KR100292207B1 - Manufacturing method of ferroelectric thin film element using oxygen plasma - Google Patents

Manufacturing method of ferroelectric thin film element using oxygen plasma Download PDF

Info

Publication number
KR100292207B1
KR100292207B1 KR1019980053461A KR19980053461A KR100292207B1 KR 100292207 B1 KR100292207 B1 KR 100292207B1 KR 1019980053461 A KR1019980053461 A KR 1019980053461A KR 19980053461 A KR19980053461 A KR 19980053461A KR 100292207 B1 KR100292207 B1 KR 100292207B1
Authority
KR
South Korea
Prior art keywords
thin film
ferroelectric thin
oxygen
oxygen plasma
manufacturing
Prior art date
Application number
KR1019980053461A
Other languages
Korean (ko)
Other versions
KR20000038448A (en
Inventor
장혁규
이철의
노승정
Original Assignee
채문식
학교법인고려중앙학원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 채문식, 학교법인고려중앙학원 filed Critical 채문식
Priority to KR1019980053461A priority Critical patent/KR100292207B1/en
Publication of KR20000038448A publication Critical patent/KR20000038448A/en
Application granted granted Critical
Publication of KR100292207B1 publication Critical patent/KR100292207B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Memories (AREA)

Abstract

본 발명은 강유전체를 이용한 반도체 소자의 제조시 강유전체 박막표면에 존재하는 산소공핍이나 산소관련결함음 제거 또는 업게하기 위한 것으로, 이러한 본 발명은 하부전극 위에 강유전체 박막을 성장시키고, 성장시킨 강유전체 박막 위에 산소 플라즈마 처리를 수행하여 강유전체 박막의 표면에 있는 산소관련결함을 감소시키며, 산소관련결함이 감소된 강유전체 박막 위에 상부전극을 증착시킴으로써, 짧은 공정시간으로 초기적 특성 뿐만 아니라 피로 후에도 우수한 제품특성을 갖으며 신뢰도 있는 반도체 소자를 제조할 수 있게 되는 것이다.The present invention is to remove or increase the oxygen depletion or oxygen-related defects present on the surface of the ferroelectric thin film when manufacturing a semiconductor device using a ferroelectric, this invention is to grow the ferroelectric thin film on the lower electrode, oxygen on the grown ferroelectric thin film Plasma treatment reduces the oxygen-related defects on the surface of the ferroelectric thin film, and deposits the upper electrode on the ferroelectric thin film with reduced oxygen-related defects. It is possible to manufacture a reliable semiconductor device.

Description

산소플라즈마를 이용한 강유전체 박막소자의 제조방법Method of manufacturing ferroelectric thin film device using oxygen plasma

본 발명은 강유전체를 이용한 반도체 소자의 제조에 관한 것으로, 특히 강유전체를 이용한 반도체 소자의 제조시 강유전체 박막표면에 존재하는 산소공핍 (oxyten vacancy)이나 산소관련결함(oxygen-related defect)을 제거 또는 억제하여 강유전체 소자의 신뢰도를 상승시키고, 소자의 신뢰도를 높이는 공정에 소요되는 시간을 단축하기 위한 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the fabrication of semiconductor devices using ferroelectrics. In particular, the manufacture of semiconductor devices using ferroelectrics removes or suppresses oxygen depletion or oxygen-related defects on the surface of a ferroelectric thin film. The present invention relates to a method for increasing the reliability of a ferroelectric device and reducing the time required for the process of increasing the reliability of the device.

일반적으로 DRAM(Dynamic Random Access Memory, 동적 임의 접근 기억 장치) 제조공정에서는 전하량을 저장하기 위한 커패시터가 필요한데 이 구조가 매우 복잡하다. DRAM의 집적도가 높을수록 커패시터는 더 복잡해져야 하는데, 현재 256MB 정도가 제조할 수 있는 한계로 여겨지고 있다. 따라서 1GB 이상의 DRAM 제조에는 초고집적도의 커패시터를 제작하든지, 아니면 다른 물질로 제작하여야 한다.In general, a DRAM (Dynamic Random Access Memory) manufacturing process requires a capacitor to store the amount of charge, the structure is very complicated. The higher the density of DRAMs, the more complex the capacitors are, and currently around 256MB is considered a manufacturing limit. Therefore, the production of ultra-high-density capacitors, or other materials, must be made for DRAM production over 1GB.

