JP3293912B2 - Method of forming oxide thin film - Google Patents

Method of forming oxide thin film

Info

Publication number
JP3293912B2
JP3293912B2 JP33027092A JP33027092A JP3293912B2 JP 3293912 B2 JP3293912 B2 JP 3293912B2 JP 33027092 A JP33027092 A JP 33027092A JP 33027092 A JP33027092 A JP 33027092A JP 3293912 B2 JP3293912 B2 JP 3293912B2
Authority
JP
Japan
Prior art keywords
thin film
gas
deposition
sputtering
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33027092A
Other languages
Japanese (ja)
Other versions
JPH06172990A (en
Inventor
雅俊 北川
宗裕 澁谷
健 鎌田
一樹 小牧
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP33027092A priority Critical patent/JP3293912B2/en
Priority to DE69331538T priority patent/DE69331538T2/en
Priority to EP93118535A priority patent/EP0600303B1/en
Publication of JPH06172990A publication Critical patent/JPH06172990A/en
Priority to US08/483,873 priority patent/US5674366A/en
Priority to US08/483,835 priority patent/US5672252A/en
Application granted granted Critical
Publication of JP3293912B2 publication Critical patent/JP3293912B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、主に反応性スパッタリ
ングを用いた酸化物等の化合物薄膜の形成方法とその装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for forming a thin film of a compound such as an oxide mainly by using reactive sputtering.

【0002】[0002]

【従来の技術】従来の酸化物結晶薄膜形成に使用される
反応性スパッタリング装置は、たとえば図3に示すよう
な構造を持つ。41が真空チャンバーで排気孔42より
真空に排気される。直流または高周波電源43から電界
が電極兼原料ターゲットホルダー44へ導入され、基板
加熱が可能な基板ホルダ−兼電極45との間に電界が印
加されプラズマが発生する。46はガス導入口で、酸化
物薄膜を形成する場合には、例えばAr等のスパッタガ
スやO2 等の酸化のための反応性ガスが導入される。こ
れらのガスがプラズマ分解されてそのプラズマ中のイオ
ンをターゲット47へ加速衝突させ、いわゆるスパッタ
蒸着により基板48上に堆積形成される。このとき、ス
パッタされた活性な粒子は基板に到達する際、プラズマ
中の活性な酸素イオン・酸素ラジカル等の反応性粒子と
接触反応して基板上においてターゲットの構成元素の組
成をほぼ反映した酸化物薄膜形成が行われる。
2. Description of the Related Art A conventional reactive sputtering apparatus used for forming an oxide crystal thin film has, for example, a structure as shown in FIG. A vacuum chamber 41 is evacuated to a vacuum through an exhaust hole 42. An electric field is introduced from the DC or high-frequency power supply 43 to the electrode / raw material target holder 44, and an electric field is applied between the substrate holder and the electrode 45 capable of heating the substrate to generate plasma. Reference numeral 46 denotes a gas inlet, and when forming an oxide thin film, a sputtering gas such as Ar or a reactive gas for oxidation such as O 2 is introduced. These gases are decomposed into plasma, and ions in the plasma are made to collide with the target 47 at an accelerated rate, and are deposited and formed on the substrate 48 by so-called sputter deposition. At this time, when the sputtered active particles reach the substrate, they contact and react with reactive particles such as active oxygen ions and oxygen radicals in the plasma and oxidize on the substrate almost reflecting the composition of the constituent elements of the target. An object thin film is formed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この様
な従来の反応性スパッタ装置を用いた方法では、酸化反
応が不十分で、良質な酸化物薄膜を得ようとする場合、
堆積速度を極端に低下させ、かつ基板温度を比較的高温
に保つ必要があった。このため、例えば半導体デバイス
との組み合わせが困難であったり、低融点基板上にデバ
イス形成が出来ない等、様々な制約があり、デバイス設
計上や製造工程において制約が多くあるという問題点が
あり、より低温での形成の要求が高いのが現状である。
However, in a method using such a conventional reactive sputtering apparatus, when an oxidation reaction is insufficient and a high-quality oxide thin film is to be obtained,
It was necessary to extremely reduce the deposition rate and keep the substrate temperature relatively high. For this reason, for example, there are various restrictions such as difficulty in combination with a semiconductor device and inability to form a device on a low-melting substrate, and there are many restrictions in device design and in the manufacturing process. At present, there is a high demand for formation at lower temperatures.

