JPH0660409B2 - Method of forming metal film - Google Patents

Method of forming metal film

Info

Publication number
JPH0660409B2
JPH0660409B2 JP62056634A JP5663487A JPH0660409B2 JP H0660409 B2 JPH0660409 B2 JP H0660409B2 JP 62056634 A JP62056634 A JP 62056634A JP 5663487 A JP5663487 A JP 5663487A JP H0660409 B2 JPH0660409 B2 JP H0660409B2
Authority
JP
Japan
Prior art keywords
metal
metal film
substrate
forming
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62056634A
Other languages
Japanese (ja)
Other versions
JPS63223174A (en
Inventor
昭 新谷
潔 三宅
Original Assignee
科学技術庁長官官房会計課長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科学技術庁長官官房会計課長 filed Critical 科学技術庁長官官房会計課長
Priority to JP62056634A priority Critical patent/JPH0660409B2/en
Publication of JPS63223174A publication Critical patent/JPS63223174A/en
Publication of JPH0660409B2 publication Critical patent/JPH0660409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化学気相成長法による金属膜の形成法に係り,
特に半導体用金属膜の形成に好適な化学気相成長法に関
する。
The present invention relates to a method for forming a metal film by chemical vapor deposition,
Particularly, the present invention relates to a chemical vapor deposition method suitable for forming a metal film for semiconductors.

〔従来の技術〕[Conventional technology]

従来の金属膜形成法には,周知のごとく物理蒸着法と化
学気相成長法とがある。
As is well known, the conventional metal film forming methods include a physical vapor deposition method and a chemical vapor deposition method.

物理蒸着法では,蒸着に指向性があり,段差を有するパ
ターンに対しては形成膜の膜厚均一性が悪く,アスペク
ト比の大きい溝の側壁に膜厚均一性よく金属膜を形成さ
せることは困難であった。このため段差カバレージの優
れた化学気相成長法の技術開発が盛んになっている。し
かし,この化学気相成長法による金属膜の形成におい
て,例えばアール・ソランキらによる,アプライドフィ
ジクスレター(R. Solanki et al, Appl. Phys. Lett)
41巻(1983年)第1041頁に述べられているように,有機
金属が主として用いられている。このため,形成した金
属膜中に炭素が残存し,電気抵抗が十分下がらないとい
う問題があった。これを避けるため,例えばエス・デー
・アレンらによる,ジャーナルオブアプライドフィジク
ス(S. D. Allen, J. Appl. Phys.)54巻(1983年)第1
041頁に記載されているように,金属ハロゲン化物をソ
ースとして用いる工夫がなされているが,金属フッ化物
以外は常温で固体であり,その取り扱いが困難で化学気
相成長法におけるソースとしては用いることができな
い。このため,金属フッ化物がよく用いられている。と
ころが,金属フッ化物を用いた場合,反応系においてフ
ッ素あるいはフッ化水素が発生し,これが絶縁物である
酸化ケイ素(SiO2など),窒化ケイ素(Si34
ど)と反応を起こすため,これらの絶縁物表面上には金
属膜の形成が困難であった。
In the physical vapor deposition method, the vapor deposition has directivity, and the film thickness uniformity of the formed film is poor with respect to a pattern having a step. It was difficult. For this reason, technological development of chemical vapor deposition, which has excellent step coverage, has become popular. However, in the formation of a metal film by this chemical vapor deposition method, for example, Applied Physics Letter by R. Solanki et al. (R. Solanki et al, Appl. Phys. Lett)
As described in Volume 41 (1983), page 1041, organometallics are mainly used. Therefore, there is a problem that carbon remains in the formed metal film and electric resistance is not sufficiently lowered. To avoid this, for example, Journal of Applied Physics (SD Allen, J. Appl. Phys.) Volume 54 (1983), by S. D. Allen et al.
As described on page 041, a device using a metal halide as a source has been devised, but other than metal fluorides, they are solid at room temperature and are difficult to handle, so they are used as a source in chemical vapor deposition. I can't. For this reason, metal fluorides are often used. However, when a metal fluoride is used, fluorine or hydrogen fluoride is generated in the reaction system, and this reacts with silicon oxide (such as SiO 2 ) and silicon nitride (such as Si 3 N 4 ) which are insulators, It was difficult to form a metal film on the surface of these insulators.

