JPH0897185A - Production of semiconductor device - Google Patents

Production of semiconductor device

Info

Publication number
JPH0897185A
JPH0897185A JP23257294A JP23257294A JPH0897185A JP H0897185 A JPH0897185 A JP H0897185A JP 23257294 A JP23257294 A JP 23257294A JP 23257294 A JP23257294 A JP 23257294A JP H0897185 A JPH0897185 A JP H0897185A
Authority
JP
Japan
Prior art keywords
gas
reaction chamber
carbon film
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23257294A
Other languages
Japanese (ja)
Inventor
Masahiko Toki
雅彦 土岐
Hirofumi Wataya
宏文 綿谷
Shoji Okuda
章二 奥田
Junya Nakahira
順也 中平
Hideaki Kikuchi
秀明 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu VLSI Ltd
Fujitsu Ltd
Original Assignee
Fujitsu VLSI Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu VLSI Ltd, Fujitsu Ltd filed Critical Fujitsu VLSI Ltd
Priority to JP23257294A priority Critical patent/JPH0897185A/en
Publication of JPH0897185A publication Critical patent/JPH0897185A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To remove carbon films at the corners of a reaction chamber or in the upper part of a shower and in the lower part of a susceptor or in an exhausting part as well as in the side wall part of the reaction chamber by removing the carbon films accumulating in the reaction chamber through film formation by using a gas for oxidizing reaction. CONSTITUTION: In a cleaning step after carbon film formation, a pressure in a reaction chamber 1 is set to normal pressure and the inside of the chamber 1 is heated at about 100 deg.C by a heater 3 prepared on the bottom of a susceptor 2, then an O3 gas is introduced into the chamber 1 to oxidize the carbon films. When the O3 gas spreads sufficiently in the chamber 1, the carbon films are oxidized thereby and are turned into a gas such as SiO2 , etc., then they are exhausted. Therefore, the carbon films at the corners of the reaction chamber or in the upper part of a shower and in the lower part of the susceptor or in the exhausting part as well as in the side wall part of the reaction chamber are removed and almost all of carbon films are removed in the reaction chamber as a result. Thus, any particle is prevented from generation during film formation thereafter, resulting in carbon films having an excellent film quality.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に係り、詳しくは、反射防止膜形成のための炭素膜成膜
時に反応室壁面等に付着した炭素膜を除去する工程を含
むMOSトランジスタ、バイポーラトランジスタ等の半
導体装置の製造方法に適用することができ、特に、反応
室内の炭素膜を略完全に除去することができ、その後の
成膜時のパーティクルの発生を抑えて良好な膜質の炭素
膜を得ることができる半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a MOS including a step of removing a carbon film adhering to a wall surface of a reaction chamber when forming a carbon film for forming an antireflection film. It can be applied to a method for manufacturing a semiconductor device such as a transistor and a bipolar transistor, and in particular, it can almost completely remove a carbon film in a reaction chamber, and can suppress the generation of particles during subsequent film formation, and has a good film quality. The present invention relates to a method for manufacturing a semiconductor device capable of obtaining the above carbon film.

【0002】近年、64MDRAM等の製造工程におい
ては、i線やエキシマレーザリソグラフィーによる超微
細加工が重要となってきている。これらのリソグラフィ
ー技術には、反射防止膜として有効な炭素膜の形成が要
求されており、この反射防止膜となる炭素膜は、通常プ
ラズマCVD法等で形成している。しかしながら、この
ようにプラズマCVD法等で炭素膜を形成すると、反応
室壁面等に炭素膜が堆積してしまい、これがその後の成
膜時にパーティクルの原因となり、成膜した膜質を劣化
させるという問題がある。
In recent years, ultra-fine processing by i-line or excimer laser lithography has become important in the manufacturing process of 64M DRAM and the like. These lithography techniques require the formation of a carbon film effective as an antireflection film, and the carbon film to be the antireflection film is usually formed by a plasma CVD method or the like. However, when the carbon film is formed by the plasma CVD method as described above, the carbon film is deposited on the wall surface of the reaction chamber and the like, which causes particles at the time of subsequent film formation and deteriorates the quality of the formed film. is there.

【0003】そこで、反応室壁面等に堆積したパーティ
クルの原因となる炭素膜を除去するためには、ウェット
又はドライによるクリーニング処理を行えばよいが、前
者のウェットクリーニング処理では、ウェット処理する
ために反応室を分解したりしなければならないうえ、溶
液に浸漬して完全に炭素膜を除去するのに長時間を要す
るという問題がある。このため、処理速度を速くできる
点でドライクリーニング処理が注目されている。
Therefore, in order to remove the carbon film which causes the particles deposited on the wall surface of the reaction chamber or the like, a cleaning process by wet or dry may be performed, but in the former wet cleaning process, the wet process is performed. There is a problem that the reaction chamber must be decomposed and that it takes a long time to completely remove the carbon film by immersing it in a solution. For this reason, the dry cleaning process is drawing attention because it can increase the processing speed.