【0004】また、従来の連続的に堆積させ続ける方法
では、結果的に基板に向かうスパッタ粒子やイオン性荷
電粒子が、成膜面に衝突することによって受ける衝撃を
受けつづけるため、良好な結晶成長や格子の形成が妨げ
られ、特に理想的な結晶成長や低温形成における充分な
化合物形成が難しい状態であった。
In the conventional continuous deposition method, sputtered particles and ionic charged particles consequently directed toward the substrate continue to receive the impact of colliding with the film formation surface. And formation of a lattice were hindered, and it was difficult to form a sufficient compound particularly in ideal crystal growth and low-temperature formation.

【0005】本発明は、前記従来の問題を解決するた
め、高品質な酸化物薄膜を低温で成膜できる薄膜形成方
法とその装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thin film forming method and apparatus capable of forming a high quality oxide thin film at a low temperature in order to solve the above-mentioned conventional problems.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明の酸化物薄膜の形成方法は、薄膜の原材料と
なるターゲットのスパッタリングよる酸化物薄膜の形成
方法において、第1の工程として、薄膜原料元素を含む
ガスまたはその放電プラズマとの化学反応を伴う反応性
スパッタリング堆積工程と、第2の工程として、堆積工
程を含まないか、もしくは第1の工程に比べて極めて堆
積速度が小さくかつ少なくとも前記薄膜原料元素と反応
するガスを含む気体雰囲気において、酸化に用いられる
ガスを分解しうる電界で実質的にスパッタリングを生じ
させないプラズマによる反応性ガスの分解励起を堆積表
面もしくは表面近傍に生じさせる反応工程とを、複数回
交互に行う工程を含み、前記第2の工程は、前記第1の
工程で形成された酸化物薄膜中の酸素欠損部分を酸素原
子によって補償することを特徴とする。
In order to achieve the above object, a method of forming an oxide thin film according to the present invention comprises, as a first step, a method of forming an oxide thin film by sputtering a target as a raw material of the thin film. A reactive sputtering deposition step involving a chemical reaction with a gas containing a thin film raw material element or its discharge plasma, and as a second step, a deposition step is not included, or the deposition rate is extremely low compared to the first step and Used for oxidation in a gas atmosphere containing a gas that reacts with at least the thin film raw material element
Electric field that can decompose gas causes substantial sputtering
And a reaction step of causing the decomposition and excitation of the reactive gas by the plasma not to be generated on the deposition surface or in the vicinity of the surface, a plurality of times alternately, and the second step includes the step of forming the oxide formed in the first step. It is characterized in that oxygen deficiency in the thin film is compensated by oxygen atoms.

【0007】前記構成においては、第1の工程におい
て、堆積中の化学反応に関与するガスと反応には関与せ
ずスパッタリングのみに関与する不活性なガスの混合ガ
スを供給し、第2の工程において、反応元素を含むガス
を供給することが好ましい。
In the above structure, in the first step, a mixed gas of a gas involved in a chemical reaction during deposition and an inert gas not involved in the reaction but involved only in sputtering is supplied. , It is preferable to supply a gas containing a reactive element.

【0008】また前記構成においては、第1の工程と第
2の工程を複数回交互に行う工程に際して、両工程にお
いて堆積中の反応に関与するガスと反応には関与せずス
パッタリングのみに関与する不活性なガスの混合ガスを
供給することが好ましい。
In the above structure, in the step of alternately performing the first step and the second step a plurality of times, in both steps, the gas involved in the reaction during the deposition is not involved in the reaction but only the sputtering. It is preferable to supply a mixed gas of an inert gas.

【0009】次に本発明の薄膜の形成装置においては、
薄膜の原材料となるターゲットのスパッタリングよる薄
膜堆積装置において、薄膜原料元素を含むガスまたはそ
の放電プラズマとの化学反応を伴う反応性スパッタリン
グ堆積手段と、堆積工程を含まないか、もしくは第1の
工程に比べ極めて堆積速度が小さくかつ少なくとも前記
薄膜原料元素と反応するガスを含む気体雰囲気において
プラズマによる反応性ガスの分解励起を堆積表面もしく
は表面近傍に生じさせる反応手段とを備え、かつ前記堆
積と反応を複数回交互に行う手段を備えたことを特徴と
する。
Next, in the thin film forming apparatus of the present invention,
In a thin film deposition apparatus by sputtering of a target as a raw material of a thin film, a reactive sputtering deposition means involving a chemical reaction with a gas containing a thin film raw material element or a discharge plasma thereof, and a deposition step is not included, or the first step A reaction means for causing decomposition and excitation of a reactive gas by plasma on a deposition surface or near a surface in a gas atmosphere containing a gas that reacts with at least the thin film raw material element at an extremely low deposition rate, and wherein the deposition and the reaction are performed. It is characterized by comprising means for alternately performing a plurality of times.