また,ジー・エム・ノイマンらによる,ジャーナルオブ
レス−コモンメタルス(J. Less-Common Metals)33巻
(1973年)第209頁から第218頁に,溶融したGaに塩素
を反応させて塩化ガリウムのベーパを形成し,これとア
ルシンとを反応させてGaAsの結晶を形成させる方法が
述べられているが,これは化合物半導体の形成方法であ
って,金属膜の形成方法ではなく,本明細書において説
明する本発明の技術思想とは全く異なるものである。
Also, J. Less-Common Metals, Vol. 33 (1973), pages 209 to 218, by G. M. Neumann et al. The method of forming a vapor of the above and reacting this with arsine to form a GaAs crystal is described, but this is a method of forming a compound semiconductor, not a method of forming a metal film. This is completely different from the technical idea of the present invention described in.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述したごとく,従来技術においては,有機金属または
金属フッ化物をガス状で送気し,これに熱的エネルギー
を与えて分解反応を起こさせて金属を堆積する化学気相
成長法である。このため,金属膜中に炭素や酸素といっ
た不純物が含有されたり,あるいは酸化ケイ素や窒化ケ
イ素などの絶縁膜上に金属が堆積できないなどの問題が
あった。しかし,これらの問題を避けるための物理蒸着
法では,金属膜形成に指向性があり,基板上のパターン
段差部での金属膜の被覆率が悪いなどの問題があった。
As described above, the conventional technique is a chemical vapor deposition method in which an organic metal or a metal fluoride is sent in a gaseous state, and thermal energy is applied to the gas to cause a decomposition reaction to deposit a metal. For this reason, there have been problems that impurities such as carbon and oxygen are contained in the metal film, or metal cannot be deposited on the insulating film such as silicon oxide and silicon nitride. However, in the physical vapor deposition method for avoiding these problems, there is a problem that the metal film formation has directivity and the coverage of the metal film at the pattern step portion on the substrate is poor.

本発明の目的は,化学気相成長法によって,金属の電気
伝導率を下げるような不純物を含有しない高純度の金属
膜を,段差被覆率がよく,かつフッ素やフッ化水素と反
応を起こす酸化ケイ素や窒化ケイ素などの絶縁膜上にも
効率よく金属膜を形成させることができる高品質の半導
体用金属膜形成技術を提供することにある。
An object of the present invention is to oxidize a high-purity metal film containing no impurities that lowers the electrical conductivity of metal by chemical vapor deposition, which has a good step coverage and reacts with fluorine or hydrogen fluoride. It is an object of the present invention to provide a high-quality metal film forming technique for semiconductors, which can efficiently form a metal film on an insulating film such as silicon or silicon nitride.

〔問題点を解決するための手段〕[Means for solving problems]

上記本発明の目的を達成するためには,金属膜の電気伝
導率を低下させるような炭素や酸素などの元素あるいは
基板上に形成された酸化ケイ素や窒化ケイ素などよりな
る絶縁物表面に金属膜を形成させる場合には,その絶縁
物と反応するフッ素などの元素を含まない金属ソースを
用いることが望ましい。通常の場合には,金属塩化物を
ソースとすれば基本的に問題点は解決できる。しかし,
塩化物はほとんどの金属において固体であり,通常の気
相成長法の金属ソースとしては不適当である。
In order to achieve the above-mentioned object of the present invention, a metal film is formed on the surface of an insulator such as an element such as carbon or oxygen that lowers the electric conductivity of the metal film, or an oxide such as silicon oxide or silicon nitride formed on a substrate. When forming a film, it is desirable to use a metal source that does not contain an element such as fluorine that reacts with the insulator. In the usual case, the problem can be basically solved by using metal chloride as the source. However,
Chloride is a solid in most metals, making it unsuitable as a metal source for conventional vapor deposition.

本発明は,所望する金属膜を形成させるための金属部材
と,それを披着し金属膜を形成したい基板とを適当な位
置関係で化学気相成長装置の反応容器内に配置し(第1
図),ハロゲンガスを含んだガス,例えば塩素ガスを含
んだガスと上記金属部材をまず反応させて金属塩化物を
生成させ,この金属塩化物を,上記金属部材の近傍に配
置されている基板上で化学分解反応を起こさせて金属を
基板上に堆積させることにより,達成される。
According to the present invention, a metal member for forming a desired metal film and a substrate on which the desired metal film is to be formed and on which a metal film is to be formed are arranged in an appropriate positional relationship in a reaction vessel of a chemical vapor deposition apparatus (first
Fig.), A gas containing a halogen gas, for example, a gas containing chlorine gas, is first reacted with the metal member to generate a metal chloride, and the metal chloride is placed on the substrate arranged in the vicinity of the metal member. This is accomplished by causing a chemical decomposition reaction above to deposit the metal on the substrate.

