JPH04199828A - Manufacture of oxide thin film of high dielectric constant - Google Patents

Manufacture of oxide thin film of high dielectric constant

Info

Publication number
JPH04199828A
JPH04199828A JP33509790A JP33509790A JPH04199828A JP H04199828 A JPH04199828 A JP H04199828A JP 33509790 A JP33509790 A JP 33509790A JP 33509790 A JP33509790 A JP 33509790A JP H04199828 A JPH04199828 A JP H04199828A
Authority
JP
Japan
Prior art keywords
oxygen
plasma
thin film
dielectric constant
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33509790A
Other languages
Japanese (ja)
Inventor
Takeshi Kamata
健 鎌田
Munehiro Shibuya
宗裕 澁谷
Shigenori Hayashi
重徳 林
Masatoshi Kitagawa
雅俊 北川
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33509790A priority Critical patent/JPH04199828A/en
Publication of JPH04199828A publication Critical patent/JPH04199828A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To improve a dielectric strength and reduce a leakage current, by projecting on an oxide film such as a tantalum oxide film, oxygen ions or an oxygen plasma generated in the plasma processing equipment, which utilizes a plasma decomposition using a microwave. CONSTITUTION:For example, an oxygen gas is introduced into a plasma generating chamber 16, and via a waveguide 18, a microwave generated by a microwave power supply 17 is introduced into the oxygen gas to discharge it, and thereby, the generation of oxygen ions or an oxygen plasma is performed. In this case, by applying thereto a magnetic field generated through an electromagnet 19 of a solenoid type, a cyclotron resonance of electron is generated in the plasma generating chamber 16. Further, by setting oxygen in the plasma generating chamber 16, a highly active oxygen plasma having a high ionization rate and a high electron temperature is obtained. This oxygen plasma is introduced into a sample chamber 14 by the potential difference between oxygen ions as well as by a divergent magnetic field, and is projected on an oxide film 11 put on a sample table 12. Thereby, the leakage current and the dielectric strength of the oxide film are improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、エレクトロニクス用素子等に応用される高誘
電率薄膜の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a high dielectric constant thin film applied to electronic devices and the like.

従来の技術 DRAM等のVLSIの集積度の増大にともない、容量
(キャパシタ)部の占有する面積は無視できなくなって
きている。その占有面積の低減化のだめには、単位面積
当りの静電容量が高い、即ち、比誘電率か高い薄膜材料
を用いる必要がある。ざらにリーク電流が小さく、絶縁
耐圧の高い材料てなけれはならない。従来、キャパシタ
絶縁膜材料としては、比誘電率が約4の酸化シリ:]ン
(SiO2)や、同じく比誘電率か約7の窒化シリコン
(Si3N4)が用いられてきた。これらの絶縁膜材料
は、絶縁耐圧か大きく、リーク電流か小さいためこれま
で用いられてきたが、比誘電率か小さいため高集積化か
進むVLS Iへの適用は今後困難になりつつある。
BACKGROUND OF THE INVENTION As the degree of integration of VLSIs such as DRAMs increases, the area occupied by the capacitor section can no longer be ignored. In order to reduce the occupied area, it is necessary to use a thin film material that has a high capacitance per unit area, that is, a high dielectric constant. In general, the material must have low leakage current and high dielectric strength. Conventionally, silicon oxide (SiO2), which has a dielectric constant of about 4, and silicon nitride (Si3N4), which also has a dielectric constant of about 7, have been used as capacitor insulating film materials. These insulating film materials have been used so far because of their high dielectric strength and low leakage current, but because of their low dielectric constants, it is becoming difficult to apply them to VLSI, which is becoming increasingly highly integrated.

また、これらに代わる材料として、酸化タンタル(”I
”a20s)、酸化ハフニウム(Hf02)等の誘電率
の高い材料か候補として考えられる。現在のところ、T
a205が有力材料として多くの研究機関で検討されて
いる。
In addition, as a material to replace these, tantalum oxide ("I"
``a20s), hafnium oxide (Hf02), and other materials with high dielectric constants are considered as candidates.Currently, T
A205 is being considered as a promising material by many research institutions.