따라서 본 발명은 1GB 이상의 DRAM이나 64KB 이상의 FeRAM(Ferroelectric Random Access Memory)의 제조에 적용되며, gate oxide를 대체하는 물질로 응용가능하다.Therefore, the present invention is applied to the manufacture of DRAM of 1GB or more or FeRAM (Ferroelectric Random Access Memory) of 64KB or more, and is applicable to a material replacing gate oxide.

그리고 강유전체 박막표면에 존재하는 산소공핍이란 다음을 의미한다. 즉, 이상적인 PZT(Pb(Zr, Ti)O3, 지르콘.티탄산 납) 박막에는 산소원자가 격자내의 제위치에 존재하지만 실제로는 산소가 격자에서부터 빠져나오게 되며, 이 때 산소 빈자리르 산소공핍이라 한다. 이러한 산소공핍은 박막성장공정이나 열처리 공정 등에서 발생할 수 있다. 또한 산소관련결함이란 산소 원자가 격자 내에서 만드는 결함으로 산소공핍 등을 말한다.Oxygen depletion on the ferroelectric thin film surface means the following. In other words, in an ideal PZT (Pb (Zr, Ti) O 3 , zircon. Lead titanate) thin film, oxygen atoms are present in the lattice, but oxygen is actually released from the lattice. Such oxygen depletion may occur in a thin film growth process or a heat treatment process. In addition, oxygen-related defects are defects that oxygen atoms make in the lattice, such as oxygen depletion.

도1a 및 도1b는 종래의 강유전체 박막소자 제조공정을 보인 단면도이다.1A and 1B are cross-sectional views illustrating a conventional ferroelectric thin film device manufacturing process.

먼저, 도1a에 도시한 바와 같이, 하부전극(예를 들면, 백금(platinum, Pt)전극)(1) 위에 강유전체(예를 들면, PZT) 박막(2)을 성장시킨다. 그러면 하부전극(1)과 강유전체 박막(2)의 경계면에서 접촉효과에 의한 산소공핍이나 산소 관련결함(4)이 발생한다. 또한 하부전극(1)과의 경계면 이외의 면에서도 강유전체 박막은 산소공핍이나 산소관련결함(4)을 갖는다.First, as shown in FIG. 1A, a ferroelectric (for example, PZT) thin film 2 is grown on a lower electrode (for example, a platinum (Pt) electrode) 1. Then, oxygen depletion or oxygen-related defect 4 due to a contact effect occurs at the interface between the lower electrode 1 and the ferroelectric thin film 2. The ferroelectric thin film also has oxygen depletion or oxygen-related defects 4 at surfaces other than the interface with the lower electrode 1.

또한, 도1b에서, 강유전체 박막(2)을 산소가스 또는 질소가스 상태에 노출시켜 열처리를 수행하고, 강유전체 박막(2) 위에 상부전극(예를 들면, Pt)(3)을 성장 시킨다. 이러한 열처리는 강유전체 소자의 초기적 특성을 높이기 위한 것으로, 이때의 열처리온도는 300℃이상이고, 4시간 정도의 열처리 시간이 필요하다. 여기서 초기적 특성이란 강유전체 박막의 신뢰도를 테스트하기 위해 박막에 가해주는 전기적 스트레스의 일종인 피로테스트를 하기 전에 측정한 특성을 의미한다.In addition, in FIG. 1B, the ferroelectric thin film 2 is exposed to an oxygen gas or nitrogen gas state to perform heat treatment, and an upper electrode (for example, Pt) 3 is grown on the ferroelectric thin film 2. This heat treatment is to increase the initial characteristics of the ferroelectric element, the heat treatment temperature at this time is 300 ℃ or more, it requires a heat treatment time of about 4 hours. Here, the initial characteristic means a characteristic measured before the fatigue test, which is a kind of electrical stress applied to the thin film to test the reliability of the ferroelectric thin film.

이에 따라 강유전체 박막(2)과 상부전극(3)의 경계면에 있던 산소관련결함 (4)은 더욱 커지게 된다.As a result, the oxygen-related defect 4 at the interface between the ferroelectric thin film 2 and the upper electrode 3 becomes larger.