【0010】前記構成においては、プラズマ発生用電極
もしくは導波管等の電界導入口を、スパッタリング堆積
を生じさせるためのターゲット電極と同一容器内に設置
するか、または減圧条件を保持しつつ、基板をスパッタ
リングを行なう容器もしくは領域と、プラズマ処理を行
う容器もしくは領域との間を移動する手段を備えたこと
が好ましい。
In the above configuration, the electric field introduction port such as a plasma generating electrode or a waveguide is installed in the same container as the target electrode for generating the sputtering deposition, or the substrate is kept under reduced pressure conditions. It is preferable to provide a means for moving between a container or region for performing sputtering and a container or region for performing plasma processing.

【0011】また前記構成においては、スパッタリング
を行う容器もしくは領域とプラズマ分解による堆積表面
もしくは表面近傍の反応が主なる工程を行なう容器もし
くは領域との間の移動手段が、基板を支持するための基
板ホルダーを回転する手段であることが好ましい。
[0011] In the above structure, the moving means between the container or region for performing sputtering and the container or region for performing a process in which a reaction on the deposition surface or near the surface is mainly performed by plasma decomposition is provided with a substrate for supporting the substrate. Preferably, it is means for rotating the holder.

【0012】また前記構成においてはプラズマ発生源と
して直流を用いることが好ましい。また前記構成におい
ては、プラズマ発生源として100kHz〜100MH
zの高周波を用いることが好ましい。
Further, in the above configuration, it is preferable to use a direct current as a plasma generation source. In the above configuration, the plasma generation source is 100 kHz to 100 MHz.
It is preferable to use a high frequency of z.

【0013】また前記構成においては、プラズマ発生源
として1GHz〜10GHzのマイクロ波を用いること
が好ましい。
Further, in the above configuration, it is preferable to use a microwave of 1 GHz to 10 GHz as a plasma generation source.

【0014】[0014]

【作用】前記本発明方法の構成によれば、第1の工程と
して、薄膜原料元素を含むガスまたはその放電プラズマ
との化学反応を伴う反応性スパッタリング堆積工程と、
第2の工程として、堆積工程を含まないか、もしくは第
1の工程に比べて極めて堆積速度が小さくかつ少なくと
も前記薄膜原料元素と反応するガスを含む気体雰囲気に
おいてプラズマによる反応性ガスの分解励起を堆積表面
もしくは表面近傍に生じさせる反応工程とを、複数回交
互に行うことにより、高品質な酸化物薄膜を低温で成膜
できる。たとえば、反応性スパッタリングによる堆積工
程の後、基板をスパッタ粒子に曝さない状態において酸
化に用いられるガスを導入しかつ基板(堆積)表面もし
くは表面近傍に反応性の原子・分子を供給するための電
界を供給せしめ、プラズマ発生をともなう工程を行な
う。この工程による作用として表面近傍の反応ガスプラ
ズマ分解・励起され、例えば酸素の場合、活性な原子状
酸素が多く発生し、堆積工程で形成された薄膜中の酸素
欠損部分の酸素原子による補償を行なう。また第2の作
用として、例えば酸化物薄膜の場合、形成された膜中の
酸素不足の部分を酸素化し、かつ過剰な酸素に対して
は、その酸素と結合し、O2 の形で取り去ってしまう作
用を有する。これら2つの工程を交互に繰り返すことに
より、低温で形成しても結果的に欠陥が少なく、特に良
好な膜質・緻密性を合わせ持つ酸化物薄膜を実現し得る
作用を持つ。
According to the structure of the method of the present invention, as a first step, a reactive sputtering deposition step involving a chemical reaction with a gas containing a thin film raw material element or its discharge plasma,
In the second step, the deposition step is not included, or the deposition rate is extremely low compared to the first step, and the decomposition and excitation of the reactive gas by plasma are performed in a gas atmosphere containing at least a gas that reacts with the thin film raw material element. A high-quality oxide thin film can be formed at a low temperature by alternately performing a plurality of times with a reaction step to be performed on or near a deposition surface. For example, after a deposition process by reactive sputtering, an electric field for introducing a gas used for oxidation and supplying reactive atoms and molecules to or near the substrate (deposition) surface without exposing the substrate to sputtered particles. And a process involving plasma generation is performed. As a function of this step, the reaction gas near the surface is decomposed and excited by plasma. For example, in the case of oxygen, a large amount of active atomic oxygen is generated, and the oxygen deficiency in the thin film formed in the deposition step is compensated by oxygen atoms. . As a second effect, for example, in the case of an oxide thin film, oxygen-deficient portions in the formed film are oxygenated, and excess oxygen is combined with the oxygen and removed in the form of O 2. It has the effect of getting lost. By repeating these two steps alternately, even if formed at a low temperature, there is little defect as a result, and there is an effect that an oxide thin film having particularly good film quality and denseness can be realized.

