はAsCl3の蒸気圧
より低くGac11蒸気圧より高い。
FIG. 1 is a sectional view of a processing apparatus showing an embodiment of the invention, and shows etching of GaAs molecular layers. Ga
Reaction products of As and C12 gas GaCl3 and AsCl
It is 3. Therefore, etching chamber 1 on the low temperature side
The etchant gases introduced into the chamber 13 on the high temperature side include GaC1 and gas 17 in addition to the CI□ gas 16.
The amount of saturated vapor corresponding to the temperature of the GaAs substrate is mixed. At a substrate temperature of 25° C., the total pressure of C1, gas 16 and GaC1, gas 17 is set to ITorr, and the partial pressure of GaC13 gas 17 is set to lXl0-'Torr. Figure 2 shows GaC
The above settings, which indicate the equilibrium vapor pressure of 13 and AsCI, are:
The gas pressure (ITorr) is indicated by the mark ◎ in FIG. 2, and when the substrate temperature is 25° C., the etchant gas pressure is lower than the vapor pressure of AsCl3 and higher than the Gac11 vapor pressure.

またGaAs基板11をエツチングチャンバー12内の
上記エッチャントガス中で波長308nmのXeC1エ
キシマレーザ−光15を照射することにより、C1,ガ
ス16とGaAsのGaまたはAsが反応しGaC13
、AsC13が生成される。このAsC13の平衡蒸気
圧は25℃でl QTo r rと、エッチャントガス
圧ITorより高いため、AsC13はGaAs基板表
面より脱離する。しかしGaCl3の平衡蒸気圧は25
℃でlXl0−’Torrと低く、しかもエッチャント
ガスにはG a C1sガスが飽和蒸気正分のI X 
10−”To r rだけ含まれているため、基板表面
に残留する。従って、As層はAsC1319の形で除
去され、Ga層はC12ガスと反応しGaCl318の
形で表面に残留しエツチングが停止する。
Furthermore, by irradiating the GaAs substrate 11 with XeC1 excimer laser light 15 having a wavelength of 308 nm in the etchant gas in the etching chamber 12, C1, gas 16 and Ga or As of GaAs react with each other.
, AsC13 are generated. Since the equilibrium vapor pressure of AsC13 is l QTo r r at 25° C., which is higher than the etchant gas pressure ITor, AsC13 is desorbed from the surface of the GaAs substrate. However, the equilibrium vapor pressure of GaCl3 is 25
℃, as low as 1
Since only 10-" Tor r is contained, it remains on the substrate surface. Therefore, the As layer is removed in the form of AsC1319, and the Ga layer reacts with C12 gas and remains on the surface in the form of GaCl318, stopping etching. do.

次にGaCl3が表面に残留しているGaAs基板を、
温度が100℃以上の高温側のチャンバー13に移すと
、GaCl318は沸騰し蒸発する。このようにGaC
13がGaAs基板表面から脱離すれば全面に次のAs
層が現われることになり、単分子層エツチングの一サイ
クルが終わる0次のAs層のエツチングは、GaAs基
板11を再びエツチングチャンバー12にもどして前述
のプロセスを繰り返す、上記のエツチングプロセスを逐
次繰り返すことにより、チャンバー13では常にAs層
でエツチングを停止することができ、また1サイクルで
As層とGa層の2層を除去できるのでエツチング層厚
もエツチングのサイクル数で制御できる。GaAsの(
100)面の1サイクル当りのエツチング速度は2.8
3人/1サイクルであり、この値は分子層1層分に相当
し、分子層レベルのエツチングが実現されている。
Next, the GaAs substrate with GaCl3 remaining on the surface was
When transferred to the chamber 13 on the high temperature side where the temperature is 100° C. or higher, the GaCl 318 boils and evaporates. In this way, GaC
When 13 is desorbed from the surface of the GaAs substrate, the next As
The etching of the zero-order As layer, which results in the appearance of a single monolayer etching cycle, involves sequentially repeating the above etching process by returning the GaAs substrate 11 to the etching chamber 12 and repeating the process described above. Therefore, etching can always be stopped at the As layer in the chamber 13, and since two layers, the As layer and the Ga layer, can be removed in one cycle, the etching layer thickness can also be controlled by the number of etching cycles. GaAs (
The etching rate per cycle for the 100) surface is 2.8
Three people/one cycle, which corresponds to one molecular layer, realizes etching at the molecular layer level.