그리고 300℃ 이하의 저온에서 한 열처리는 많은 시간을 필요로 하는데, 열처리 시간을 줄이고 좋은 박막의 형상을 위해서는 300℃ 이상이 열처리 온도에서 4시간 이상의 처리가 필요하다.And the heat treatment at a low temperature of less than 300 ℃ requires a lot of time, in order to reduce the heat treatment time and the shape of a good thin film is required more than 4 hours at 300 ℃ or more heat treatment temperature.

그러나 종래의 강유전체 박막소자 제조방법은 산소관련결함이 커지게 되어 강유전체 소자의 수율과 신뢰도를 크게 떨어뜨리고, 소자의 신뢰도를 높이기 위한 300℃ 이상의 열처리에 걸리는 시간이 긴 단점이 있었다.However, the conventional ferroelectric thin film device manufacturing method has a disadvantage in that the oxygen-related defects increase, which greatly reduces the yield and reliability of the ferroelectric device, and takes a long time for heat treatment of 300 ° C. or more to increase the reliability of the device.

이에 본 발명은 상기와 같은 종래의 제반 문제점을 해소하기 위해 제안된 것으로, 본 발명의 목적은 강유전체를 이용한 반도체 소자의 제조시 강유전체 박막표면에 존재하는 산소공핍이나 산소관련결함을 제거 또는 억제하여 강유전체 소자의 신뢰성을 상승시키고, 소자의 신뢰도를 높이는 공정에 소요되는 시간을 단축할 수 있는 산소플라즈마를 이용한 강유전체 박막소자의 제조방법을 제공하는 데 있다.Accordingly, the present invention has been proposed to solve the above-mentioned conventional problems, and an object of the present invention is to eliminate or suppress oxygen depletion or oxygen-related defects existing on the surface of a ferroelectric thin film when manufacturing a semiconductor device using a ferroelectric. The present invention provides a method for manufacturing a ferroelectric thin film device using an oxygen plasma which can increase the reliability of the device and shorten the time required for the process of increasing the device reliability.

상기와 같은 목적을 달성하기 위하여 본 발명에 의한 산소플라즈마를 이용한 강유전체 박막소자의 제조방법은, 하부전극 위에 강유전체 박막을 성장시키고, 성장시킨 강유전체 박막 위에 산소 플라즈마 처리를 수행하여 강유전체 박막의 표면에 있는 산소관련결함을 감소 시키며, 산소관련결함이 감소된 강유전체 박막 위에 상부전극을 증착시키는 것을 그 기술적 구성상의 특징으로 한다.In order to achieve the above object, a method of manufacturing a ferroelectric thin film device using an oxygen plasma according to the present invention includes growing a ferroelectric thin film on a lower electrode, and performing an oxygen plasma treatment on the grown ferroelectric thin film on the surface of the ferroelectric thin film. Deposition of the upper electrode on the ferroelectric thin film with reduced oxygen-related defects and reduced oxygen-related defects is a feature of the technical construction.

도1a 및 도1b는 종래의 강유전체 박막소자 제조공정을 보인 단면도이고, 도2a 내지 도2c는 본 발명의 실시에에 의한 산소플라즈마를 이용한 강유전체 박막소자의 제조공정을 보인 단면도이며, 도3은 본 발명에 의한 산소플라즈마를 이용한 강유전체 박막소자와 종래 강유전체 박막소자의 사이클 함수를 보인 그래프이고, 도4는 본 발명에 의한 산소플라즈마를 이용한 강유전체 박막소자와 종래 강유전체 박막소자의 누설전류밀도를 보인 그래프이다.Figure 1a and Figure 1b is a cross-sectional view showing a conventional ferroelectric thin film device manufacturing process, Figures 2a to 2c is a cross-sectional view showing a manufacturing process of a ferroelectric thin film device using an oxygen plasma according to the embodiment of the present invention, Figure 3 Fig. 4 is a graph showing the cycle functions of a ferroelectric thin film device using an oxygen plasma and a conventional ferroelectric thin film device according to the present invention. .