発明が解決しようとする課題 この様に、次世代の超LSIを代表する64M4Mヒラ
RAM等のキャパシタ絶縁膜材料として、従来のSiO
2,5i3NAの摘要を考えた場合、リーク電流は非常
に小さく、信頼性も高いか、比誘電率か小さいため、集
積度の向上によるセル面積の減少で十分なメモリ容量を
確保することかできず、摘要は困難である。
Problems to be Solved by the Invention In this way, the conventional SiO
Considering the features of 2,5i3NA, the leakage current is very small, the reliability is high, and the dielectric constant is small, so it is not possible to secure sufficient memory capacity by reducing the cell area due to increased integration. However, it is difficult to summarize.

また、Ta205は20〜25程度の比誘電率を有し・
、反応性スパッタリンク法により、緻密で絶縁耐圧か高
い等の特性の優れた膜が形成されている。しかしなから
、LSIで必要とされる数十01η以下の膜厚において
は、今のところ比誘電率が減少し、リーク電流か増加す
るものしか得られていない。また、段差被覆性を考えた
場合、CV D法なとての膜形成か超LsIに朝み込む
技術としては有効である。しかし、CVD法では、原料
の分解、酸素との反応か不十分なため、形成直後の膜は
絶縁耐圧が低く、リーク電流が大きく実用に供しない。
In addition, Ta205 has a dielectric constant of about 20 to 25.
By using the reactive sputter link method, films with excellent properties such as denseness and high dielectric strength are formed. However, at the film thickness of several tens of η or less required for LSI, so far only the dielectric constant decreases and the leakage current increases. In addition, when considering step coverage, CVD method is an effective technique for forming a film or soaking into super LsI. However, in the CVD method, the decomposition of the raw material and the reaction with oxygen are insufficient, so the film immediately after formation has a low dielectric strength voltage and a large leakage current, making it impractical.

従って、通常800℃程度の高温における酸化性雰囲気
中ての熱処理を行なうことにより絶縁耐圧の向上やリー
ク電流の低減が実現される。しかしなから、実際にLS
Iの工程において、800°C程度の高温で酸化処理を
行なうと、F地の材料間での相互拡散、熱的損傷等が起
こり、素子特性の劣化を引き起こしてしまっ課題があっ
た。
Therefore, by performing heat treatment in an oxidizing atmosphere at a high temperature of usually about 800° C., it is possible to improve dielectric strength and reduce leakage current. However, actually LS
In the step I, when oxidation treatment is performed at a high temperature of about 800° C., mutual diffusion and thermal damage occur between the materials of the F base, causing deterioration of device characteristics, which is a problem.

本発明は、この様な従来の課題を解決することを目的と
する。
The present invention aims to solve such conventional problems.

課題を解決するための手段 請求項10本発明にかかる酸化物高誘電率薄膜の製造方
法は、酸化タンタル薄膜などの酸化物被膜に対し、マイ
クロ波を用いたプラズマ分解によるプラズマ処理装置で
発生させた酸素イオンあるいは酸素プラズマを照射する
ことにより上記課題を解決するものである。
Means for Solving the ProblemsClaim 10: The method for producing a high dielectric constant oxide thin film according to the present invention comprises generating an oxide film such as a tantalum oxide thin film in a plasma processing apparatus using plasma decomposition using microwaves. The above problem is solved by irradiating oxygen ions or oxygen plasma.

請求項20本発明にかかる別の酸化物高誘電率薄膜の製
造方法は、酸化タンタル薄膜なとの酸化物被膜にヌ(し
、少なくとも酸素を含むカスに高周波電圧を印加して生
成したプラズマと酸化物被膜を設置した試料台との間に
所定の電位に設定した電極を設置して酸素イオンあるい
は酸素プラズマを照射することにより上記課題を解決す
るものである。
Claim 20 Another method for producing a high dielectric constant oxide thin film according to the present invention is to apply plasma generated by applying a high frequency voltage to scum containing at least oxygen on an oxide film such as a tantalum oxide thin film. The above-mentioned problem is solved by installing an electrode set at a predetermined potential between a sample stage on which an oxide film is installed and irradiating it with oxygen ions or oxygen plasma.

請求項3の本発明にかかる別の酸化物高誘電率′fiI
IIの製造方法は、少なくとも酸素を含むガスに高周波
電圧を印加して生成したプラズマ中に酸化タンタル薄膜
なとの酸化物被膜を設置することにより上記課題を解決
するものである。
Another oxide high dielectric constant 'fiI according to the present invention of claim 3
The manufacturing method II solves the above problem by installing an oxide film such as a tantalum oxide thin film in plasma generated by applying a high frequency voltage to a gas containing at least oxygen.