本実施例では、1サイクルでAs層とGa層の2層をエ
ツチングする場合を示したが、以下に示すように1サイ
クルでGa層とAs層を1層ずつエツチングすることも
可能である。第1にCI。
In this embodiment, a case is shown in which two layers, an As layer and a Ga layer, are etched in one cycle, but it is also possible to etch one Ga layer and one As layer in one cycle, as shown below. Firstly, CI.

ガスにAsC13飽和蒸気圧量だけ混合したエッチャン
トガスを用いてGaAsの光励起エツチングを行い、A
 s Cl 3を生成しGaAs表面に残留させる0次
にGaAs基板を高温側チャンバーに移してAsC13
だけを脱離させてAs層1層だけの原子層エツチングが
実現できる。第2にGa層が表面に露出しなGaAsを
低温側チャンバー12に移して前記の実施例と同じよう
にたC12ガスにGaC13ガスを飽和蒸気圧だけ混合
したエッチャントガスを用いて光励起エツチングを行い
、GaCl3を生成しGaAs表面に残留させる0次に
GaAs基板を高温側チャンバーに移してGaC1gだ
けを脱離させてGa層1層だけの原子層エツチングが実
現できる。上記の工程をくり返すことにより1サイクル
でGa層またはAs層を1層だけエツチングする原子層
エツチングが可能である。
Photo-excited etching of GaAs was performed using an etchant gas mixed with AsC13 saturated vapor pressure.
s Cl3 is generated and remains on the GaAs surface.The next GaAs substrate is moved to a high temperature chamber and AsC13 is generated.
Atomic layer etching of only one As layer can be realized by removing only As. Second, the GaAs with the Ga layer exposed on the surface is transferred to the low-temperature side chamber 12, and photo-excited etching is performed using an etchant gas in which C12 gas and GaC13 gas are mixed at the saturated vapor pressure in the same manner as in the previous embodiment. , GaCl3 is generated and left on the GaAs surface.The zero-order GaAs substrate is moved to a high-temperature chamber, and only 1g of GaCl is removed, thereby realizing atomic layer etching of only one Ga layer. By repeating the above steps, it is possible to perform atomic layer etching in which only one Ga layer or As layer is etched in one cycle.

また本実施例では、化合物半導体としてGaAsの場合
を示したが、InP等の他の二元素で構成される化合物
半導体にも本発明は適用できる。
Further, in this embodiment, GaAs is used as the compound semiconductor, but the present invention can also be applied to a compound semiconductor composed of other two elements such as InP.

尚、実施例では基板表面に残留した反応生成物を取り除
くのに温度の異なるチャンバーに基板を移したが、他の
方法、例えば、効率は悪くなるが、1つのチャンバー内
に基板を留め、ガスの供給を止めると共に基板温度変化
させる方法等によってもよい。
In this example, the reaction product remaining on the substrate surface was removed by moving the substrate to a chamber with a different temperature, but other methods, such as keeping the substrate in one chamber and using a gas Alternatively, a method may be used in which the supply of the substrate is stopped and the temperature of the substrate is changed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の原子層エツチングによれ
ば、化合物半導体のドライエツチングにおいて平衡蒸気
圧温度の違いにより反応生成物が蒸発するか残留するか
を制御することができ、1種類の元素をエツチングする
反応と別の種類の元素をエツチングする反応に明確な反
応選択性を与えることができる。
As explained above, according to the atomic layer etching of the present invention, it is possible to control whether a reaction product evaporates or remains depending on the difference in equilibrium vapor pressure temperature in dry etching of a compound semiconductor. It is possible to provide distinct reaction selectivity between the reaction etching one type of element and the reaction etching another type of element.

上記の理由により、半導体結晶の原子層単位でのエツチ
ングが可能となり、基板の移動やガスの切り替えの1サ
イクルで原子層が11または2層だけ除去される。従っ
てサイクル数のみでエツチング量を決定することができ
、精密なエツチング量の制御が可能となる。
For the above reasons, it is possible to etch the semiconductor crystal in units of atomic layers, and only 11 or 2 atomic layers are removed in one cycle of substrate movement or gas switching. Therefore, the amount of etching can be determined only by the number of cycles, making it possible to precisely control the amount of etching.

チャンバー、13・・・低温側チャンバー 16・・・
CI2ガス、17− G a Cl 3ガス、18−・
・残留GaC13,19・・・AsC13。
Chamber, 13...low temperature side chamber 16...
CI2 gas, 17- Ga Cl3 gas, 18-.
-Residual GaC13,19...AsC13.