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

11 : 하부전극 12 : 강유전체 박막11 lower electrode 12 ferroelectric thin film

13 : 상부전극 14 : 산소관련결함13: upper electrode 14: oxygen-related defect

이하, 상기와 같은 본 발명 산소플라즈마를 이용한 강유전체 박막소자의 제조방법의 기술적 사상에 따른 일실시예를 첨부한 도면에 의거 상세히 설명하면 다음과 같다.Hereinafter, an embodiment according to the technical idea of the method of manufacturing a ferroelectric thin film device using the present invention oxygen plasma as described above in detail with reference to the accompanying drawings.

도2a 내지 도2c는 본 발명의 실시예에 의한 산소플라즈마를 이용한 강유전체 박막소자의 제조공정을 보인 단면도이다.2A to 2C are cross-sectional views illustrating a manufacturing process of a ferroelectric thin film device using an oxygen plasma according to an embodiment of the present invention.

먼저, 도2a에 도시한 바와 같이, 하부전극(11) 위에 강유전체 박막(12)을 증착시킨다. 이때 하부전극(11)은 Pt/Ti/SiO2/Si(100)(백금/티타늄/실리콘산화막/단결정실리콘) 기판을 사용할 수 있다. 그리고 강유전체 박막(12)은 PZT, PLZT, SBT 등의 박막을 사용하고, 졸-겔 방법(sol-gel process)으로 성장시킨다. 여기서 졸-겔 방법은 출발원료가 액체인 상태에서, 미립자를 포함한 졸(콜로이드)의 상태를 거쳐, 고체의 골격 틈 사이에 액체 등을 함유한 상태의 겔을 통과시켜 유리나 세라믹스 등의 무기재료를 만드는 방법이다.First, as shown in FIG. 2A, a ferroelectric thin film 12 is deposited on the lower electrode 11. In this case, the lower electrode 11 may use a Pt / Ti / SiO 2 / Si (100) (platinum / titanium / silicon oxide film / single crystal silicon) substrate. The ferroelectric thin film 12 is grown using a sol-gel process using thin films such as PZT, PLZT, SBT, and the like. Here, the sol-gel method passes through a sol (colloid) containing fine particles in a state where the starting material is a liquid and passes a gel containing a liquid or the like between the solid skeletal gaps to form an inorganic material such as glass or ceramics. How to make.

그러면 하부전극(11)과 강유전체 박막(12)의 경계면에서 접촉효과에 의한 산소공핍이나 산소관련결함(14)이 발생한다. 또한 하부전극(11)과의 경계면 이외의 면에서도 강유전체 박막(12)은 산소공핍이나 산소관련결함(14)을 갖는다.Then, oxygen depletion or oxygen-related defects 14 due to a contact effect occur at the interface between the lower electrode 11 and the ferroelectric thin film 12. The ferroelectric thin film 12 also has oxygen depletion or oxygen-related defects 14 at surfaces other than the interface with the lower electrode 11.

그리고, 도2b에서, RF(Radio Frequency, 무선)를 이용하여 중성기체를 플라즈마 상태로 만드는 반응기인 RF 플라즈마 발생기에서 산소 플라즈마를 상온 내지 300℃의 온도영역 내에서 60W - 0.7Torr의 처리조건으로 일정 시간 동안 처리하여, 산소플라즈마 처리를 수행한다. 그러면 강유전체 박막(12)의 표면에 있는 산소공핍이나 산소관련결함(14)은 감소하게 된다.In FIG. 2B, in the RF plasma generator, which is a reactor for making a neutral gas into a plasma state using RF (Radio Frequency, wireless), oxygen plasma is constant at a processing condition of 60W-0.7Torr in a temperature range of room temperature to 300 ° C. By treatment for a time, oxygen plasma treatment is performed. This reduces oxygen depletion or oxygen-related defects 14 on the surface of the ferroelectric thin film 12.

여기서 RF Power는 30W 내지 100W의 낮은 에너지를 이용한다.RF power uses low energy of 30W to 100W.

아울러 산소 플라즈마 처리시 순수한 산소가스만을 사용하여 50 내지 500sccm을 공급함으로써, 기존의 산소 + 질소, 산소 + 아르곤, 또는 산소 + 질소 + 아르곤 등의 혼합가스에 비해 산소 플라즈마 처리 효과를 높인다.In addition, by supplying 50 to 500sccm using only pure oxygen gas during the oxygen plasma treatment, it enhances the oxygen plasma treatment effect compared to the conventional mixed gas such as oxygen + nitrogen, oxygen + argon, or oxygen + nitrogen + argon.