作用 請求項1の本発明は、酸化タンタル′;ii膜なとの酸
化物被膜に対し照射する酸素イオンあるいは酸素プラズ
マとして、マイクロ波を用いた酸素ガス等のプラズマ分
解、特に電子サイクロトロン共鳴吸収条件を満たすよう
に磁界を印加したプラズマ分解で発生させた高電子唱度
で解離度が高いものを用いると、被照射領域の酸化を促
進し、その結果、膜特性の向上、特にリークを流の低減
、絶縁耐圧の向上か実現できる。さらに本発明は、イオ
ンあるいはプラズマの運動エネルギーを利用するため5
00℃以下という比較的低温にてダメージレスに処理で
きる酸化物高誘電率薄膜の製造方法を提供できる。
The present invention according to claim 1 provides plasma decomposition of oxygen gas or the like using microwaves, particularly under electron cyclotron resonance absorption conditions, as oxygen ions or oxygen plasma irradiated onto an oxide film such as tantalum oxide';ii film. When using a material with a high electron density and high dissociation degree generated by plasma decomposition with a magnetic field applied to satisfy the It is possible to reduce the dielectric strength and improve the dielectric strength. Furthermore, the present invention utilizes the kinetic energy of ions or plasma.
It is possible to provide a method for producing a high dielectric constant oxide thin film that can be processed without damage at a relatively low temperature of 00° C. or lower.

請求項2の本発明は、酸化物被膜に対し照射する酸素イ
オンあるいは酸素プラズマとして、少なくとも酸素を含
むカスに高周波電圧を印加して生成する活性度の高いも
のを用い、さらにプラズマと酸化物被膜を設置した試料
台との間に所定の低い電界を印加してプラズマ中の酸素
イオンを加速するため、被照射領域は酸化か促進され、
その結果、膜のリーク電流の低減、絶縁面・1圧の向上
か実現できる。また、本発明では、イオンの加速電界を
変化させることにより、被照射領域の酸化の度合を制御
することが可能である。ざらに本発明は、き イオンあるいはプラズマの運動エネルギーにより500
℃以下の比較的低温にてダメージレスに処理することが
可能な酸化物高誘を率薄膜の製造方法を提供できる。
The present invention according to claim 2 uses highly active oxygen ions or oxygen plasma generated by applying a high frequency voltage to scum containing at least oxygen as the oxygen ions or oxygen plasma to be irradiated to the oxide film, and furthermore, the plasma and the oxide film are Oxygen ions in the plasma are accelerated by applying a predetermined low electric field between the sample stage and the sample stage, which accelerates oxidation of the irradiated area.
As a result, it is possible to reduce the leakage current of the film and improve the insulation surface and 1 voltage. Further, in the present invention, it is possible to control the degree of oxidation of the irradiated region by changing the ion accelerating electric field. Roughly speaking, the present invention utilizes the kinetic energy of ions or plasma to
It is possible to provide a method for producing a high dielectric constant oxide thin film that can be processed without damage at a relatively low temperature of .degree. C. or lower.

また、請求項3の本発明は、少なくとも酸素を含むカス
に高周波電圧を印加して生成した活性度の高い酸化性の
プラズマ中に直接さらすように酸化物被膜を設置するた
め、被膜i、ti化が促進されて膜のリーク電流特性の
改善、絶縁耐圧の向トが実現できる。さらに本発明は、
プラズマの運動1ネルキーにより500℃以下の比較的
低温にて処理できる酸化物高誘電率薄膜の製造方法を提
供できる。
Further, in the present invention of claim 3, since the oxide film is installed so as to be directly exposed to highly active oxidizing plasma generated by applying a high frequency voltage to the scum containing at least oxygen, the films i, ti As a result, the leakage current characteristics of the film can be improved and the dielectric strength can be improved. Furthermore, the present invention
It is possible to provide a method for producing a high dielectric constant oxide thin film that can be processed at a relatively low temperature of 500° C. or lower using plasma motion 1 energy.

実施例 以下に本発明の実施例を図面を参照して説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

請求項1の本発明における酸化物高誘電率薄膜の製造方
法に用いられる製造装置の略示断面図を第1図に示す。
FIG. 1 shows a schematic cross-sectional view of a manufacturing apparatus used in the method for manufacturing an oxide high dielectric constant thin film according to the first aspect of the present invention.