【0015】ここでは、主に酸化物薄膜を例にあげて説
明したが、例えば窒化物薄膜や水素化物薄膜においても
有用であり発明の作用としては全く同様である。次に本
発明の装置の構成によれば、高率よく合理的に高品質な
酸化物薄膜を低温で成膜できる。
Although an oxide thin film has been mainly described here as an example, the present invention is also useful for a nitride thin film and a hydride thin film, for example, and the effects of the invention are exactly the same. Next, according to the configuration of the apparatus of the present invention, an oxide thin film of high quality can be formed at a high rate and reasonably at a low temperature.

【0016】[0016]

【実施例】以下一実施例を用いて本発明をさらに具体的
に説明する。本実施例は従来の連続的に行われる反応性
スパッタリングのみによる薄膜形成とは異なり、堆積さ
れるべき基板または基板表面において、まず薄膜堆積に
用いられるターゲットのスパッタリングによる堆積工程
と、酸化に用いられるガスを分解しうる電界でスパッタ
リングを生じさせない程度のプラズマを発生させること
によって、堆積極表面における活性酸素により酸化や結
晶成長を促進する工程を交互に繰り返すものである。
The present invention will be described more specifically with reference to the following examples. This embodiment is different from the conventional thin film formation only by the continuous reactive sputtering, in which the substrate to be deposited or the surface of the substrate is first used for the deposition step by sputtering of the target used for the thin film deposition and for the oxidation. By generating an amount of plasma that does not cause sputtering in an electric field capable of decomposing gas, a process of alternately repeating oxidation and crystal growth by active oxygen on the surface of the deposition electrode is promoted.

【0017】以下図面に基づいて説明する。図1は本発
明で使用される装置の一実施例のプラズマ酸化処理が可
能な反応性スパッタリング装置の概略図である。11が
真空チャンバーで、排気孔12より真空に排気される。
直流または高周波電源13から電界が電極兼原料ターゲ
ットホルダー14へ導入され、基板加熱が可能な基板ホ
ルダー兼電極15との間に電界が印加されプラズマが発
生する。16は第1のガス導入口で、例えばAr等のス
パッタガスや酸化物薄膜を形成する場合にはO2 等の酸
化のための反応性ガスが導入される。これらのガスがプ
ラズマ分解されてそのプラズマ中のイオンをターゲット
17へ加速衝突させ、いわゆるスパッタ蒸着により基板
18がターゲット上にあれば基板上に堆積形成が行われ
る。このとき、スパッタされた活性な粒子は基板に到達
する際、プラズマ中の活性な酸素イオン・酸素ラジカル
等の反応性粒子と接触反応して基板上においてターゲッ
トの構成元素の組成をほぼ反映した酸化物薄膜形成が行
われる。19はプラズマ放電分解により基板に励起種・
活性種を供給するための電極でプラズマ処理用電源20
により電界を供給しプラズマを発生させる。基板ホルダ
ー15は例えばシャフト21で支持されており、シャフ
トを回転させることにより基板18をターゲットに対向
させたりプラズマ処理用電極に対向させたりすることが
できる。22は第2のガス導入口で、例えば酸化物薄膜
を形成する場合にはO2 等の酸化のための反応性ガスの
みが基板近傍に導入される。
A description will be given below with reference to the drawings. FIG. 1 is a schematic view of a reactive sputtering apparatus capable of performing a plasma oxidation process according to an embodiment of the apparatus used in the present invention. Reference numeral 11 denotes a vacuum chamber, which is evacuated to a vacuum through the exhaust hole 12.
An electric field is introduced from a DC or high-frequency power supply 13 to the electrode / raw material target holder 14, and the electric field is applied to the substrate holder / electrode 15 capable of heating the substrate to generate plasma. Reference numeral 16 denotes a first gas inlet, into which a sputtering gas such as Ar or a reactive gas for oxidation such as O 2 is introduced when an oxide thin film is formed. These gases are decomposed into plasma, and ions in the plasma are accelerated and collided with the target 17. If the substrate 18 is on the target by so-called sputter deposition, deposition is performed on the substrate. At this time, when the sputtered active particles reach the substrate, they contact and react with reactive particles such as active oxygen ions and oxygen radicals in the plasma and oxidize on the substrate almost reflecting the composition of the constituent elements of the target. An object thin film is formed. Reference numeral 19 denotes excited species on the substrate by plasma discharge decomposition.
An electrode for supplying active species and a plasma processing power source 20
Supplies an electric field to generate plasma. The substrate holder 15 is supported by, for example, a shaft 21, and by rotating the shaft, the substrate 18 can be made to face a target or a plasma processing electrode. Reference numeral 22 denotes a second gas inlet, for example, when an oxide thin film is formed, only a reactive gas for oxidation such as O 2 is introduced near the substrate.