또한, 도2c에서, 산소플라즈마 처리를 수행한 이후에 직류전원을 사용하여 물질을 증착시키는 DC(Direct Current) 스푸터링(sputtering) 방법으로 상부전극 (13)을 증착시킨다.In addition, in FIG. 2C, after performing the oxygen plasma treatment, the upper electrode 13 is deposited by a direct current sputtering method in which a material is deposited using a direct current power source.

여기서 상부전극은 Pt, Ru, Ir, TiN 또는 이들의 합금 전극을 사용한다.Here, the upper electrode uses Pt, Ru, Ir, TiN, or an alloy thereof.

아래의 [표1]은 도2b에서 산소플라즈마 처리공정을 하지 않을 경우, 30분, 60분, 90분, 120분간 산소플라즈마 처리공정을 수행한 경우의 결과표이다.Table 1 below is a result table when the oxygen plasma treatment process is performed for 30 minutes, 60 minutes, 90 minutes, and 120 minutes when the oxygen plasma treatment process is not performed in FIG. 2B.

이러한 [표1]은 ±10V와 8,6 mu s인 펄스를 이용하여 Pt/PZT/Pt(백금/PZT/백금) 소자에 피로를 108회 가한 후에 측정한 2Pr(Pr : 잔여분극) 값의 변화를 보인 것이다.[Table 1] shows 2Pr (Pr: Residual Polarization) value measured after applying fatigue to Pt / PZT / Pt (Platinum / PZT / Platinum) device 10 8 times using pulses of ± 10V and 8,6 mu s. It is a change of.

이에 따라 산소플라즈마 처리를 하지 않은 시편은 피로 전과 비교한 분율이 59%인데 반해, 본 발명에 의해 5분 내지 120분간 산소플라즈마 처리를 시편은 75% 내지 83%의 높은 잔여분극을 보여준다.Accordingly, while the specimen without oxygen plasma treatment had a 59% fraction as compared to before fatigue, the specimen exhibited a high residual polarization of 75% to 83% with oxygen plasma treatment for 5 to 120 minutes according to the present invention.

도3은 본 발명에 의한 산소플라즈마를 이용한 강유전체 박막소자와 종래 강유전체 박막소자의 사이클 함수를 보인 그래프로써, 표1의 결과를 그래프로 보인 것이다.3 is a graph showing a cycle function of a ferroelectric thin film device using an oxygen plasma and a conventional ferroelectric thin film device according to the present invention, and the results of Table 1 are shown graphically.

이처럼 피로 테스트 후에도 잔여분극인 2Pr 값이 많이 남는 것이 우수한 소자이고, 이는 피로 전과 비교한 비율이 높을수록 신뢰도 있는 소자라는 것을 의미한다. 표1과 도3에서 보면, 산소플라즈마 처리를 하지 않은 시편이 가장 적은 2Pr 값을 보여 산소플라즈마 처리가 피로를 효과적으로 억제할 수 있어 소자의 신뢰도를 높일 수 있음을 알 수 있다.As such, it is an excellent device that a large amount of residual polarization, 2Pr, remains after the fatigue test, which means that the higher the ratio compared to before the fatigue, the more reliable the device. As shown in Table 1 and Figure 3, the specimen without oxygen plasma treatment shows the smallest 2Pr value, it can be seen that the oxygen plasma treatment can effectively suppress the fatigue, thereby improving the reliability of the device.

다음의 표2는 Pt/PZT/Pt 소자에 피로를 108가한 후에 측정한 누설전류 밀도 이다.The following Table 2 shows the leakage current density measured after the blood to the Pt / PZT / Pt elements 10 8 were added.

그리고 도4는 본 발명에 의한 산소플라즈마를 이용한 강유전체 박막소자와 종래 강유전체 박막소자의 누설전류밀도를 보인 그래프로써, [표2]의 결과를 그래프로 보인 것이다.4 is a graph showing the leakage current density of a ferroelectric thin film device using an oxygen plasma and a conventional ferroelectric thin film device according to the present invention, and shows the results of Table 2 as a graph.