酸化物被膜(例えは酸化タンタル蕩1lN)を形成した
基体11を試料台12上に設置し、ヒータ13により所
定温度に加熱する。試料室14内は真空ポンプ15によ
り真空排気する。
A substrate 11 on which an oxide film (for example, tantalum oxide 11N) is formed is placed on a sample stage 12 and heated to a predetermined temperature by a heater 13. The inside of the sample chamber 14 is evacuated by a vacuum pump 15.

酸素イオンあるいは酸素プラズマの発生は、プラズマ生
成室16内に例えは酸素ガスを導入し、このガスに対し
、マイクロ波電源17で発生させた周波数2.45GH
zのマイクロ波を導波管18を介して導入して放電させ
ることによりなされる。
To generate oxygen ions or oxygen plasma, for example, oxygen gas is introduced into the plasma generation chamber 16, and this gas is heated to a frequency of 2.45 GH generated by the microwave power source 17.
This is done by introducing microwaves of z through the waveguide 18 and causing a discharge.

この場合、プラズマ生成室16の周囲に配置したソレノ
イド型の電磁石19により中心磁界が8750auss
程度となるように磁界をかけることにより、プラズマ生
成室16因に電子サイクロトロン共鳴か生しる。プラズ
マ生成室16内の酸素カス圧を10−4〜1O−3To
rrに設定することにより、高活性・高イオン化率・高
電子温度の酸素プラズマが得られる。この酸素プラズマ
は電磁石19の発散磁界により試料室16因に導入され
ると同時に酸素イオンか電位の差により導入され、それ
ぞれ試料室16内の試料台12に設置された酸化物被膜
11に照射される。
In this case, a solenoid-type electromagnet 19 placed around the plasma generation chamber 16 generates a central magnetic field of 8750auss.
By applying a magnetic field to a certain degree, electron cyclotron resonance occurs in the plasma generation chamber 16. The oxygen gas pressure in the plasma generation chamber 16 is set to 10-4 to 1O-3To.
By setting to rr, oxygen plasma with high activity, high ionization rate, and high electron temperature can be obtained. This oxygen plasma is introduced into the sample chamber 16 by the divergent magnetic field of the electromagnet 19, and at the same time is introduced by the difference in oxygen ions or potential, and is irradiated onto the oxide film 11 installed on the sample stage 12 in the sample chamber 16. Ru.

最も典型的な処理条件は、酸素ガス流量5secms、
酸素カス圧lXl0−3Torr、マイクロ波電力30
0W、処理温度300℃である。酸化物被膜11の処理
温度が300〜500℃の間の所定の温度であれは、高
活性な酸素イオン・プラズマにより被膜は十分に酸化さ
れ、膜特性としてリーク電流は低下し、絶縁耐圧が向上
することを本発明者らは確認した。
The most typical processing conditions are oxygen gas flow rate of 5 seconds,
Oxygen gas pressure lXl0-3 Torr, microwave power 30
0W, processing temperature 300°C. If the processing temperature of the oxide film 11 is a predetermined temperature between 300 and 500°C, the film will be sufficiently oxidized by the highly active oxygen ion plasma, and as a film characteristic, the leakage current will decrease and the dielectric strength will improve. The present inventors have confirmed that.

照射処理の行なわれる酸化物被膜として例えば酸化タン
タル薄膜を用いる。酸化タンタル薄膜は、例えは減圧C
VD法で形成する。代表的な形成条件を示す。多結晶シ
リコン200 n mが形成されたシリコン基板を反応
管に設置し、450℃に保持する。CVD用カスソース
としては、Ta(OC2)1s)sを用い、前記カスの
容器を130℃程度に保温し、流ffi150sccm
のA「カスてバフリンクしつつ、途中200℃に保温し
たガス送給管を通しjて反応管に送給する。また、酸化
ガスとして、酸素ガスを流t100sccmて反応管に
送給する。反応管内の真空度は0.5Torrである。
For example, a tantalum oxide thin film is used as the oxide film to be subjected to the irradiation treatment. For example, a tantalum oxide thin film can be produced under reduced pressure C.
Formed by VD method. Typical formation conditions are shown. A silicon substrate on which 200 nm of polycrystalline silicon is formed is placed in a reaction tube and maintained at 450°C. As the waste source for CVD, Ta(OC2) 1s)s was used, the waste container was kept warm at about 130°C, and the flow rate was 150 sccm.
A: While scraping and buffing, the gas is fed to the reaction tube through a gas feed pipe kept at 200°C. Also, as an oxidizing gas, oxygen gas is fed to the reaction tube at a flow rate of 100 sccm. The degree of vacuum inside the tube is 0.5 Torr.

−F記条件下で形成された250nmの酸化タンタル?
Ti1lWの比誘電率は21.5 で、リーク電流密度
はI M V / c mの電界印加時て4.8X10
−6A/crn2てあった。この酸化タンタル薄膜を上
記酸素イオン・プラズマ照射処理を30分行なうことに
より、I M V / c mにおけるリーク電流密度
は、6.5 X 10−8A/ c m2と低減した。
-250 nm of tantalum oxide formed under the conditions described in F?
The dielectric constant of Ti1lW is 21.5, and the leakage current density is 4.8×10 when an electric field of I MV/cm is applied.
-6A/crn2. By subjecting this tantalum oxide thin film to the oxygen ion plasma irradiation treatment for 30 minutes, the leakage current density at IMV/cm was reduced to 6.5 x 10-8 A/cm2.

第2−図に酸素イオン・プラズマ解剖処理前後のリーク
電流密度の電界依存性を示す。絶縁耐圧についても処理
後の改善は明かである。
Figure 2 shows the electric field dependence of leak current density before and after oxygen ion plasma dissection treatment. The improvement in dielectric strength after treatment is also obvious.

次に、請求項2の本発明における酸化物高誘電率薄膜の
製造方法に用いられる製造装置の略示断面図を第3図に
示す。プラズマ生成室16内に少なくとも酸素を含むガ
ス、例えは酸素カスを導入し、このカスをはさんで対向
配置した電極31.32に高周波信号(13−56MH
z)を印加してプラズマを発生させる。酸化物被膜を形
成した基体11を配置した試料台12と上記プラズマと
の間に直流電圧を印加することにより、高活性な酸素イ
オンをプラズマ生成室16より引き出し、試料台12上
に設置された酸化物被膜11に照射するというものであ
る。この方法では、加速電圧を変化させることにより酸
素イオンのエネルギーを制御することかでき、それによ
り、酸化促進の度合を制御することが可能である。
Next, FIG. 3 shows a schematic cross-sectional view of a manufacturing apparatus used in the method of manufacturing a high dielectric constant oxide thin film according to the second aspect of the present invention. A gas containing at least oxygen, for example, oxygen scum, is introduced into the plasma generation chamber 16, and a high frequency signal (13-56MH
z) is applied to generate plasma. By applying a DC voltage between the plasma and the sample stage 12 on which the substrate 11 on which the oxide film is formed is placed, highly active oxygen ions are extracted from the plasma generation chamber 16, and the plasma is placed on the sample stage 12. This is to irradiate the oxide film 11. In this method, the energy of oxygen ions can be controlled by changing the accelerating voltage, thereby making it possible to control the degree of oxidation promotion.

代表的な処理条件は、プラズマ生成室16内の酸素カス
圧3 X 10−’Torr、高周波電力200W、イ
オンの加速電圧1kV、処理温度300℃である。また
、酸化物被膜の形成条件は、第1の発明と同様である。
Typical processing conditions are an oxygen gas pressure of 3 x 10-' Torr in the plasma generation chamber 16, a high frequency power of 200 W, an ion acceleration voltage of 1 kV, and a processing temperature of 300°C. Further, the conditions for forming the oxide film are the same as in the first invention.

この場合も酸化物被膜の処理温度が300〜500℃の
間の所定の温度であれは、照射される高活性なイオン・
プラズマにより被膜を十分酸化させることができ、特性
の向−Lか実現できることを本発明者らは確認した。上
記条件下で30分の処理を施すことにより、リーク電流
密度を処理前3.5 X 10−5.A/ c In2
てあったものを7X10−8A/、cm2にまで低減し
、絶縁面1圧を2−5MV/CInまで向」ニさせるこ
とかできた。
In this case as well, if the treatment temperature of the oxide film is a predetermined temperature between 300 and 500°C, the irradiated highly active ions
The present inventors have confirmed that the coating can be sufficiently oxidized by plasma, and that properties in the direction of -L can be achieved. By performing the treatment for 30 minutes under the above conditions, the leakage current density was reduced to 3.5 x 10-5. A/c In2
We were able to reduce the current voltage to 7X10-8A/cm2, and increase the voltage per insulation surface to 2-5MV/CIn.

請求項3の本発明における酸化物高誘電率薄膜の製造方
法に用いられる製造装置の略示断面図を第4図ζこ示す
。真空槽41因に少なくとも酸素を含むカスとして例え
は酸素ガスを導入し、このカスに、13.56MHzの
高周波電界を平行電極に印加して放電させ、この放電プ
ラズマ中に所定の温度に加熱した酸化物被膜を配置して
酸素処理するものである。この方法では、酸素イオンを
含んだ活性度の高い酸素プラズマ中に直接さらすことに
より、被膜の酸化を促進できるところに特徴かある。
A schematic cross-sectional view of a manufacturing apparatus used in the method of manufacturing a high dielectric constant oxide thin film according to the present invention as claimed in claim 3 is shown in FIG. Oxygen gas, for example, was introduced into the vacuum chamber 41 as a scum containing at least oxygen, a high frequency electric field of 13.56 MHz was applied to the parallel electrodes to cause a discharge, and the scum was heated to a predetermined temperature in the discharge plasma. An oxide film is placed and treated with oxygen. A feature of this method is that the oxidation of the coating can be promoted by directly exposing it to highly active oxygen plasma containing oxygen ions.

代表的な処理条件は、真空槽内の酸素カス圧1T o 
r r、高周波電力200W、処理温度300℃である
。酸化物被膜の形成は、第1、第2の発明と同様である
。この場合も、酸化物被膜の処理温度が300〜500
℃の間の所定の温度であれば、被膜は十分に酸化され、
リーク電流特性や絶縁耐圧の改善が実現できる。上記条
件下で20〜30分の酸素処理により、リーク電流密度
を処理前5 X 10−5A/ c m2てあったもの
を8.5X10−8A / c m2にまで低減し、絶
縁耐圧は1.2MV/cmであったものを2.3MV/
cmにまで改善することができた。
Typical processing conditions are an oxygen gas pressure of 1T o in the vacuum chamber.
r r, high frequency power of 200 W, and processing temperature of 300°C. The formation of the oxide film is the same as in the first and second inventions. In this case as well, the treatment temperature for the oxide film is 300 to 500.
At a predetermined temperature between °C, the coating is sufficiently oxidized;
It is possible to improve leakage current characteristics and dielectric strength. By oxygen treatment for 20 to 30 minutes under the above conditions, the leakage current density was reduced from 5 x 10-5 A/cm2 before treatment to 8.5 x 10-8 A/cm2, and the dielectric strength was reduced to 1. What used to be 2MV/cm is now 2.3MV/cm.
I was able to improve it to cm.

発明の詳細 な説明したように、請求項1.2あるいは3の本発明の
酸化物高誘電率薄膜の製造方法は、いずれにおいても、
活性度の高い酸素のイオン・プラズマを用いるため、酸
化タンタルなとの高誘電率を有する酸化物被膜の膜中の
酸素濃度の不足分を満たすことができ、それにより、リ
ーク電流が低減し、絶縁耐圧が向上するなとの膜特性の
改善を実現できるとともに、酸素のイオン・プラズマの
運動エネルギーを利用することにより、500℃以下と
いう低温度領域での処理が可能な方法を提供できる。
As described in detail of the invention, the method for producing a high dielectric constant oxide thin film of the present invention according to claim 1.2 or 3 includes the following steps:
Since highly active oxygen ion plasma is used, it is possible to fill the deficiency in oxygen concentration in oxide films with high dielectric constants such as tantalum oxide, thereby reducing leakage current. It is possible to improve film properties such as an increase in dielectric strength, and by utilizing the kinetic energy of oxygen ion plasma, it is possible to provide a method that allows processing in a low temperature range of 500° C. or lower.

本発明の酸化物高誘電率薄膜の製造方法は、16Mビッ
ト以上のDRAM等の次世代超LSIの絶縁膜材料の形
成方法として極めて有用で、本発明の工業的価値は高い
The method for producing a high dielectric constant oxide thin film of the present invention is extremely useful as a method for forming insulating film materials for next-generation VLSIs such as DRAMs of 16 Mbits or more, and the industrial value of the present invention is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は請求項1にかかる本発明の酸化物高誘電率薄膜
の製造方法に用いられる製造装置の略示断面図、第2図
は請求項1にかかる本発明の酸化物高誘電率薄膜の酸素
イオン・プラズマ照射処理前後のリークを流密度の電界
依存特性グラフ、第3図は請求項2にかかる本発明の酸
化物高誘電率薄膜の製造方法に用いられる製造装置の略
示断面図、第4図は請求項3にかかる本発明の酸化物高
誘電率薄膜の製造方法に用いられる製造装置の略示断面
図である。 11・・・酸化物被膜を形成()た基体、12・・・試
料台、 13・・・ヒータ、 14・・・試料室、 1
5・・・真空ポンプ、16・・・プラズマ生成室、17
・・・マイクロ波電源、18・・・導波管、19・・・
電磁石、3】、 32・・・電極、 4】・・・真空槽
。 代理人 弁理士 松 1)正 道 第 1 図 第2図 第 3 図 1′3 第4図
FIG. 1 is a schematic cross-sectional view of a manufacturing apparatus used in the method for manufacturing a high dielectric constant oxide thin film of the present invention according to claim 1, and FIG. FIG. 3 is a schematic cross-sectional view of a manufacturing apparatus used in the method for manufacturing an oxide high dielectric constant thin film of the present invention according to claim 2. , and FIG. 4 is a schematic cross-sectional view of a manufacturing apparatus used in the method for manufacturing a high dielectric constant oxide thin film of the present invention according to claim 3. DESCRIPTION OF SYMBOLS 11...Substrate with oxide film formed (), 12...Sample stage, 13...Heater, 14...Sample chamber, 1
5... Vacuum pump, 16... Plasma generation chamber, 17
...Microwave power supply, 18...Waveguide, 19...
Electromagnet, 3], 32...electrode, 4]...vacuum chamber. Agent Patent Attorney Matsu 1) Tadashi Michi 1 Figure 2 Figure 3 Figure 1'3 Figure 4

Claims (1)

【特許請求の範囲】 (1)酸化物被膜に対し、マイクロ波を用いたプラズマ
分解によるプラズマ処理装置で発生させた酸素イオンあ
るいは酸素プラズマを照射することによって酸化物高誘
電率薄膜を形成することを特徴とする酸化物高誘電率薄
膜の製造方法。(2)酸化物被膜に対し、少なくとも酸
素を含むガスに高周波電圧を印加して生成したプラズマ
と前記酸化物被膜を設置した試料台との間に所定の電位
に設定した電極を設置して、酸素イオンあるいは酸素プ
ラズマを照射することによって酸化物高誘電率薄膜を形
成することを特徴とする酸化物高誘電率薄膜の製造方法
。 (3)少なくとも酸素を含むガスに高周波電圧を印加し
て生成したプラズマ中に、酸化物被膜を設置することに
よって酸化物高誘電率薄膜を形成することを特徴とする
酸化物高誘電率薄膜の製造(4)酸化物被膜として、酸
化タンタル薄膜を用いることを特徴とする請求項1、2
または3記載の酸化物高誘電率薄膜の製造方法。 (5)酸素イオンあるいは酸素プラズマ照射時の酸化物
被膜を300から500℃までの所定の温度に保持する
ことを特徴とする請求項1、2または3記載の酸化物高
誘電率薄膜の製造方法。(6)プラズマ処理装置として
、電子サイクロトロン共鳴吸収条件を満たすように磁界
を印加する方法を用いることを特徴とする請求項1記載
の酸化物高誘電率薄膜の製造方法。
[Scope of Claims] (1) Forming a high dielectric constant oxide thin film by irradiating the oxide film with oxygen ions or oxygen plasma generated in a plasma processing device using plasma decomposition using microwaves. A method for producing a high dielectric constant oxide thin film characterized by: (2) installing an electrode set to a predetermined potential between the plasma generated by applying a high frequency voltage to a gas containing at least oxygen to the oxide film and the sample stage on which the oxide film is installed; A method for producing a high dielectric constant oxide thin film, the method comprising forming the high dielectric constant oxide thin film by irradiating oxygen ions or oxygen plasma. (3) An oxide high dielectric constant thin film characterized in that the oxide high dielectric constant thin film is formed by installing an oxide film in plasma generated by applying a high frequency voltage to a gas containing at least oxygen. Manufacturing (4) Claims 1 and 2 characterized in that a tantalum oxide thin film is used as the oxide film.
or 3. The method for producing an oxide high dielectric constant thin film according to 3. (5) The method for producing a high dielectric constant oxide thin film according to claim 1, 2 or 3, characterized in that the oxide film is maintained at a predetermined temperature of 300 to 500°C during irradiation with oxygen ions or oxygen plasma. . (6) The method for producing a high dielectric constant oxide thin film according to claim 1, characterized in that the plasma processing apparatus uses a method of applying a magnetic field so as to satisfy electron cyclotron resonance absorption conditions.
JP33509790A 1990-11-29 1990-11-29 Manufacture of oxide thin film of high dielectric constant Pending JPH04199828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33509790A JPH04199828A (en) 1990-11-29 1990-11-29 Manufacture of oxide thin film of high dielectric constant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33509790A JPH04199828A (en) 1990-11-29 1990-11-29 Manufacture of oxide thin film of high dielectric constant

Publications (1)

Publication Number Publication Date
JPH04199828A true JPH04199828A (en) 1992-07-21

Family

ID=18284739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33509790A Pending JPH04199828A (en) 1990-11-29 1990-11-29 Manufacture of oxide thin film of high dielectric constant

Country Status (1)

Country Link
JP (1) JPH04199828A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201771A (en) * 1992-10-27 1994-07-22 Internatl Business Mach Corp <Ibm> Electronic-device processing method using microwave radiation
JPH0766369A (en) * 1993-08-26 1995-03-10 Nec Corp Manufacture of semiconductor device
KR100292207B1 (en) * 1998-12-07 2001-11-26 채문식 Manufacturing method of ferroelectric thin film element using oxygen plasma
US6514813B2 (en) 1999-03-01 2003-02-04 Oki Electric Industry Co., Ltd. Method of fabricating a semiconductor device
US7132373B2 (en) 2001-10-02 2006-11-07 Toto Ltd. Thin metal oxide film and process for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201771A (en) * 1992-10-27 1994-07-22 Internatl Business Mach Corp <Ibm> Electronic-device processing method using microwave radiation
JPH0766369A (en) * 1993-08-26 1995-03-10 Nec Corp Manufacture of semiconductor device
KR100292207B1 (en) * 1998-12-07 2001-11-26 채문식 Manufacturing method of ferroelectric thin film element using oxygen plasma
US6514813B2 (en) 1999-03-01 2003-02-04 Oki Electric Industry Co., Ltd. Method of fabricating a semiconductor device
US6794240B2 (en) 1999-03-01 2004-09-21 Oki Electric Industry Co., Ltd. Method of fabricating a semiconductor device
US7132373B2 (en) 2001-10-02 2006-11-07 Toto Ltd. Thin metal oxide film and process for producing the same

Similar Documents

Publication Publication Date Title
US5330935A (en) Low temperature plasma oxidation process
TWI292172B (en) Method for forming insulating film on substrate, mehtod for manufacturing semiconductor device, and substrate-processing apparatus
JP3352842B2 (en) Thin film formation method by gas cluster ion beam
TWI390675B (en) A gate insulating film forming method, a semiconductor device, and a computer recording medium
JPH0684888A (en) Formation of insulation film
JPH03185827A (en) Manufacture of thin film of high purity
KR920007106A (en) Solid state electronic device and manufacturing method thereof
TW200913071A (en) Method for pretreating inner space of chamber in plasma nitridation, plasma processing method and plasma processing apparatus
JPH02281734A (en) Treating method of surface by plasma
JPH04199828A (en) Manufacture of oxide thin film of high dielectric constant
JP2004266263A (en) Method for manufacturing semiconductor device
JPH01207930A (en) Surface modification
WO1995002896A1 (en) Method for manufacturing semiconductor
JP2000114257A (en) Manufacture of semiconductor device
JPH04239130A (en) Plasma processor and processing method
JP2005252031A (en) Plasma nitriding method
JPH0860347A (en) Method for depositing dielectric thin film
JPH0355401B2 (en)
JPH11177057A (en) Manufacture of semiconductor device
JPH04242933A (en) Formation of oxide film
JP3164188B2 (en) Plasma processing equipment
JP2004356558A (en) Apparatus and method for coating
TWI290744B (en) Method for processing substrate
JP2006216774A (en) Method of forming insulating film
JP2895981B2 (en) Silicon oxide film forming method