本発明の化学気相成長法によって,金属膜の形成に用い
る金属は,塩素,臭素,ヨウ素,フッ素などのハロゲン
ガスを含んだガスと反応し,金属ハロゲン化物を生成す
るものであればよく,例えばW,Mo,V,Cr,Niな
ど,あるいはAl,Cu,Ag,Pd,Zrなど数多く挙げる
ことができ,特に用いる金属の種類を限定するものでは
ない。また,上記の金属と反応させるハロゲンガスのう
ちのフッ素は,基板物質あるいは絶縁物質が酸明ケイ素
や窒化ケイ素などからなる場合には反応するので好まし
くなく,フッ素と反応しない基板あるいは絶縁物上に金
属膜を形成させる場合にのみ適用できる。そして,本発
明の化学気相成長法による金属膜の形成において,反応
ガスとして塩素を用いるのが,その反応性および取り扱
い上からいって最も好適である。
According to the chemical vapor deposition method of the present invention, the metal used for forming the metal film may be any one as long as it reacts with a gas containing a halogen gas such as chlorine, bromine, iodine or fluorine to produce a metal halide, For example, W, Mo, V, Cr, Ni, etc., or Al, Cu, Ag, Pd, Zr, etc. can be mentioned in large numbers, and the kind of metal used is not particularly limited. Fluorine in the halogen gas that reacts with the above-mentioned metals reacts when the substrate material or insulating material is silicon oxide or silicon nitride, and is not preferable. It can be applied only when forming a metal film. In the formation of the metal film by the chemical vapor deposition method of the present invention, it is most preferable to use chlorine as a reaction gas in terms of its reactivity and handling.

本発明の化学気相成長法の反応容器内において,所望す
る金属膜を形成させるための金属部材とハロゲンとを反
応させる場合に,光励起下で行なうと金属ハロゲン化物
の生成効率が一段と向上するし,また金属ハロゲン化物
を基板上で化学分解反応させて金属を堆積させ金属膜を
形成させる場合においても,光励起下で行なうと,その
分解反応効率が高くなり,かつ分解濃度を低下させるこ
とができる。
In the case of reacting a metal member for forming a desired metal film with a halogen in the reaction vessel of the chemical vapor deposition method of the present invention, if the reaction is performed under photoexcitation, the metal halide production efficiency is further improved. Also, in the case of chemically decomposing a metal halide on a substrate to deposit a metal to form a metal film, the decomposition reaction efficiency can be increased and the decomposition concentration can be reduced by performing the reaction under photoexcitation. .

〔作用〕[Action]

所望する金属膜を形成させるための金属部材と,ハロゲ
ンガスを含んだガス,例えば塩素ガスを含んだガスを導
入し,適当な温度に昇温すると,導入した塩素ガスと反
応して金属の塩化物を生成する。この金属の塩化物は昇
華し基板表面まで達し,基板温度がやはり適当な温度に
なっていると,この金属塩化物は熱分解反応を起こし金
属が基板表面に堆積し金属膜が形成される。そして,水
素などの還元性ガスが存在すると熱分解の効率はさらに
よくなる。このとき,金属部材と塩素をより効率よく反
応させるために,塩素を光分解した状態で使用するのも
よく,さらに生成した金属塩化物を,光化学反応を利用
して分解させると金属の堆積効率はさらによく,かつ金
属塩化物の分解温度を低くする効果がある。
When a metal member for forming a desired metal film and a gas containing a halogen gas, for example, a gas containing chlorine gas are introduced and the temperature is raised to an appropriate temperature, they react with the introduced chlorine gas to chlorinate the metal. Produce things. The chloride of this metal sublimes and reaches the surface of the substrate. When the substrate temperature is still at an appropriate temperature, the metal chloride undergoes a thermal decomposition reaction to deposit the metal on the surface of the substrate to form a metal film. Then, the presence of reducing gas such as hydrogen further improves the efficiency of thermal decomposition. At this time, in order to more efficiently react the metal member with chlorine, chlorine may be used in a photodecomposed state, and if the generated metal chloride is decomposed using a photochemical reaction, metal deposition efficiency is increased. Is even better and has the effect of lowering the decomposition temperature of metal chlorides.