[표2]와 도4에서와 같이, 종래의 산소플라즈마 처리를 하지 않은 시편은 누설전류밀도가 높은 반면에 5분 내지 120분간 산소플라즈마 처리를 한 시편은 누설 전류밀도가 매우 낮아 피로 후에도 소자의 신뢰도가 매우 높음을 알 수 있다.As shown in Table 2 and FIG. 4, the specimens without conventional oxygen plasma treatment have a high leakage current density, whereas the specimens subjected to oxygen plasma treatment for 5 to 120 minutes have a very low leakage current density, and thus, even after fatigue. It can be seen that the reliability is very high.

이처럼 본 발명은 강유전체 박막표면에 존재하는 산소관련결함을 제거 또는 억제하여 강유전체 소자의 신뢰도를 상승시키게 되는 것이다.As such, the present invention removes or suppresses oxygen-related defects existing on the surface of the ferroelectric thin film, thereby increasing the reliability of the ferroelectric element.

이상에서 본 발명의 바람직한 실시에를 설명하였으나, 본 발명은 다양한 변화와 변경 및 균등물을 사용할 수 있다. 본 발명은 상기 실시예를 적절히 변형하여 동일하게 응용할 수 있음이 명확하다. 즉, 초기적 특성 뿐만 아니라 피로 후에도 우수한 제품특성을 보여 신뢰도 있는 반도체 소자제품에 적용할 수 있다. 따라서 상기 기재 내용은 하기 특허청구범위의 한계에 의해 정해지는 본 발명의 범위를 한 정하는 것이 아니다.Although the preferred embodiment of the present invention has been described above, the present invention may use various changes, modifications, and equivalents. It is clear that the present invention can be applied in the same manner by appropriately modifying the above embodiments. That is, it can be applied to reliable semiconductor device products because it shows excellent product characteristics even after fatigue as well as initial characteristics. Accordingly, the above description is not intended to limit the scope of the invention as defined by the limitations of the following claims.

이상에서 살펴본 바와 같이, 본 발명에 의한 산소플라즈마를 이용한 강유전체 박막소자의 제조방법은 종래의 열처리 방법에 비해 공정시간이 짧고, 초기적 특성 뿐만 아니라 피로 후에도 우수한 제품특성을 보여 신뢰도 있는 반도체 소자를 제조할 수 있는 효과가 있게 된다.As described above, the method of manufacturing the ferroelectric thin film device using the oxygen plasma according to the present invention has a shorter processing time than the conventional heat treatment method, and manufactures a reliable semiconductor device showing excellent product characteristics even after fatigue as well as initial characteristics. It will work.

Claims (2)

DRAM 또는 FeRAM 등 반도체 소자를 제조하기 위한 캐패시터 형성 공정 중 PZT, PLZT, SBT 등의 강유전체 박막소자의 제조방법에 있어서, Pt, Ti, SiO2, Si 기판을 하부전극으로 사용하고, 상기 하부전극 상에 성장되는 상기 강유전체 박막 위에 순수한 산소가스만으로 산소 플라즈마 처리를 수행하여 강유전체 박막의 표면 또는 내부에 있는 산소관련결함을 감소시키는 공정과; 상기 강유전체 박막 상에 Pt, Ru, Ir, TiN 또는 이들의 합금 전극을 PVD 또는 CVD 방법으로 증착하여 상부 전극을 형성시키는 공정을 포함하여 제조되는 것을 특징으로 하는 산소플라즈마를 이용한 강유전체 박막소자의 제조방법.In the method of manufacturing a ferroelectric thin film device such as PZT, PLZT, SBT, etc. during a capacitor forming process for manufacturing a semiconductor device such as DRAM or FeRAM, a Pt, Ti, SiO 2 , Si substrate is used as a lower electrode, Reducing oxygen-related defects on the surface or inside of the ferroelectric thin film by performing an oxygen plasma treatment on the ferroelectric thin film grown only with pure oxygen gas; Method of manufacturing a ferroelectric thin film device using an oxygen plasma, characterized in that the step of forming a top electrode by depositing Pt, Ru, Ir, TiN or alloy electrodes thereof on the ferroelectric thin film by PVD or CVD method. . 제 1항에 있어서, 상기 성장시킨 강유전체 박막 위에 산소 플라즈마 처리시, 상온 내지 300℃의 온도영역 내에서 5분 내지 120분 동안 처리하여 강유전체 박막의 표면에 있는 산소관련결함을 감소시키는 것을 특징으로 하는 산소플라즈마를 이용한 강유전체 박막소자의 제조방법.The method of claim 1, wherein when the oxygen plasma treatment on the grown ferroelectric thin film, the oxygen-related defects on the surface of the ferroelectric thin film are reduced by treating for 5 to 120 minutes in the temperature range of room temperature to 300 ℃. Method of manufacturing ferroelectric thin film device using oxygen plasma.
KR1019980053461A 1998-12-07 1998-12-07 Manufacturing method of ferroelectric thin film element using oxygen plasma KR100292207B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980053461A KR100292207B1 (en) 1998-12-07 1998-12-07 Manufacturing method of ferroelectric thin film element using oxygen plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980053461A KR100292207B1 (en) 1998-12-07 1998-12-07 Manufacturing method of ferroelectric thin film element using oxygen plasma