【0018】また、本実施例で使用した装置では、ター
ゲットの設置してある領域とプラズマ処理のプラズマ処
理電極の設置してある領域に仕切23を設け、基板ホル
ダ−の回転には支障が無い程度でかつ堆積工程ではスパ
ッタガスであるArと反応性ガスであるO2 の混合ガス
の雰囲気となっており、一方プラズマ処理工程では、ほ
ぼ反応ガスであるO2 ガス雰囲気となる構造となってい
る。
In the apparatus used in this embodiment, the partition 23 is provided in the area where the target is installed and the area where the plasma processing electrode for plasma processing is installed, so that rotation of the substrate holder is not hindered. In the deposition process, the atmosphere is a mixed gas of Ar, which is a sputtering gas, and O 2 , which is a reactive gas. On the other hand, in the plasma treatment process, the atmosphere becomes almost the O 2 gas atmosphere, which is a reactive gas. I have.

【0019】前記したとおり、第1の膜堆積工程におい
ては、基板をターゲット17上に配置し、いわゆるスパ
ッタ蒸着により基板18上に堆積形成される。このと
き、スパッタされた粒子は基板に到達する際、その一部
はプラズマ中の活性な酸素イオン・酸素ラジカル等の反
応性粒子と接触反応して基板上において酸化物薄膜形成
が行われる。
As described above, in the first film deposition step, the substrate is placed on the target 17 and deposited on the substrate 18 by so-called sputter deposition. At this time, when the sputtered particles reach the substrate, a part of the sputtered particles come into contact with reactive particles such as active oxygen ions and oxygen radicals in the plasma to form an oxide thin film on the substrate.

【0020】第2の酸化および堆積膜中の欠陥除去工程
においては例えば基板ホルダーを回転させるなどして、
ターゲットからスパッタ粒子が到達しないかもしくは極
めて堆積速度が小さい領域へ基板を移動せしめ、かつプ
ラズマ処理用放電電極17によって発生された励起種・
活性種が有効に照射され得る領域に置き基板表面および
その近傍において酸化反応を促進させる。この時、基板
近傍では酸素分子等の酸化ガス分子のプラズマ分解によ
り、活性な酸素原子が多く発生し、酸化が不足し生じた
欠陥部の酸化や膜表面の過剰酸素除去を行なう。この第
2の工程は、堆積膜の表面から比較的浅い領域にのみ有
効であるので第1の堆積工程を行なう時間とプラズマ処
理工程の時間との関係には最適な条件が存在するが、い
ずれにせよ少なくともこれらの工程を交互に行うことに
より、比較的低温で緻密で良質な薄膜を基板損傷を生ず
ることなく堆積形成し得る。
In the second oxidation and the step of removing defects in the deposited film, for example, by rotating the substrate holder,
The substrate is moved to a region where the sputtered particles do not reach from the target or the deposition rate is extremely low, and the excited species generated by the plasma processing discharge electrode 17
It is placed in a region where active species can be effectively irradiated, and promotes an oxidation reaction on and near the substrate surface. At this time, in the vicinity of the substrate, a large number of active oxygen atoms are generated due to plasma decomposition of oxidizing gas molecules such as oxygen molecules. Oxidation of defective portions resulting from insufficient oxidation and removal of excess oxygen on the film surface are performed. Since the second step is effective only in a region relatively shallow from the surface of the deposited film, there is an optimal condition for the relationship between the time for performing the first deposition step and the time for the plasma processing step. In any case, by performing at least these steps alternately, a dense and high-quality thin film can be deposited and formed at a relatively low temperature without damaging the substrate.

【0021】本実施例では仕切を設けた構造を有するこ
とにより堆積工程とプラズマ処理工程におけるガス雰囲
気を区別しているが、効果の大小は生ずるが、仕切が無
い場合では全ての工程にわたり、Arと酸素の混合ガス
として流し続けるても良いし、基板の回転に応じてガス
を混合ガスから酸素ガスのみまた酸素のみから混合ガス
へ交互に切り換える工程としてもよい。
In this embodiment, the gas atmosphere in the deposition step and the plasma processing step is distinguished by having a structure provided with partitions. However, the degree of the effect is large. The gas may be continuously supplied as a mixed gas of oxygen, or the gas may be alternately switched from the mixed gas to only the oxygen gas or only from oxygen to the mixed gas according to the rotation of the substrate.

【0022】次に具体的実施例を説明する。図2に、基
板温度を550℃と一定にし、第1の堆積工程において
のスパッタ高周波電力密度を0.3W/cm2 、とし、第
2の工程のプラズマ源として高周波電源(13.56M
Hz)を用い、その電力密度を0〜0.1W/cm2 まで
変化させ、基板ホルダ−の回転速度3rpm としたとき
の、形成したチタン酸鉛薄膜の比誘電率の変化を示す。
本実施例では、ターゲットの直径は6インチ(約15c
m),プラズマ処理電極の直径は25cmで基板のターゲ
ット上を一回通過する時間は約5秒でこの条件では約
1.5nm堆積した後、プラズマ処理を約6秒間行なうよ
うな条件となっている。プラズマ処理時とプラズマ処理
無し(プラズマ処理の放電電力が0Wの時:回転は行っ
ている)では明らかに違いが見られ、プラズマ処理時で
は、プラズマ処理のない場合に比べ明かな比誘電率の向
上が見られる。
Next, a specific embodiment will be described. FIG. 2 shows that the substrate temperature was kept constant at 550 ° C., the sputtering high-frequency power density in the first deposition step was 0.3 W / cm 2 , and the high-frequency power source (13.56 M) was used as the plasma source in the second step.
(Hz), the power density is changed from 0 to 0.1 W / cm 2 and the relative permittivity of the formed lead titanate thin film when the rotation speed of the substrate holder is 3 rpm is shown.
In this embodiment, the diameter of the target is 6 inches (about 15 cm).
m), the diameter of the plasma processing electrode is 25 cm, and the time for once passing the substrate on the target is about 5 seconds. Under this condition, about 1.5 nm is deposited, and then the plasma processing is performed for about 6 seconds. I have. There is a clear difference between the plasma treatment and the absence of the plasma treatment (when the discharge power of the plasma treatment is 0 W: the rotation is performed). Improvement is seen.

【0023】また、1〜10rpm 程度回転速度の範囲で
は、プラズマ処理時と処理無し(回転は行なっている)
では明らかに違いが見られるが、回転数による変化は、
ほとんど見られなかった。
In the range of the rotation speed of about 1 to 10 rpm, the plasma processing is performed and no processing is performed (rotation is performed).
Although there is a clear difference, the change with rotation speed is
Almost never seen.

【0024】この図2から明らかなように、堆積と酸化
雰囲気でのプラズマ処理が交互に行なわれることによっ
て、比較的低温基板温度で形成しても酸化物誘電体薄膜
における誘電体特性の向上が明らかである。
As is apparent from FIG. 2, by alternately performing deposition and plasma processing in an oxidizing atmosphere, the dielectric characteristics of the oxide dielectric thin film can be improved even when formed at a relatively low substrate temperature. it is obvious.

【0025】[0025]

【発明の効果】以上説明した通り本発明によれば、装置
容器内もしくは減圧条件を保持したまま移動可能な異な
る容器にプラズマ処理電極を内蔵し、ある一定時間のス
パッタリング法もしくは反応性スパッタリング法による
薄膜堆積工程とある一定時間の堆積を行わない薄膜表面
にプラズマによる励起反応種を与える工程を複数回交互
に行なうことにより、低温基板で良質な酸化物薄膜を得
ることができる。
As described above, according to the present invention, the plasma processing electrode is built in the apparatus container or in a different container which can be moved while maintaining the reduced pressure condition, and the plasma processing electrode or the reactive sputtering method is used for a certain period of time. By alternately performing the thin film deposition step and the step of applying the plasma-excited reactive species to the thin film surface that has not been deposited for a certain period of time a plurality of times, a high-quality oxide thin film can be obtained on a low-temperature substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の薄膜形成装置概略図。FIG. 1 is a schematic view of a thin film forming apparatus according to an embodiment of the present invention.

【図2】本発明の効果を示すために、基板ホルダーを回
転しプラズマ処理ある場合とない場合における形成した
チタン酸鉛薄膜の比誘電率の変化を示す図。
FIG. 2 is a view showing a change in the relative dielectric constant of a formed lead titanate thin film when a substrate holder is rotated and plasma processing is performed to show the effect of the present invention.

【図3】従来の一般的な反応性スパッタリング装置概略
図。
FIG. 3 is a schematic view of a conventional general reactive sputtering apparatus.

【符号の説明】[Explanation of symbols]

11 真空チャンバー 12 排気孔 13 直流または高周波電源 14 電極兼ターゲットホルダー 15 電極兼基板ホルダー 16 第1のガス導入口 17 ターゲット 18 基板 19 プラズマ処理電極 20 プラズマ処理用電源 21 支持シャフト 22 第2のガス導入口 23 仕切 DESCRIPTION OF SYMBOLS 11 Vacuum chamber 12 Exhaust hole 13 DC or high frequency power supply 14 Electrode / target holder 15 Electrode / substrate holder 16 First gas inlet 17 Target 18 Substrate 19 Plasma processing electrode 20 Power supply for plasma processing 21 Support shaft 22 Second gas introduction Mouth 23 partition

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小牧 一樹 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 平尾 孝 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平2−248302(JP,A) 特公 平3−57185(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C23C 14/00 - 14/58 H01L 21/31 H01L 21/316 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Kazuki Komaki 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-2-248302 (JP, A) JP-B-3-57185 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C23C 14/00-14 / 58 H01L 21/31 H01L 21/316

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 薄膜の原材料となるターゲットのスパッ
タリングよる酸化物薄膜の形成方法において、第1の工
程として、薄膜原料元素を含むガスまたはその放電プラ
ズマとの化学反応を伴う反応性スパッタリング堆積工程
と、第2の工程として、堆積工程を含まないか、もしく
は第1の工程に比べて極めて堆積速度が小さくかつ少な
くとも前記薄膜原料元素と反応するガスを含む気体雰囲
気において、酸化に用いられるガスを分解しうる電界で
実質的にスパッタリングを生じさせないプラズマによる
反応性ガスの分解励起を堆積表面もしくは表面近傍に生
じさせる反応工程とを、複数回交互に行う工程を含み、 前記第2の工程は、前記第1の工程で形成された酸化物
薄膜中の酸素欠損部分を酸素原子によって補償すること
を特徴とする酸化物薄膜の形成方法。
In a method for forming an oxide thin film by sputtering a target as a raw material of a thin film, a first step is a reactive sputtering deposition step involving a chemical reaction with a gas containing a thin film raw material element or a discharge plasma thereof. In the second step, the deposition step is not included, or the deposition rate is extremely low compared to the first step, and the gas used for oxidation is decomposed in a gas atmosphere containing at least a gas that reacts with the thin film raw material element. In a possible electric field
And a reaction step of causing decomposition and excitation of a reactive gas by plasma that does not substantially generate sputtering on the deposition surface or near the surface, alternately a plurality of times, wherein the second step is the first step A method for forming an oxide thin film, characterized in that an oxygen deficient portion in the oxide thin film formed by the above step is compensated by oxygen atoms.
【請求項2】 第1の工程においては、堆積中の化学反
応に関与するガスと反応には関与せずスパッタリングの
みに関与する不活性なガスの混合ガスを供給し、第2の
工程においては、反応元素を含むガスを供給する請求項
1に記載の酸化物薄膜の形成方法。
In the first step, a mixed gas of a gas involved in a chemical reaction during deposition and an inert gas not involved in the reaction but only involved in sputtering is supplied. The method for forming an oxide thin film according to claim 1, wherein a gas containing a reactive element is supplied.
【請求項3】 第1の工程と第2の工程を複数回交互に
行う工程に際して、両工程において堆積中の反応に関与
するガスと反応には関与せずスパッタリングのみに関与
する不活性なガスの混合ガスを供給する請求項1に記載
酸化物薄膜の形成方法。
3. A process in which the first step and the second step are alternately performed a plurality of times, and a gas involved in a reaction during deposition and an inert gas not involved in the reaction but only involved in sputtering in both steps. The method for forming an oxide thin film according to claim 1, wherein a mixed gas of the following is supplied.
JP33027092A 1992-12-01 1992-12-10 Method of forming oxide thin film Expired - Lifetime JP3293912B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP33027092A JP3293912B2 (en) 1992-12-10 1992-12-10 Method of forming oxide thin film
DE69331538T DE69331538T2 (en) 1992-12-01 1993-11-18 Process for producing an electrical thin film
EP93118535A EP0600303B1 (en) 1992-12-01 1993-11-18 Method for fabrication of dielectric thin film
US08/483,873 US5674366A (en) 1992-12-01 1995-06-07 Method and apparatus for fabrication of dielectric thin film
US08/483,835 US5672252A (en) 1992-12-01 1995-06-15 Method and apparatus for fabrication of dielectric film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33027092A JP3293912B2 (en) 1992-12-10 1992-12-10 Method of forming oxide thin film

Publications (2)

Publication Number Publication Date
JPH06172990A JPH06172990A (en) 1994-06-21
JP3293912B2 true JP3293912B2 (en) 2002-06-17

Family

ID=18230774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33027092A Expired - Lifetime JP3293912B2 (en) 1992-12-01 1992-12-10 Method of forming oxide thin film

Country Status (1)

Country Link
JP (1) JP3293912B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4432206B2 (en) * 2000-05-18 2010-03-17 株式会社ブリヂストン Method for forming laminated film
US7132373B2 (en) 2001-10-02 2006-11-07 Toto Ltd. Thin metal oxide film and process for producing the same
WO2004050944A2 (en) * 2002-12-04 2004-06-17 Leybold Optics Gmbh Method for producing a multilayer coating and device for carrying out said method
DE10347521A1 (en) 2002-12-04 2004-06-24 Leybold Optics Gmbh Method for producing a multilayer layer and device for carrying out the method
JP3957198B2 (en) * 2003-03-07 2007-08-15 日本電信電話株式会社 Thin film formation method
KR100729031B1 (en) * 2003-06-03 2007-06-14 신크론 컴퍼니 리미티드 Thin film forming method and forming device therfor
EP2549521A1 (en) * 2011-07-21 2013-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for producing low-particle layers on substrates
JP5875874B2 (en) * 2012-01-17 2016-03-02 株式会社アルバック Barrier film forming method and ferroelectric device manufacturing method

Also Published As

Publication number Publication date
JPH06172990A (en) 1994-06-21

Similar Documents

Publication Publication Date Title
KR100254732B1 (en) Method for forming thin film
JP3293912B2 (en) Method of forming oxide thin film
JPH08293483A (en) Flattening method for solid surface with gas cluster ion beam
JP4428873B2 (en) Sputtering equipment
JP3446765B2 (en) Method and apparatus for producing oxide thin film
JP3529466B2 (en) Thin film formation method
JP3427362B2 (en) Dielectric thin film deposition method
JPH05211134A (en) Forming method of thin film and forming equipment of thin film
JP3059597B2 (en) Method and apparatus for manufacturing thin film
JP3078853B2 (en) Oxide film formation method
JPH0568541B2 (en)
JPH0897185A (en) Production of semiconductor device
JP3857024B2 (en) Method for forming microcrystalline silicon thin film
JP2006005007A (en) Method and device for forming amorphous silicon layer
JP2000273644A (en) Plasma cvd device
JP2009071293A (en) Chamber for constructing film on semiconductor wafer
JPH04199828A (en) Manufacture of oxide thin film of high dielectric constant
JP3005381B2 (en) Superconductor sample etching method
JPH0517291A (en) Treatment of substrate for deposition of diamond thin film
JPH06145974A (en) Vacuum film forming device and vacuum film formation
JP2002030432A (en) System and method for sputtering
JPH1112742A (en) Cvd device, and its cleaning method
JPH01184267A (en) Insulating film coating method
JPS63262457A (en) Preparation of boron nitride film
JPH02157123A (en) Production of thin barium titanate film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080405

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11