〔実施例〕〔Example〕

以下に本発明の一実施例を挙げ図面に基づいてさらに詳
細に説明する。
An embodiment of the present invention will be described below in more detail with reference to the drawings.

(実施例1) 本実施例ではタングステン金属膜形成の場合の一例をあ
げ説明する。
Example 1 In this example, an example of forming a tungsten metal film will be described.

第1図に示す構造の化学気相反応装置を用い,まず,反
応容器11内を真空排気系12によって真空に引く。反応容
器内の圧力が10-6Torr台に達したところで,タングス
テンの金属バルク1および基板3のヒータ2および4に
通電し,金属バルク1の温度を500℃,基板3の温度を4
00℃に制御する。それぞれの温度が十分安定したところ
で,まず励起用光ビームであるゼノンクロライド(XeC
l)のエキシマレーザ7およびアルゴンフッ素(ArF)
のエキシマレーザ8を照射し,反応ガス供給用ノズル10
より塩素ガスを,反応ガス供給用ノズル9より水素ガス
を導入する。エキシマレーザの照射条件は,XeClエキ
シマレーザ7が200mJ/p(ミリジュール/パルス),20
Hz,アルゴンフッ素(ArF)エキシマレーザ8が150mJ
/p, 20Hzであった。このときのレーザビームはレンズ
系を通さずに照射した。一方,塩素ガスおよび水素ガス
のマスフローコントローラで,塩素ガスを25sccm,水素
ガスを800sccm反応容器11内に導入した。このときの反
応容器11内の圧力は0.25Torr程度であった。この状態
で反応を15分間継続した後,塩素ガス,水素ガスの供給
を止め,エキシマレーザの照射を停止した。つぎに,金
属バルク1のヒータ2および基板3のヒータ4への通電
を停止し,室温にまで温度を下げて基板3を取り出し
た。
Using the chemical vapor phase reactor having the structure shown in FIG. 1, first, the inside of the reaction vessel 11 is evacuated by the vacuum exhaust system 12. When the pressure in the reaction vessel reached the level of 10 −6 Torr, the heaters 2 and 4 of the metal bulk 1 of tungsten and the substrate 3 were energized, and the temperature of the metal bulk 1 was 500 ° C. and the temperature of the substrate 3 was 4 ° C.
Control at 00 ℃. When each temperature is sufficiently stable, first, the excitation light beam, Zenon chloride (XeC
l) Excimer laser 7 and Argon Fluorine (ArF)
Irradiating the excimer laser 8 of the
More chlorine gas is introduced, and hydrogen gas is introduced from the reaction gas supply nozzle 9. The irradiation conditions of the excimer laser are as follows: XeCl excimer laser 7 is 200 mJ / p (millijoules / pulse), 20
Hz, Argon Fluorine (ArF) excimer laser 8 150mJ
It was / p, 20Hz. The laser beam at this time was applied without passing through the lens system. On the other hand, chlorine gas and hydrogen gas were introduced into the reaction vessel 11 with a mass flow controller for chlorine gas and hydrogen gas at 25 sccm and 800 sccm, respectively. The pressure in the reaction vessel 11 at this time was about 0.25 Torr. After continuing the reaction for 15 minutes in this state, the supply of chlorine gas and hydrogen gas was stopped and the irradiation of the excimer laser was stopped. Next, the power supply to the heater 2 of the metal bulk 1 and the heater 4 of the substrate 3 was stopped, the temperature was lowered to room temperature, and the substrate 3 was taken out.

二酸化ケイ素(SiO2)コートしたシリコンウェハより
なる基板3上にタングステン膜が形成されており,その
抵抗率は10μΩ・cmとバルクタングステンの約2倍であ
った。タングステン膜は600nmであった。SiO2と得ら
れたタングステン膜との接着性を,いわゆるテープテス
トで評価したところ,形成したタングステン膜はSiO2
面から剥がれることなく,接着性が極めて良いことが分
かった。また,得られたタングステン膜のオージェ電子
分光スペクトルを調べたところ,第2図にその分析結果
を示すように,炭素や酸素に相当するピークは見られ
ず,これらの不純物もタングステン膜中に存在していな
いことが分かった。
A tungsten film was formed on a substrate 3 made of a silicon wafer coated with silicon dioxide (SiO 2 ), and its resistivity was 10 μΩ · cm, which was about twice that of bulk tungsten. The tungsten film was 600 nm. When the adhesion between SiO 2 and the obtained tungsten film was evaluated by a so-called tape test, the formed tungsten film was SiO 2
It was found that the adhesiveness was extremely good without peeling off from the surface. Moreover, when the Auger electron spectroscopy spectrum of the obtained tungsten film was investigated, as shown in the analysis result in FIG. 2, no peaks corresponding to carbon and oxygen were observed, and these impurities were also present in the tungsten film. I found that I didn't.

(実施例2) 次に,アルミニウム膜形成の場合について説明する。第
1図において,金属バルク1をアルミニウムに取り換え
た以外は,実施例1と同様であるが,金属バルク1のヒ
ータ2および基板3のヒータ4の設定温度を,それぞれ
450℃,300℃とした。また,XeClエキシマレーザは出
力を上げ400mJ/p, 20Hzで照射した。その他の条件は実
施例1と同じである。
Example 2 Next, the case of forming an aluminum film will be described. In FIG. 1, except that the metal bulk 1 is replaced with aluminum, the same procedure as in Example 1 is performed except that the set temperatures of the heater 2 of the metal bulk 1 and the heater 4 of the substrate 3 are respectively set.
The temperature was 450 ℃ and 300 ℃. Also, the XeCl excimer laser increased the output and irradiated at 400 mJ / p, 20 Hz. Other conditions are the same as in Example 1.

このようにすることにより,SiO2上にアルミニウム膜
を得ることができ,厚さは700nmであった。電気的抵抗
率は6μΩ・cmでバルクの2倍と低いものであった。オー
ジェ電子分光スペクトル測定では,炭素,酸素のアルミ
ニウム膜中での存在は認められなかったが,わずかに塩
素が残存していた。しかしこれも,基板温度を350℃以
下にすることによりアルミニウム膜中の塩素のピークは
消えた。
By doing so, an aluminum film could be obtained on SiO 2 , and the thickness was 700 nm. The electrical resistivity was 6 μΩ · cm, which was twice as low as that of bulk. The presence of carbon and oxygen in the aluminum film was not confirmed by Auger electron spectroscopy, but a small amount of chlorine remained. However, also in this case, the chlorine peak in the aluminum film disappeared when the substrate temperature was lowered to 350 ° C or lower.

〔発明の効果〕〔The invention's effect〕

以上詳細に説明したごとく,本発明の化学気相成長法に
よる金属膜の形成法によれば,基板上のパターン段差に
対する被覆率が物理蒸着法に比べ一段とよくなり,また
有機金属などのソースを用いないので電気伝導率を悪化
するような炭素,酸素などの不純物の混入もなく,高純
度で品質の良い金属膜を形成させることができる。
As described in detail above, according to the method of forming a metal film by the chemical vapor deposition method of the present invention, the coverage of the pattern steps on the substrate is further improved as compared with the physical vapor deposition method, and the source of organic metal or the like is used. Since it is not used, impurities such as carbon and oxygen that deteriorate electric conductivity are not mixed, and a high-purity and high-quality metal film can be formed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例において用いた化学気相成長法
による金属膜形成装置の構造を示す模式図,第2図は本
発明の実施例において得られたタングステン膜のオージ
ェ電子スペクトル分析を示すグラフである。 符号の説明 1……金属バルク、2……ヒータ 3……基板、4……ヒータ 5,6……窓、7,8……エキシマレーザ 9,10……反応ガス供給用ノズル 11……反応容器、12……真空排気系 13……タングステンピーク位置 14……炭素ピーク位置、15……酸素ピーク位置
FIG. 1 is a schematic diagram showing the structure of a metal film forming apparatus by the chemical vapor deposition method used in the embodiment of the present invention, and FIG. 2 is an Auger electron spectrum analysis of the tungsten film obtained in the embodiment of the present invention. It is a graph shown. Explanation of symbols 1 ... Metal bulk, 2 ... Heater 3 ... Substrate, 4 ... Heater 5,6 ... Window, 7, 8 ... Excimer laser 9, 10 ... Reactant gas supply nozzle 11 ... Reaction Vessel, 12 …… Vacuum exhaust system 13 …… Tungsten peak position 14 …… Carbon peak position, 15 …… Oxygen peak position

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】気相反応容器内に配置した基板上に、金属
膜を形成する化学気相成長法において、上記反応容器に
は所望の金属膜を形成するための原料である金属部材を
上記基板と適当な位置関係に配置し、上記金属部材近傍
に塩素ガスを含むガスおよび還元性ガスを導入して、上
記金属部材上にエキシマレーザを局所的に照射すること
により高純度の金属塩化物の蒸気を生成させ、該金属塩
化物の蒸気を、エキシマレーザによる光励起下で上記基
板の表面に接触させて分解し、基板上もしくは基板に設
けられた絶縁膜上に所望の金属膜を堆積することを特徴
とする金属膜の形成法。
1. In a chemical vapor deposition method for forming a metal film on a substrate arranged in a vapor phase reaction container, the reaction container is provided with a metal member as a raw material for forming a desired metal film. A high-purity metal chloride is placed in an appropriate positional relationship with the substrate, a gas containing chlorine gas and a reducing gas are introduced near the metal member, and the excimer laser is locally irradiated on the metal member. Of the metal chloride is generated, the vapor of the metal chloride is brought into contact with the surface of the substrate under photoexcitation by an excimer laser to decompose, and a desired metal film is deposited on the substrate or an insulating film provided on the substrate. A method for forming a metal film, which is characterized by the above.
【請求項2】エキシマレーザは、ゼノンクロライドエキ
シマレーザもしくはアルゴンフッ素エキシマレーザを用
いることを特徴とする特許請求の範囲第1項に記載の金
属膜の形成法。
2. The method for forming a metal film according to claim 1, wherein the excimer laser is a Zenon chloride excimer laser or an argon fluorine excimer laser.
JP62056634A 1987-03-13 1987-03-13 Method of forming metal film Expired - Lifetime JPH0660409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62056634A JPH0660409B2 (en) 1987-03-13 1987-03-13 Method of forming metal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62056634A JPH0660409B2 (en) 1987-03-13 1987-03-13 Method of forming metal film

Publications (2)

Publication Number Publication Date
JPS63223174A JPS63223174A (en) 1988-09-16
JPH0660409B2 true JPH0660409B2 (en) 1994-08-10

Family

ID=13032749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62056634A Expired - Lifetime JPH0660409B2 (en) 1987-03-13 1987-03-13 Method of forming metal film

Country Status (1)

Country Link
JP (1) JPH0660409B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3680029B2 (en) * 2001-08-08 2005-08-10 三菱重工業株式会社 Vapor growth method and vapor growth apparatus for metal thin film
US20110159210A1 (en) * 2007-03-14 2011-06-30 Hubert Patrovsky Metal halide reactor deposition method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116776A (en) * 1983-11-30 1985-06-24 Fujitsu Ltd Cvd apparatus

Also Published As

Publication number Publication date
JPS63223174A (en) 1988-09-16

Similar Documents

Publication Publication Date Title
US4501769A (en) Method for selective deposition of layer structures consisting of silicides of HMP metals on silicon substrates and products so-formed
US4830891A (en) Method for selective deposition of metal thin film
KR20130075764A (en) Selective formation of metallic films on metallic surfaces
JP2012089861A (en) Low temperature epitaxial growth of silicon-containing film using uv radiation
US5308651A (en) Photochemical vapor deposition process
JPH0660409B2 (en) Method of forming metal film
JP2974376B2 (en) Method for manufacturing semiconductor device
JPH0851110A (en) Method for forming insulating film
JPH03274275A (en) Device for forming thin film utilizing organometallic gas
JP4454675B2 (en) Method for constructing a metal nitride film on a wafer
US6281122B1 (en) Method for forming materials
JPH0427136A (en) Thin film formation device utilizing organic metal gas
JP2726149B2 (en) Thin film forming equipment
US20020197828A1 (en) Method and apparatus for manufacturing a semiconductor device and processing a substrate
JPH0360123A (en) Surface treatment and device therefor
JP3116887B2 (en) Method for manufacturing semiconductor device
JPH0365434B2 (en)
JP3178947B2 (en) Thin film formation method
JP4364505B2 (en) Metal film production equipment
JP3432013B2 (en) Method of forming oxide film
JP2003073833A (en) Method for chemical vapor deposition with the use of heating catalyst body, and apparatus for chemical vapor deposition
JPS61220427A (en) Manufacture of semiconductor device
JPH06349737A (en) Patterning method
JPH06204139A (en) Manufacture of silicon crystal film by thermal cvd
JPS6085531A (en) Formation of thin-film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term