Claims (1)

【特許請求の範囲】[Claims] 二元素から構成される化合物半導体を、当該化合物半導
体と反応する反応性ガスに、該反応性ガスと前記化合物
半導体の構成元素から成る反応生物のガスを添加した混
合ガス雰囲気中で、前記添加ガスの飽和蒸気圧を与える
温度よりも低温側で、前記混合ガスと反応させる第1の
工程と、前記混合ガス中の前記反応性ガスを遮断して第
1の工程を経た前記半導体の温度を、前記飽和蒸気圧温
度よりも高くして前記半導体表面上の第1の工程で生じ
た反応生成物を脱離させる第2の工程とを交互に繰り返
すことを特徴とするドライエッチング方法。
A compound semiconductor composed of two elements is heated in a mixed gas atmosphere in which a reactive gas that reacts with the compound semiconductor is added with a gas of a reactive organism composed of the constituent elements of the reactive gas and the compound semiconductor. A first step of reacting with the mixed gas at a temperature lower than a temperature that gives a saturated vapor pressure of , and a temperature of the semiconductor that has undergone the first step of blocking the reactive gas in the mixed gas, A dry etching method comprising alternately repeating a second step of increasing the temperature to a temperature higher than the saturated vapor pressure temperature to remove reaction products generated in the first step on the semiconductor surface.
JP4212289A 1989-02-21 1989-02-21 Dry etching method Expired - Lifetime JPH0821569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4212289A JPH0821569B2 (en) 1989-02-21 1989-02-21 Dry etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4212289A JPH0821569B2 (en) 1989-02-21 1989-02-21 Dry etching method

Publications (2)

Publication Number Publication Date
JPH02220436A true JPH02220436A (en) 1990-09-03
JPH0821569B2 JPH0821569B2 (en) 1996-03-04

Family

ID=12627145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4212289A Expired - Lifetime JPH0821569B2 (en) 1989-02-21 1989-02-21 Dry etching method

Country Status (1)

Country Link
JP (1) JPH0821569B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399230A (en) * 1992-06-05 1995-03-21 Hitachi, Ltd. Method and apparatus for etching compound semiconductor
JPH0897193A (en) * 1994-02-15 1996-04-12 At & T Corp Manufacture of semiconductor element
US5527417A (en) * 1992-07-06 1996-06-18 Kabushiki Kaisha Toshiba Photo-assisted CVD apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399230A (en) * 1992-06-05 1995-03-21 Hitachi, Ltd. Method and apparatus for etching compound semiconductor
US5527417A (en) * 1992-07-06 1996-06-18 Kabushiki Kaisha Toshiba Photo-assisted CVD apparatus
JPH0897193A (en) * 1994-02-15 1996-04-12 At & T Corp Manufacture of semiconductor element

Also Published As

Publication number Publication date
JPH0821569B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
EP0714119B1 (en) Pattern forming process and process for preparing semiconductor device utilizing said pattern forming process
KR20150037638A (en) High selectivity and low stress carbon hardmask by pulsed low frequency rf power
JP2680202B2 (en) Vapor phase growth method and apparatus
JPH02220436A (en) Dry etching
JPH03276626A (en) Etching method for film to be etched composed of silicon compound system
JP2782757B2 (en) Etching method
JP3184988B2 (en) Crystal plane anisotropic dry etching method
JPH03133128A (en) Digital etching
JPH02272728A (en) Dry etching method
JP3163267B2 (en) Vapor growth method
JPH02272729A (en) Dry etching method
JP2535517B2 (en) Processing method
JPH0279429A (en) Digital etching method for iii-v compound semiconductor
JPH03276719A (en) Digital etching method
JPH02272730A (en) Dry etching method
JPH04273434A (en) Optical cvd method
WO2023148797A1 (en) Etching method
JP2522050B2 (en) Atomic layer dry etching method
JPS6075327A (en) Ultraviolet ray generating device and material treating device using it
JPH01289121A (en) Digital etching process of iii-v compound semiconductor
JPH04127528A (en) Etching process
JP2683612B2 (en) Method for forming structure of compound semiconductor
JPH0350412B2 (en)
JPH0292891A (en) Molecular beam epitaxial growth process and apparatus therefor
JPH04293776A (en) Thermal cvd method