【0004】[0004]

【従来の技術】従来、プラズマCVD炭素膜成膜時に反
応室壁面等に堆積した炭素膜の除去は、ウェットクリー
ニング処理よりも処理速度を速くできるという利点を有
するO 2 ガスを用いたプラズマ処理によるドライクリー
ニング処理を行っている。
2. Description of the Related Art Conventionally, when a plasma CVD carbon film is formed
The wet film is used to remove the carbon film deposited on the reaction chamber wall surface.
It has the advantage that the processing speed can be faster than the
Do O 2Dry cream by plasma treatment using gas
Is being processed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
た従来の半導体装置の製造方法では、図6に示す如く、
プラズマCVD炭素膜成膜時に反応室101壁面等に堆
積した炭素膜をO2 ガスプラズマで処理すると、上部電
極と下部電極間で、かつシャワー102とヒーター10
3が内蔵されたサセプタ104間にプラズマが発生する
ため、特にこの間のサセプタ104上部及び反応室10
1側部の炭素膜は効率良く除去することができるが、シ
ャワー102とサセプタ104間以外にはO2 プラズマ
が回り込み難いため、反応室101角部やシャワー10
2上部及びサセプタ104下部や排気部分の炭素膜を除
去し難く、この結果、プラズマ処理後のプラズマCVD
炭素膜成膜時に、この残漬の炭素膜がパーティクルとな
って飛散して、成膜した炭素膜中に入り込んで膜質を劣
化させるという問題があった。この問題は、成膜を連続
して繰り返す程顕著になる傾向があった。なお、図6に
おいて、105はRF電源である。
However, in the conventional method of manufacturing a semiconductor device described above, as shown in FIG.
When the carbon film deposited on the wall surface of the reaction chamber 101 during the plasma CVD carbon film formation is treated with O 2 gas plasma, the shower 102 and the heater 10 are provided between the upper electrode and the lower electrode.
Since plasma is generated between the susceptor 104 in which the No. 3 is built in, the upper part of the susceptor 104 and the reaction chamber
The carbon film on the first side can be removed efficiently, but since O 2 plasma is less likely to wrap around between the shower 102 and the susceptor 104, the corner of the reaction chamber 101 and the shower 10
2 It is difficult to remove the carbon film on the upper part, the lower part of the susceptor 104, and the exhaust part. As a result, the plasma CVD after the plasma treatment is performed.
When the carbon film is formed, there is a problem that the residual carbon film is scattered as particles and enters the formed carbon film to deteriorate the film quality. This problem tends to become more prominent as the film formation is continuously repeated. In FIG. 6, 105 is an RF power supply.

【0006】そこで、本発明は、反応室側壁部だけでな
く反応室角部やシャワー上部、及びサセプタ下部や排気
部分の炭素膜も除去して、反応室内の炭素膜を略完全に
除去することができ、その後の成膜時のパーティクルの
発生を抑えて、良好な膜質の炭素膜を得ることができる
半導体装置の製造方法を提供することを目的としてい
る。
Therefore, according to the present invention, not only the side wall of the reaction chamber but also the corners of the reaction chamber, the upper part of the shower, the lower part of the susceptor, and the exhaust part are removed to substantially completely remove the carbon film in the reaction chamber. Therefore, it is an object of the present invention to provide a method for manufacturing a semiconductor device, which can suppress the generation of particles during the subsequent film formation and can obtain a carbon film of good film quality.

【0007】[0007]

【課題を解決するための手段】本発明による半導体装置
の製造方法は上記目的達成のため、反応室内に成膜法で
堆積した炭素膜を、該炭素膜を酸化反応させるガスで酸
化反応して除去する工程を含むことを特徴とするもので
ある。本発明において、炭素膜の成膜法には、ラジオ波
プラズマCVD法、マイクロ波プラズマCVD法、スパ
ッタ法、熱フィラメントCVD法、直流放電プラズマC
VD法及びプラズマジェットCVD法等が挙げられる。
In order to achieve the above-mentioned object, the method of manufacturing a semiconductor device according to the present invention comprises oxidizing a carbon film deposited in a reaction chamber by a film-forming method with a gas for oxidizing the carbon film. It is characterized by including a step of removing. In the present invention, the carbon film forming method includes a radio frequency plasma CVD method, a microwave plasma CVD method, a sputtering method, a hot filament CVD method, and a direct current discharge plasma C.
A VD method, a plasma jet CVD method and the like can be mentioned.

【0008】本発明に係る炭素膜を酸化反応させるガス
には、O2 ガス、O3 ガス及びH2Oガスのうち少なく
とも1種からなるものが入手、取り扱い及び反応室内に
堆積した炭素膜を酸化反応してCO2 等のガス状にして
効率良く除去できる点で好適である。本発明に係る炭素
膜の除去は、反応室内を常圧又は減圧にして行ってもよ
く、前者の常圧にして行えば、後者の減圧にして行う場
合よりも反応室内の炭素膜を酸化反応させるガス濃度を
高くすることができるので、炭素膜の酸化反応速度を速
くして除去処理速度を速くすることができ好ましい。ま
た、反応室内を加熱処理(例えば100℃以上)しても
よく、この場合、常温で行う場合よりも反応室内のプラ
ズマ及び炭素膜の被処理面等を活性化して酸化反応速度
を上げることができるので、炭素膜の除去処理速度を速
くすることができ好ましい。
As the gas for oxidizing the carbon film according to the present invention, at least one of O 2 gas, O 3 gas and H 2 O gas is available, and the carbon film deposited in the reaction chamber is used. It is preferable in that it can be efficiently removed into a gaseous state such as CO 2 through an oxidation reaction. The removal of the carbon film according to the present invention may be carried out under normal pressure or reduced pressure in the reaction chamber. If the former is carried out under normal pressure, the carbon film in the reaction chamber is subjected to oxidation reaction more than the latter case. Since the concentration of the generated gas can be increased, the rate of the oxidation reaction of the carbon film can be increased and the removal treatment speed can be increased, which is preferable. Further, the reaction chamber may be heat-treated (for example, 100 ° C. or higher). In this case, the oxidation reaction rate can be increased by activating the plasma in the reaction chamber and the surface to be treated of the carbon film, etc., as compared with the case of performing at room temperature. Therefore, it is preferable because the removal rate of the carbon film can be increased.

【0009】次に、本発明による半導体装置の製造方法
は上記目的達成のため、反応室内に成膜法で堆積した炭
素膜を、少なくとも酸素原子を含有するガスを用いたプ
ラズマ処理により除去する工程と、次いで、該反応室内
を炭素膜でコーティングする工程とを含むことを特徴と
するものである。本発明においては、前記プラズマ処理
及び前記コーティング処理は、枚葉で行うようにしても
よく、この場合、1枚のウェハが成膜される毎にプラズ
マ処理及びコーティング処理を行うことができるので、
ウェハを何枚も連続で処理した後に行う場合よりも、効
率良く処理することができ好ましい。
Next, in order to achieve the above object, the method for manufacturing a semiconductor device according to the present invention removes the carbon film deposited by the film forming method in the reaction chamber by plasma treatment using a gas containing at least oxygen atoms. And then coating the inside of the reaction chamber with a carbon film. In the present invention, the plasma treatment and the coating treatment may be performed in a single wafer. In this case, the plasma treatment and the coating treatment can be performed every time one wafer is formed.
This is preferable because the processing can be performed more efficiently than when the processing is performed after a number of wafers are continuously processed.

【0010】本発明に係る炭素膜の成膜法には、ラジオ
波プラズマCVD法、マイクロ波プラズマCVD法、ス
パッタ法、熱フィラメントCVD法、直流放電プラズマ
CVD法及びプラズマジェットCVD法等が挙げられ
る。本発明に係る炭素膜のコーティング法には、プラズ
マCVD法やスパッタ法等が挙げられ、前者のプラズマ
CVD法によれば、スパッタ法で行う場合よりも密着性
良く反応室壁面に炭素膜をコーティングすることができ
好ましい。
Examples of the carbon film forming method according to the present invention include a radio frequency plasma CVD method, a microwave plasma CVD method, a sputtering method, a hot filament CVD method, a direct current discharge plasma CVD method and a plasma jet CVD method. . Examples of the carbon film coating method according to the present invention include a plasma CVD method and a sputtering method. According to the former plasma CVD method, the reaction chamber wall surface is coated with a carbon film with better adhesion than when the sputtering method is used. It is possible and preferable.

【0011】本発明に係る少なくとも酸素原子を含有す
るガスには、O2 ガス、O3 ガス、N2 Oガス、H2
ガス、H2 2 ガス及びCO2 ガスのうち少なくとも1
種からなるものが、入手、取り扱い及び反応室内に堆積
した炭素膜を除去できる点で好ましい。本発明におい
て、前記プラズマ処理時の圧力は、0.01Torr以
上2.0Torr以下で行うのが好ましく、(更に好ま
しくは0.1〜0.5Torr)この範囲内で行えば、
シャワー真下のサセプタ上の炭素膜及びシャワー上部の
炭素膜を効率良く除去することができる。圧力を0.0
1Torrより小さくすると、特にサセプタ上の炭素膜
のエッチングレートが低下して好ましくなく、また、圧
力を2.0Torrよりも大きくすると、特にシャワー
上部の炭素膜のエッチングレートが低下して好ましくな
い。
The gas containing at least oxygen atoms according to the present invention includes O 2 gas, O 3 gas, N 2 O gas and H 2 O.
Gas, at least one of H 2 O 2 gas and CO 2 gas
The seeds are preferable in that they can be obtained, handled, and can remove the carbon film deposited in the reaction chamber. In the present invention, the pressure during the plasma treatment is preferably 0.01 Torr or more and 2.0 Torr or less, and more preferably 0.1 to 0.5 Torr.
The carbon film on the susceptor just below the shower and the carbon film on the upper part of the shower can be efficiently removed. Pressure 0.0
When the pressure is less than 1 Torr, the etching rate of the carbon film on the susceptor is particularly lowered, and when the pressure is higher than 2.0 Torr, the etching rate of the carbon film on the shower upper part is lowered, which is not preferable.

【0012】本発明において、前記プラズマ処理時の上
部電極と下部電極との電極間隔は、10mm以上100
mm以下で行うのが好ましく、この範囲内で行えば、サ
セプタ上部の炭素膜及びシャワー下側で、かつサセプタ
側部側の排気部分の炭素膜を効率良く除去することがで
きる。電極間隔を10mmより小さくすると、排気部分
の炭素膜のエッチングレートが低下して好ましくなく、
また、電極間隔を100mmよりも大きくすると、サセ
プタ上部の炭素膜のエッチングレートが低下して好まし
くない。
In the present invention, the electrode interval between the upper electrode and the lower electrode during the plasma treatment is 10 mm or more and 100 or more.
It is preferable that the thickness is less than or equal to mm, and if it is within this range, the carbon film on the upper part of the susceptor and the carbon film on the lower side of the shower and the exhaust part on the side part of the susceptor can be efficiently removed. If the electrode interval is smaller than 10 mm, the etching rate of the carbon film in the exhaust portion is lowered, which is not preferable.
Further, if the electrode interval is larger than 100 mm, the etching rate of the carbon film on the susceptor lowers, which is not preferable.

【0013】本発明において、前記プラズマ処理は、圧
力、電極間隔及び周波数のうち少なくとも1つを変化さ
せて少なくとも2回以上処理を行うのが好ましく、この
場合、例えば電極間隔を10mmにしてプラズマ処理し
た後、電極間隔を100mmにしてプラズマ処理を行う
と、サセプタ上部及び排気部分の炭素膜を効率良くエッ
チングすることができる。また、例えば周波数を200
kHzにしてプラズマ処理を行った後、周波数を13.
56kHzにしてプラズマ処理を行うと、プラズマ反応
室側部及び排気部分の炭素膜を効率良くエッチングする
ことができる。更に、例えば圧力を0.1Torrにし
てプラズマ処理を行った後、圧力を0.5(2.0)T
orrにしてプラズマ処理を行うと、シャワー上部及び
サセプタ上部の炭素膜を効率良くエッチングすることが
できる。そして、電極間隔、圧力及び周波数の各々適値
を適宜組み合わせてプラズマ処理を行うと、効率良く炭
素膜をエッチングすることができる。
In the present invention, it is preferable that the plasma treatment is performed at least twice or more by changing at least one of the pressure, the electrode interval and the frequency. In this case, for example, the electrode interval is 10 mm and the plasma treatment is performed. After that, when the plasma treatment is performed with the electrode interval set to 100 mm, the carbon film on the upper portion of the susceptor and the exhaust portion can be efficiently etched. Also, for example, a frequency of 200
After plasma treatment was performed at a frequency of 13.
When the plasma treatment is performed at 56 kHz, the carbon film on the side of the plasma reaction chamber and the exhaust portion can be efficiently etched. Further, for example, after performing plasma treatment with the pressure set to 0.1 Torr, the pressure is set to 0.5 (2.0) T
When the plasma treatment is performed at orrr, the carbon films on the upper portion of the shower and the upper portion of the susceptor can be efficiently etched. When the plasma treatment is performed by appropriately combining the appropriate values of the electrode spacing, the pressure and the frequency, the carbon film can be efficiently etched.

【0014】本発明において、炭素膜のコーティング膜
厚は、コーティング能力を考慮すると、3000オング
ストローム程度もあれば十分であり、コーティング膜厚
を3000オングストロームよりも厚くし過ぎても、そ
れ程コーティング効果は向上しない。また薄くし過ぎる
と、コーティング効果を得られ難くなり好ましくない。
なお、ここで言うコーティング効果は、プラズマ処理後
の反応室壁面に残ったパーティクルの原因となる微粒子
を炭素膜で覆って、コーティング後の成膜時に反応室壁
面からパーティクルとなる微粒子等が飛散して被成膜面
に付着しないようにする機能を意味する。
In the present invention, the coating film thickness of the carbon film is about 3000 angstroms in consideration of the coating ability, and even if the coating film thickness is made thicker than 3000 angstroms, the coating effect is improved so much. do not do. On the other hand, if the thickness is too thin, it becomes difficult to obtain the coating effect, which is not preferable.
The coating effect here is to cover fine particles that cause particles remaining on the wall surface of the reaction chamber after plasma treatment with a carbon film, and to disperse fine particles that become particles from the wall surface of the reaction chamber during film formation after coating. It means a function of preventing the film from adhering to the film formation surface.

【0015】[0015]

【作用】従来、反応室壁面等に堆積した炭素膜をO2
ラズマ処理すると、反応室内の細部にはプラズマが回り
込み難く、その部分に炭素膜が残ってしまうという不具
合が生じる。そこで、本発明者は、プラズマを立てずに
ガスのみを反応室面に導入して反応室細部にまで回り込
ませ、かつその際、導入したガスを炭素膜と反応させて
ガス状にして飛ばせばよいことに着目し、鋭意検討した
結果、反応室内にO2 、O3、H2 O等の酸化力の強い
ガスを導入して処理したところ、反応室細部にまで該ガ
スを回り込ませることができ、しかも、その際、炭素膜
を酸化反応させてSiO2 等のガス状にして飛ばすこと
ができた。
Conventionally, when the carbon film deposited on the wall surface of the reaction chamber is subjected to O 2 plasma treatment, it is difficult for the plasma to flow into the details in the reaction chamber, and the carbon film remains in that portion. Therefore, the inventor of the present invention introduces only gas into the reaction chamber surface without forming plasma and causes it to wrap around to the details of the reaction chamber, and at that time, the introduced gas reacts with the carbon film and is blown into a gas state. As a result of diligent study, paying attention to good points, as a result of introducing a gas having a strong oxidizing power such as O 2 , O 3 , and H 2 O into the reaction chamber for treatment, it is possible to circulate the gas into the details of the reaction chamber. It was possible, and at that time, it was possible to cause the carbon film to undergo an oxidation reaction to form a gas such as SiO 2 and to fly it.

【0016】このため、反応室側壁部だけでなく反応室
角部やシャワー上部及びサセプタ下部や排気部分の炭素
膜も除去して、反応室内の炭素膜を略完全に除去するこ
とができ、その後の成膜時のパーティクルの発生を抑え
て、良好な膜質の炭素膜を得ることができた。次に、本
発明者は、まず、O2 ガス等を用いたプラズマ処理によ
り反応室内の炭素膜を除去し、この際、前述の如く、反
応室細部に残った炭素膜残漬や取り切れなかった炭素等
の微粒子残漬が残ってしまうので、その後、この残漬を
成膜時に飛散しないようにコーティングしてしまえばよ
いことに着目し、鋭意検討した結果、O2 ガス等でプラ
ズマ処理した後、反応室内を成膜法等により化学的に安
定した炭素膜をコーティングしたところ、その後のウェ
ハ上の炭素膜成膜時に、パーティクルとなる該残漬を飛
散しないようにすることができ、良好な膜質の炭素膜を
得ることができた。
Therefore, not only the side wall of the reaction chamber but also the corners of the reaction chamber, the upper shower, the lower susceptor and the exhaust gas can be removed, and the carbon film in the reaction chamber can be removed almost completely. It was possible to obtain a carbon film of good film quality by suppressing the generation of particles during the film formation. Next, the present inventor first removes the carbon film in the reaction chamber by plasma treatment using O 2 gas or the like. Since fine particle residual pickles such as carbon remain, it is necessary to coat the residual pickles so that they will not scatter during film formation. As a result of diligent study, plasma treatment with O 2 gas or the like was performed. After that, when a chemically stable carbon film is coated in the reaction chamber by a film forming method or the like, it is possible to prevent the residual pickling that becomes particles during the subsequent carbon film formation on the wafer, which is good. It was possible to obtain a carbon film of various film quality.

【0017】[0017]

【実施例】以下、本発明の実施例を図面を参照して説明
する。 (実施例1)図1は本発明の実施例1に則したプラズマ
処理装置の構成を示す概略図である。本実施例では、R
FプラズマCVD炭素膜成膜後のクリーニング処理を具
体的に説明する。本実施例では、図1に示す如く、反応
室1内の圧力を常圧とし、サセプタ2下部に設けたヒー
ター3で反応室1内を100℃以上に加熱し、O3 ガス
を反応室1内に導入したところ、反応室1細部にまでO
3 ガスを回り込ませることができ、しかも、その際、O
3 ガスで炭素膜を酸化反応させてSiO2 等のガス状に
して飛ばして排気することができた。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a schematic diagram showing the configuration of a plasma processing apparatus according to Embodiment 1 of the present invention. In this embodiment, R
The cleaning process after forming the F plasma CVD carbon film will be specifically described. In this embodiment, as shown in FIG. 1, the pressure inside the reaction chamber 1 is normal pressure, the inside of the reaction chamber 1 is heated to 100 ° C. or higher by the heater 3 provided below the susceptor 2, and O 3 gas is supplied to the reaction chamber 1 Introduced into the interior of the reaction chamber 1
3 gas can be circulated, and at that time, O
It was possible to oxidize the carbon film with 3 gases to make it into a gaseous state such as SiO 2 and blow it off and exhaust it.

【0018】このため、反応室側壁部だけでなく反応室
角部やシャワー上部及びサセプタ下部や排気部分の炭素
膜も除去して、反応室内の炭素膜を略完全に除去するこ
とができ、その後の成膜時のパーティクルの発生を抑え
て、良好な膜質の炭素膜を得ることができた。なお、上
記実施例では、ウェハ上への炭素膜をRFプラズマCV
D法で成膜する場合について説明したが、本発明はこれ
のみに限定されるものではなく、マイクロ波プラズマC
VD法、スパッタ法、熱フィラメントCVD法、直流放
電プラズマCVD法及びプラズマジェットCVD法等で
行ってもよい。
For this reason, not only the side wall of the reaction chamber but also the corners of the reaction chamber, the upper part of the shower, the lower part of the susceptor and the exhaust part can be removed, and the carbon film in the reaction chamber can be removed almost completely. It was possible to obtain a carbon film of good film quality by suppressing the generation of particles during the film formation. In the above embodiment, the carbon film on the wafer is subjected to RF plasma CV.
The case of forming a film by the D method has been described, but the present invention is not limited to this, and the microwave plasma C
VD method, sputtering method, hot filament CVD method, DC discharge plasma CVD method, plasma jet CVD method or the like may be used.

【0019】上記実施例は、クリーニングガスにO3
スを用いたが、本発明はこれのみに限定されるものでは
なく、本発明においては、O2 ガス、O3 ガス及びH2
Oガスのうち少なくとも1種からなるものを用いればよ
い。上記実施例は、炭素膜の除去を、ガス濃度を高くし
て処理速度を速くできる反応室内を常圧で行う好ましい
態様を説明したが、本発明はこれのみに限定されず、減
圧にして行ってもよい。また、上記実施例は、クリーニ
ングガス及び炭素膜の被処理面等を活性化できる反応室
1内を加熱処理する好ましい態様を説明したが、本発明
はこれのみに限定されるものではなく、常温で行っても
よい。 (実施例2)図2は本発明の実施例2に則したプラズマ
処理装置の構成を示す概略図である。本実施例では、R
FプラズマCVD炭素膜成膜後の処理を説明する。本実
施例では、図2に示す如く、反応室11内の圧力を0.
5Torrとし、上部電極と下部電極間の電極間隔を2
0mmとし、高周波電源15の周波数を13.56kH
zとし、O3 ガスを反応室11内に導入しプラズマ処理
して、反応室11内の炭素膜を除去した。この時、前述
した如く、反応室11内細部に炭素膜残漬や取り切れな
かった炭素等の微粒子残漬が残ってしまうので、その
後、プラズマCVD法等により反応室11内を炭素膜で
コーティングしたところ、反応室11内の残漬を化学的
に安定した炭素膜でコーティングすることができた。こ
のため、その後のウェハ上への炭素膜成膜時にパーティ
クルとなる残漬を飛散しないようにすることができるの
で、良好な膜質の炭素膜を得ることができた。
In the above embodiment, O 3 gas was used as the cleaning gas, but the present invention is not limited to this. In the present invention, O 2 gas, O 3 gas and H 2 gas are used.
It suffices to use at least one type of O gas. Although the above-mentioned examples describe the preferred embodiment in which the carbon film is removed at atmospheric pressure in the reaction chamber where the gas concentration can be increased and the processing speed can be increased, the present invention is not limited to this and is performed under reduced pressure. May be. In addition, although the above-mentioned embodiment has described a preferable mode in which the inside of the reaction chamber 1 capable of activating the cleaning gas and the surface to be treated of the carbon film and the like is heat-treated, the present invention is not limited to this, and the temperature is not limited to room temperature. You may go in. (Embodiment 2) FIG. 2 is a schematic diagram showing the structure of a plasma processing apparatus according to Embodiment 2 of the present invention. In this embodiment, R
The process after forming the F plasma CVD carbon film will be described. In this embodiment, as shown in FIG. 2, the pressure in the reaction chamber 11 is set to 0.
5 Torr, and the electrode interval between the upper and lower electrodes is 2
0 mm and the frequency of the high frequency power supply 15 is 13.56 kHz
z was set, and O 3 gas was introduced into the reaction chamber 11 and plasma treatment was performed to remove the carbon film in the reaction chamber 11. At this time, as described above, residual carbon film or fine particles such as carbon that cannot be completely removed remain in the reaction chamber 11 in detail, and then the reaction chamber 11 is coated with a carbon film by plasma CVD or the like. As a result, the residual pickling in the reaction chamber 11 could be coated with a chemically stable carbon film. For this reason, it is possible to prevent residual pickling that becomes particles during the subsequent film formation of the carbon film on the wafer, so that it is possible to obtain a carbon film of good film quality.

【0020】本発明においては、前記プラズマ処理及び
前記コーティング処理は、枚葉で行うようにしてもよ
く、この場合、1枚のウェハが成膜される毎に、プラズ
マ処理及びコーティング処理を行うことができるので、
ウェハを何枚も連続で処理した後に行う場合よりも、効
率良く処理することができ好ましい。上記実施例では、
炭素膜の成膜法を、RFプラズマCVD法で行う場合に
ついて説明したが、本発明はこれのみに限定されるもの
ではなく、マイクロ波プラズマCVD法、スパッタ法、
熱フィラメントCVD法、直流放電プラズマCVD法及
びプラズマジェットCVD法等で行ってもよい。
In the present invention, the plasma treatment and the coating treatment may be carried out individually. In this case, the plasma treatment and the coating treatment are carried out every time one wafer is formed. Because you can
This is preferable because the processing can be performed more efficiently than when the processing is performed after a number of wafers are continuously processed. In the above example,
The case where the carbon film is formed by the RF plasma CVD method has been described, but the present invention is not limited to this, and a microwave plasma CVD method, a sputtering method,
It may be performed by a hot filament CVD method, a DC discharge plasma CVD method, a plasma jet CVD method, or the like.

【0021】本実施例では、反応室11壁面に炭素膜を
密着性良くコーティングできる炭素膜のコーティング法
を、プラズマCVD法で行う好ましい態様の場合につい
て説明したが、本発明はこれのみで限定されるものでは
なく、スパッタ法等で行ってもよい。上記実施例は、
(クリーニングガスにO3 ガスを用いたが、)本発明に
おいては、O2 ガス、O3 ガス、N2 Oガス、H2 Oガ
ス、H2 2 ガス及びCO2 ガスのうち少なくとも1種
からなるものを用いてもよい。
In the present embodiment, the case where the carbon film coating method capable of coating the wall surface of the reaction chamber 11 with good adhesion is performed by the plasma CVD method has been described, but the present invention is not limited thereto. Instead of the above method, the sputtering method or the like may be used. The above example
(Although O 3 gas was used as the cleaning gas) In the present invention, at least one of O 2 gas, O 3 gas, N 2 O gas, H 2 O gas, H 2 O 2 gas and CO 2 gas is used. You may use what consists of.

【0022】上記実施例では、プラズマ処理を1回行う
場合について説明したが、本発明においては、前記プラ
ズマ処理を、圧力、電極間隔及び周波数のうち少なくと
も1つを変化させて少なくとも2回以上処理を行うのが
好ましく、この場合、図3に示す如く、例えば圧力を
0.05Torrにし、かつ周波数を13.56kHz
にし、圧力と周波数を一定にした状態で、電極間隔を1
0mmにしてプラズマ処理した後、電極間隔を100m
mにしてプラズマ処理を行うと、ヒーター13が内蔵さ
れたサセプタ12上部及び排気部分の炭素膜を効率
良くエッチングすることができる。また、図4に示す如
く、圧力を0.1Torrにし、かつ電極間隔を20m
mにして、圧力と電極間隔を一定にした状態で例えば周
波数を200kHzにしてプラズマ処理を行った後、周
波数を13.56kHzにしてプラズマ処理を行うと、
プラズマ反応室11側部及び排気部分の炭素膜を効
率良くエッチングすることができる。更に、図5に示す
如く、電極間隔を20mmにし、かつ周波数を13.5
6kHzにして、電極間隔と周波数を一定にした状態
で、例えば圧力を0.1Torrにしてプラズマ処理を
行った後、圧力を0.5(2.0)Torrにしてプラ
ズマ処理を行うと、シャワー14上部及びサセプタ1
2上部の炭素膜を効率良くエッチングすることができ
る。そして、電極間隔、圧力及び周波数の各々適値を適
宜組み合わせてプラズマ処理を行うと、効率良く炭素膜
をエッチングすることができる。
In the above embodiments, the case where the plasma treatment is performed once has been described, but in the present invention, the plasma treatment is performed at least twice or more by changing at least one of the pressure, the electrode interval and the frequency. In this case, as shown in FIG. 3, for example, the pressure is 0.05 Torr and the frequency is 13.56 kHz.
And set the electrode spacing to 1 with the pressure and frequency kept constant.
After plasma treatment to 0 mm, the electrode interval is 100 m
When the plasma treatment is performed at m, the carbon film on the upper portion of the susceptor 12 having the heater 13 and the exhaust portion can be efficiently etched. Further, as shown in FIG. 4, the pressure is set to 0.1 Torr and the electrode interval is 20 m.
When the plasma treatment is carried out at a frequency of 13.56 kHz after the plasma treatment is carried out at a frequency of 200 kHz in a state where the pressure is set to m and the electrode spacing is constant,
The carbon film on the side of the plasma reaction chamber 11 and the exhaust portion can be efficiently etched. Further, as shown in FIG. 5, the electrode interval is 20 mm and the frequency is 13.5.
When plasma treatment is performed at a pressure of 0.5 (2.0) Torr, for example, after performing plasma treatment at a pressure of 0.1 Torr in a state where the electrode interval and frequency are constant at 6 kHz, a shower is generated. 14 Upper part and susceptor 1
2 The carbon film on the upper part can be efficiently etched. When the plasma treatment is performed by appropriately combining the appropriate values of the electrode spacing, the pressure and the frequency, the carbon film can be efficiently etched.

【0023】[0023]

【発明の効果】本発明によれば、反応室側壁部だけでな
く反応室角部やシャワー上部及びサセプタ下部や排気部
分の炭素膜も除去して、反応室内の炭素膜を略完全に除
去することができ、その後の成膜時のパーティクルの発
生を抑えて、良好な膜質の炭素膜を得ることができると
いう効果がある。
According to the present invention, not only the side wall of the reaction chamber but also the corners of the reaction chamber, the upper portion of the shower, the lower portion of the susceptor, and the exhaust portion are removed, and the carbon film in the reaction chamber is almost completely removed. It is possible to suppress the generation of particles during the subsequent film formation, and it is possible to obtain a carbon film having a good film quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に則したプラズマ処理装置の
構成を示す概略図である。
FIG. 1 is a schematic diagram showing a configuration of a plasma processing apparatus according to a first embodiment of the present invention.

【図2】本発明の実施例2に則したプラズマ処理装置の
構成を示す概略図である。
FIG. 2 is a schematic diagram showing a configuration of a plasma processing apparatus according to a second embodiment of the present invention.

【図3】本発明の実施例2に則した反応室内の各位置に
おける電極間隔に対する炭素膜のエッチングレートを示
す図である。
FIG. 3 is a diagram showing an etching rate of a carbon film with respect to an electrode interval at each position in a reaction chamber according to Example 2 of the present invention.

【図4】本発明の実施例2に則した反応室内の各位置に
おける周波数に対する炭素膜のエッチングレートを示す
図である。
FIG. 4 is a diagram showing an etching rate of a carbon film with respect to a frequency at each position in a reaction chamber according to Example 2 of the present invention.

【図5】本発明の実施例2に則した反応室内の各位置に
おける圧力に対する炭素膜のエッチングレートを示す図
である。
FIG. 5 is a diagram showing an etching rate of a carbon film with respect to pressure at each position in a reaction chamber according to Example 2 of the present invention.

【図6】従来例の課題を示す図である。FIG. 6 is a diagram showing a problem of a conventional example.

【符号の説明】[Explanation of symbols]

1,11 反応室 2,12 サセプタ 3,13 ヒーター 14 シャワー 15 高周波電源 101 反応室 102 シャワー 103 ヒーター 104 サセプタ 105 RF電源 1, 11 Reaction chamber 2, 12 Susceptor 3, 13 Heater 14 Shower 15 High frequency power supply 101 Reaction chamber 102 Shower 103 Heater 104 Susceptor 105 RF power supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥田 章二 愛知県春日井市高蔵寺町二丁目1844番2 富士通ヴィエルエスアイ株式会社内 (72)発明者 中平 順也 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 菊地 秀明 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shoji Okuda 1844-2, Kozoji-cho, Kasugai-shi, Aichi Prefecture, Fujitsu Limited, Vier SII Co., Ltd. Address within Fujitsu Limited (72) Inventor Hideaki Kikuchi 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Within Fujitsu Limited

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】反応室内に成膜法で堆積した炭素膜を、該
炭素膜を酸化反応させるガスで酸化反応して除去する工
程を含むことを特徴とする半導体装置の製造方法。
1. A method of manufacturing a semiconductor device, which comprises a step of removing a carbon film deposited in a reaction chamber by a film forming method by an oxidizing reaction with a gas for oxidizing the carbon film.
【請求項2】前記炭素膜を酸化反応させるガスは、O2
ガス、O3 ガス及びH2 Oガスのうち少なくとも1種か
らなるものであることを特徴とする請求項1記載の半導
体装置の製造方法。
2. The gas for oxidizing the carbon film is O 2
The method of manufacturing a semiconductor device according to claim 1, wherein the method comprises at least one of gas, O 3 gas, and H 2 O gas.
【請求項3】前記炭素膜の除去は、反応室内を常圧にし
て行うことを特徴とする請求項1,2記載の半導体装置
の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein the removal of the carbon film is performed under a normal pressure in the reaction chamber.
【請求項4】前記炭素膜の除去は、反応室内を加熱処理
して行うことを特徴とする請求項1乃至3記載の半導体
装置の製造方法。
4. The method for manufacturing a semiconductor device according to claim 1, wherein the carbon film is removed by heating the reaction chamber.
【請求項5】反応室内に成膜法で堆積した炭素膜を、少
なくとも酸素原子を含有するガスを用いたプラズマ処理
により除去する工程と、次いで、該反応室内を炭素膜で
コーティングする工程とを含むことを特徴とする半導体
装置の製造方法。
5. A step of removing a carbon film deposited in the reaction chamber by a film forming method by plasma treatment using a gas containing at least oxygen atoms, and a step of coating the reaction chamber with the carbon film. A method of manufacturing a semiconductor device, comprising:
【請求項6】前記プラズマ処理及び前記コーティング処
理は、枚葉で行うことを特徴とする請求項5記載の半導
体装置の製造方法。
6. The method of manufacturing a semiconductor device according to claim 5, wherein the plasma treatment and the coating treatment are performed individually.
【請求項7】前記少なくとも酸素原子を含有するガス
は、O2 ガス、O3 ガス、N2 Oガス、H2 Oガス、H
2 2 ガス及びCO2 ガスのうち少なくとも1種からな
るものであることを特徴とする請求項5,6記載の半導
体装置の製造方法。
7. The gas containing at least oxygen atoms is O 2 gas, O 3 gas, N 2 O gas, H 2 O gas, H 2.
7. The method for manufacturing a semiconductor device according to claim 5, wherein the method comprises at least one of 2 O 2 gas and CO 2 gas.
【請求項8】前記プラズマ処理時の圧力は、0.01T
orr以上2.0Torr以下であることを特徴とする
請求項5乃至7記載の半導体装置の製造方法。
8. The pressure during the plasma treatment is 0.01T.
8. The method for manufacturing a semiconductor device according to claim 5, wherein it is not less than orr and not more than 2.0 Torr.
【請求項9】前記プラズマ処理時の上部電極と下部電極
との電極間隔は、10mm以上100mm以下であるこ
とを特徴とする請求項5乃至8記載の半導体装置の製造
方法。
9. The method of manufacturing a semiconductor device according to claim 5, wherein an electrode interval between the upper electrode and the lower electrode during the plasma processing is 10 mm or more and 100 mm or less.
【請求項10】前記プラズマ処理は、圧力、電極間隔及び
周波数のうち少なくとも1つを変化させて少なくとも2
回以上処理を行うことを特徴とする請求項5乃至9記載
の半導体装置の製造方法。
10. The plasma treatment is performed by changing at least one of pressure, electrode spacing, and frequency to produce at least 2.
10. The method of manufacturing a semiconductor device according to claim 5, wherein the treatment is performed more than once.
JP23257294A 1994-09-28 1994-09-28 Production of semiconductor device Pending JPH0897185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23257294A JPH0897185A (en) 1994-09-28 1994-09-28 Production of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23257294A JPH0897185A (en) 1994-09-28 1994-09-28 Production of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0897185A true JPH0897185A (en) 1996-04-12

Family

ID=16941451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23257294A Pending JPH0897185A (en) 1994-09-28 1994-09-28 Production of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0897185A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021749A1 (en) * 1996-11-14 1998-05-22 Tokyo Electron Limited Method for cleaning plasma treatment device and method for plasma treatment
EP1076358A2 (en) * 1999-08-11 2001-02-14 Canon Sales Co., Inc. Processing apparatus and method for cleaning this processing apparatus
JP2003133290A (en) * 2001-10-26 2003-05-09 Seiko Epson Corp Apparatus for stripping resist, method for stripping resist, and method for manufacturing semiconductor device
KR100848064B1 (en) * 2004-07-23 2008-07-23 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Method for removing carbon-containing residues from a substrate
JP2009185365A (en) * 2008-02-08 2009-08-20 Toyota Motor Corp Method for forming thin film
JP2012209393A (en) * 2011-03-29 2012-10-25 Tokyo Electron Ltd Cleaning method and deposition method
JP2013129869A (en) * 2011-12-21 2013-07-04 Mitsubishi Electric Corp Method for removing carbon film

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021749A1 (en) * 1996-11-14 1998-05-22 Tokyo Electron Limited Method for cleaning plasma treatment device and method for plasma treatment
US6443165B1 (en) 1996-11-14 2002-09-03 Tokyo Electron Limited Method for cleaning plasma treatment device and plasma treatment system
KR100502945B1 (en) * 1996-11-14 2005-11-23 동경 엘렉트론 주식회사 Cleaning method of plasma processing apparatus
EP1076358A2 (en) * 1999-08-11 2001-02-14 Canon Sales Co., Inc. Processing apparatus and method for cleaning this processing apparatus
US6435196B1 (en) 1999-08-11 2002-08-20 Canon Sales Co., Inc. Impurity processing apparatus and method for cleaning impurity processing apparatus
KR100354053B1 (en) * 1999-08-11 2002-09-28 캐논 한바이 가부시키가이샤 Impurity processing apparatus and method for cleaning impurity processing apparatus
EP1076358A3 (en) * 1999-08-11 2003-08-27 Canon Sales Co., Inc. Processing apparatus and method for cleaning this processing apparatus
JP2003133290A (en) * 2001-10-26 2003-05-09 Seiko Epson Corp Apparatus for stripping resist, method for stripping resist, and method for manufacturing semiconductor device
KR100848064B1 (en) * 2004-07-23 2008-07-23 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Method for removing carbon-containing residues from a substrate
JP2009185365A (en) * 2008-02-08 2009-08-20 Toyota Motor Corp Method for forming thin film
JP2012209393A (en) * 2011-03-29 2012-10-25 Tokyo Electron Ltd Cleaning method and deposition method
JP2013129869A (en) * 2011-12-21 2013-07-04 Mitsubishi Electric Corp Method for removing carbon film

Similar Documents

Publication Publication Date Title
US7402523B2 (en) Etching method
JPH0684888A (en) Formation of insulation film
US5798303A (en) Etching method for use in fabrication of semiconductor devices
JPH0653193A (en) Removal of carbon-based polymer residue by using ozone useful for cleaning of plasma reaction container
JPH09148322A (en) Method for forming silicon oxide film and plasma cvd film forming apparatus
JPH07153746A (en) Dry etching chamber cleaning method
JP2001284317A (en) Method for processing semiconductor device and solid surface, and method for manufacturing semiconductor device
JP3297291B2 (en) Method for manufacturing semiconductor device
JPH0897185A (en) Production of semiconductor device
JPH07100865B2 (en) Cleaning method of low pressure CVD processing apparatus
JP3559691B2 (en) Method for manufacturing semiconductor device
JP3905462B2 (en) Plasma processing method and plasma processing apparatus
JP3408409B2 (en) Semiconductor device manufacturing method and reaction chamber environment control method for dry etching apparatus
JP4058669B2 (en) Method for forming conductive silicide layer on silicon substrate and method for forming conductive silicide contact
JPH0555184A (en) Cleaning method
JP3293912B2 (en) Method of forming oxide thin film
JP2894304B2 (en) Method for manufacturing semiconductor device
KR100378345B1 (en) Dry etching method of platinum thin film
JPH0624191B2 (en) Plasma processing method
JP2001093877A (en) Method for manufacturing semiconductor device
KR100362906B1 (en) Method of treating solid surface, substrate and semiconductor manufacturing apparatus, and manufacturing method of semiconductor device using the same
JPH0992643A (en) Plasma treating device and method
JPH0494121A (en) Dry etching method
JP2000040697A (en) Dry etching method and device
JPH0885887A (en) Post treatment of etching

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031007