Publications (2)

Publication Number Publication Date
KR20000038448A KR20000038448A (en) 2000-07-05
KR100292207B1 true KR100292207B1 (en) 2001-11-26

Family

ID=19561651

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980053461A KR100292207B1 (en) 1998-12-07 1998-12-07 Manufacturing method of ferroelectric thin film element using oxygen plasma

Country Status (1)

Country Link
KR (1) KR100292207B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04199828A (en) * 1990-11-29 1992-07-21 Matsushita Electric Ind Co Ltd Manufacture of oxide thin film of high dielectric constant
JPH07263570A (en) * 1994-03-17 1995-10-13 Fujitsu Ltd Manufacture of dielectric device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04199828A (en) * 1990-11-29 1992-07-21 Matsushita Electric Ind Co Ltd Manufacture of oxide thin film of high dielectric constant
JPH07263570A (en) * 1994-03-17 1995-10-13 Fujitsu Ltd Manufacture of dielectric device

Also Published As

Publication number Publication date
KR20000038448A (en) 2000-07-05

Similar Documents

Publication Publication Date Title
Li et al. Metalorganic chemical vapor deposition of ferroelectric SrBi2Ta2O9 thin films
US5973911A (en) Ferroelectric thin-film capacitor
JP4020364B2 (en) Metal ferroelectric insulator semiconductor field effect transistor and manufacturing method thereof
US5854499A (en) Ferroelectric film capacitor with intergranular insulation
KR100297210B1 (en) High Temperature Electrode-Barriers for Ferroelectric Capacitors and Other Capacitor Structures
US6498097B1 (en) Apparatus and method of forming preferred orientation-controlled platinum film using oxygen
US7153708B2 (en) Seed layer processes for MOCVD of ferroelectric thin films on high-k gate oxides
US6150684A (en) Thin-film capacitor and method of producing same
US20080118731A1 (en) Method of forming a structure having a high dielectric constant, a structure having a high dielectric constant, a capacitor including the structure, a method of forming the capacitor
JP3628041B2 (en) Manufacturing method of semiconductor device
US5840615A (en) Method for forming a ferroelectric material film by the sol-gel method, along with a process for a production of a capacitor and its raw material solution
KR100433819B1 (en) Process for fabricating layered superlattice materials and making electronic devices including same
JPH08306231A (en) Substrate covered with thin film of ferroelectric substance, its manufacture, and nonvolatile memory constructed the substrate
WO2000001000A1 (en) Dc sputtering process for making smooth electrodes and thin film ferroelectric capacitors having improved memory retention
JP3683158B2 (en) Lead germanium oxide film growth method and capacitor
Doi et al. Influence of buffer layers on microstructural and ferroelectric characteristics of sol-gel derived PbZrxTi1-xO3 thin films
Tang et al. Trends in DRAM dielectrics
KR100292207B1 (en) Manufacturing method of ferroelectric thin film element using oxygen plasma
JP2006522352A (en) Method for depositing layers on a substrate
KR100214765B1 (en) Method of forming white gold film electronics device
KR20000066742A (en) Method for defects control at interface between bottom electrode and ferroelectric thin film by 2-step deposition
CN116845056B (en) High-performance hafnium oxide-based ferroelectric capacitor and preparation method thereof
JPH0786514A (en) Thin film capacitor
KR20030010852A (en) Method for manufacturing a semiconductor device
CN116669535A (en) Memcapacitor based on ferroelectric hafnium oxide material MFMS structure and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110107

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee