JP4432206B2 - Method for forming laminated film - Google Patents

Method for forming laminated film Download PDF

Info

Publication number
JP4432206B2
JP4432206B2 JP2000146892A JP2000146892A JP4432206B2 JP 4432206 B2 JP4432206 B2 JP 4432206B2 JP 2000146892 A JP2000146892 A JP 2000146892A JP 2000146892 A JP2000146892 A JP 2000146892A JP 4432206 B2 JP4432206 B2 JP 4432206B2
Authority
JP
Japan
Prior art keywords
thin film
metal
film
oxide
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000146892A
Other languages
Japanese (ja)
Other versions
JP2001328198A (en
Inventor
芳典 岩淵
行弘 草野
雅人 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2000146892A priority Critical patent/JP4432206B2/en
Publication of JP2001328198A publication Critical patent/JP2001328198A/en
Application granted granted Critical
Publication of JP4432206B2 publication Critical patent/JP4432206B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、基板上に金属酸化物薄膜と金属薄膜とが交互に多層に積層された積層膜に係り、特に、プラズマディスプレイパネル(PDP)の前面に配置される透明導電性薄膜や熱線反射膜として有用な低抵抗で導電性に優れた積層膜をスパッタリング法により形成する方法に関する。
【0002】
【従来の技術】
PDPの前面板には、反射防止性能(即ち、可視光高透過性(可視光低反射性))、熱線反射(近赤外カット)性能、電磁波シールド性能等に優れることが要求され、従来、このような要求性能のうち、熱線反射性と電磁波シールド性とを兼備するものとして、PETフィルム上にITO(スズインジウム酸化物)等の金属酸化物薄膜とAg等の金属薄膜とを交互に多層積層形成したフィルムが提供されている。
【0003】
この積層膜の形成方法としては、スパッタリング法、イオンプレーティング法、CVD法等、各種の方法があるが、膜厚制御が容易な点からスパッタリング法が最も好適とされている。なお、スパッタリング法による金属薄膜の形成は、アルゴン(Ar)雰囲気にて行われ、金属酸化物薄膜をスパッタリング法により形成する場合には、雰囲気ガス中に酸素(O)を導入し、Ar/O雰囲気で行われる。
【0004】
【発明が解決しようとする課題】
しかしながら、金属酸化物薄膜と金属薄膜との積層膜では、金属薄膜が酸化を受け易く、酸化劣化により金属薄膜の抵抗値が高くなり、結果として得られる積層膜の導電性が損なわれるという欠点がある。
【0005】
本発明は、このような金属薄膜の抵抗値の悪化を防止して表面抵抗値が低く導電性に優れた積層膜を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の積層膜の形成方法は、スパッタリング法により、基板上に金属酸化物薄膜と金属薄膜とを積層形成する積層膜の形成方法において、金属薄膜の成膜後、金属酸化物薄膜の成膜に先立ち、該金属薄膜を酸素ガス雰囲気に晒すことにより、或いは、金属薄膜の成膜後、金属酸化物薄膜の成膜に先立ち、該金属薄膜の表面を酸素プラズマで処理することにより、該金属薄膜の金属酸化物薄膜との界面に、膜厚0.5〜5nmの、該金属薄膜を構成する金属の酸化物層が形成されている積層膜を形成することを特徴とする。
【0007】
本発明者らは、従来の積層膜において、金属薄膜の抵抗値が高くなる原因について検討した結果、従来の積層膜では、金属酸化物薄膜中の活性酸素(不安定酸素)が金属薄膜との界面へ移動し、金属薄膜が酸化を受けること、また、大気中の水分等により金属薄膜が腐食すること、そして、この結果、金属薄膜の抵抗値が悪化する可能性が高いことを知見した。
【0008】
そこで、本発明者らは、金属酸化物薄膜から金属薄膜への酸素の移動、大気中の水分等の影響を低減するべく、更に検討を重ねた結果、金属薄膜の金属酸化物薄膜との界面に該金属薄膜を構成する金属の酸化物層を形成することにより、この酸化物層がバリヤー層となって、隣接する金属酸化物薄膜からの酸素の移動や大気中の水分等による酸化劣化から、金属薄膜を保護することができることを見出した。
【0009】
本発明はこのような知見により完成されたものであり、本発明によれば、金属薄膜の酸化による抵抗値の悪化を防止して、表面抵抗値の低い高導電性積層膜を得ることができる。
【0010】
この酸化物層は、金属薄膜の基板側と反対側の面に形成されていることが好ましい。
【0011】
本発明においては、特に、金属酸化物薄膜と金属薄膜とを交互に多層に積層形成した積層膜に有効であり、金属酸化物薄膜としてはITO、酸化インジウム、酸化スズ、酸化亜鉛、酸化チタン及び酸化ケイ素よりなる群から選ばれる1種の金属酸化物又は2種以上の複合金属酸化物の薄膜が挙げられる。その他金属酸化物膜としては、例えば酸化亜鉛膜にZn2+よりイオン半径の小さいAl,Si,B,Ti,Sn,Mg,Cr,F,Ga等をドープさせた膜も同様に使用することができる。ドープ量としては通常原子比で10%以下が好ましい。また、金属薄膜としては、Ag,Au,Pt,Cu,Al,Cr,Ti,Zn,Sn,Ni,Co,Hf,Nb,Ta,W,Zr,Pb,Pd及びInよりなる群から選ばれる1種の金属又は2種以上の合金の薄膜が挙げられる。特に、金属酸化物薄膜がITOであり、金属薄膜がAg薄膜である積層膜が好適であり、このような本発明により、好ましくは表面抵抗値3.5Ω/□以下の透明導電性薄膜が提供される
【0012】
【発明の実施の形態】
以下に図面を参照して本発明の積層膜の実施の形態を詳細に説明する。
【0013】
図1は本発明の積層膜の実施の形態を示す断面図である。
【0014】
この積層膜は、基板1上に金属酸化物薄膜2と金属薄膜3とが交互に積層形成された積層膜であって、金属薄膜3と金属酸化物薄膜2との界面のうち、基板1とは反対側の面にこの金属薄膜3を構成する金属の酸化物よりなる層4が形成されたものである。
【0015】
本発明において、金属酸化物薄膜2及び金属薄膜3の種類及びその膜厚、積層数としては特に制限はないが、金属酸化物薄膜2としては、例えば、ITO、酸化インジウム、酸化スズ、酸化亜鉛、酸化チタン及び酸化ケイ素よりなる群から選ばれる1種の金属酸化物又は2種以上の複合金属酸化物の薄膜が挙げられ、金属薄膜3としては例えば、Ag,Au,Pt,Cu,Al,Cr,Ti,Zn,Sn,Ni,Co,Hf,Nb,Ta,W,Zr,Pb,Pd及びInよりなる群から選ばれる1種の金属又は2種以上の合金の薄膜が挙げられる。
【0016】
金属酸化物薄膜2の膜厚は通常20〜200nmの範囲で適宜設定され、金属薄膜3の膜厚は通常5〜20nmの範囲で適宜決定される。
【0017】
金属薄膜3の上面に形成される酸化物層4は、その膜厚が過度に厚いと、得られる積層膜の表面抵抗値が高くなり、過度に薄いとバリヤー層としての機能を有効に得ることができず、金属薄膜3の酸化劣化で抵抗値が悪化する。従って、この酸化物層4の膜厚は0.5〜5nmとする。
【0018】
なお、このような積層膜を形成する基板1としては、用途に応じて各種の材質、厚みのものが用いられるが、PDP等の前面板としての用途においては、ポリエステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリメチルメタアクリレート(PMMA)、アクリル、ポリカーボネート(PC)、ポリスチレン、トリアセテート、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレン、エチレン−酢酸ビニル共重合体、ポリウレタン、セロファン等、好ましくはPET、PC、PMMAの透明フィルムであって、通常の場合、1μm〜10mm程度の厚さのものが用いられるが、ガラス基板であっても良い。
【0019】
このような本発明の積層膜は、スパッタリング法により金属酸化物薄膜2と金属薄膜3とを交互に積層形成するに当たり、金属薄膜3を成膜した後、金属酸化物薄膜2の成膜に先立ち、金属薄膜3を酸素ガス雰囲気に晒すことにより、或いは金属薄膜3の表面を酸素プラズマ処理することにより形成することができる。
【0020】
金属薄膜3を酸素ガス雰囲気に晒す時には基板を加熱してもよい。プラズマ処理の方法としては、Ar等の不活性ガスにOを混入させた系またはOのみの系にてプラズマを発生し、被処理物の表面で反応(酸化)を起こすことができる方法であればいかなる手法も採用できる。電圧の印加方法は直流、交流、マイクロ波等が考えられる。
【0021】
本発明の積層膜の形成方法において、その他の成膜条件については、特に制限はなく、常法に従って積層膜の形成を行うことができる。
【0022】
即ち、例えば、スパッタリング装置の真空槽内に金属ターゲットと金属酸化物ターゲットをセットすると共に基板を配置し、真空槽内を真空引きした後、ArガスとOガスを導入して圧力0.1〜1.0Pa程度に調整すると共に金属酸化物ターゲットに電圧を印加して、金属酸化物薄膜を形成する。その際の雰囲気ガスのO濃度、即ち、ArガスとOとの合計に対するOの体積割合は1〜10vol%とするのが好ましい。
【0023】
次いで、雰囲気ガスの置換により、系内を0.1〜1.0Pa程度のArガス雰囲気として金属ターゲットに電圧を印加して、金属薄膜を形成する。その後、雰囲気ガスの置換により系内を1〜5Pa程度のOガス雰囲気として金属薄膜を酸素ガスに晒して金属薄膜表面に酸化物層を形成する。その後、必要に応じて、上記金属酸化物薄膜の成膜、金属薄膜の成膜及び酸化物層の形成を繰り返し行って、積層膜を形成する。
【0024】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0025】
実施例1
マグネトロンDCスパッタリング装置のターゲットとしてITOとAgをセットし、基板として厚さ188μmのPETフィルムを用いて積層膜の形成を行った。
【0026】
まず、真空槽をターボ分子ポンプで1×10−4Pa以下まで排気した後、Arガス200cc/minとOガス6cc/minとを真空系内に導入し、圧力が0.5Paとなるように調整した。この状態でITOターゲットに電圧を印加して基板上にITO薄膜を成膜した。次に、真空槽内のガスを全てArガスとなるように置換して圧力を0.5Paに調整し、その後Agターゲットに電圧を印加してAg薄膜を成膜した。真空槽内のガスを全てOガスとなるように置換して圧力を100Paに調整し、1分間保持することにより、Ag薄膜の表面に酸化物層を形成した。この時基板加熱は行わなかった。その後、再び上記と同様のAr/Oガス雰囲気でITO薄膜を成膜して、基板上に、膜厚30nmのITO薄膜/膜厚15nmのAg薄膜/膜厚5nmのAgO層/膜厚30nmのITO薄膜の積層膜を形成した。
【0027】
この積層膜を60℃、90%RHの湿熱雰囲気に48時間晒す耐候性試験を行い、試験前後の表面抵抗値を調べ、結果を表1に示した。
【0028】
比較例1
実施例1において、酸化物層を形成しなかったこと以外は同様にして積層膜を形成し、同様に耐候性試験前後の表面抵抗値を調べ、結果を表1に示した。
【0029】
表1より、酸化物層を形成することにより、抵抗値が低く導電性に優れ、その耐候性にも優れた積層膜を形成することができることがわかる。
【0030】
【表1】

Figure 0004432206
【0031】
なお、実施例1の方法で、同様に雰囲気ガスの切り換えを行って、ITO,Ag7層、バリア3層の積層膜を形成し、電磁波シールド性熱線カットフィルムとしてPDPの前面に配置して使用したところ、長期に亘り良好な特性を得ることができた。
【0032】
【発明の効果】
以上詳述した通り、本発明によれば、金属薄膜と金属酸化物薄膜との多層積層膜であって、表面抵抗値が低く、PDPの前面板の電磁波シールド性熱線カットフィルム等として有用な高特性積層膜が提供される。
【図面の簡単な説明】
【図1】 本発明の積層膜の実施の形態を示す断面図である。
【符号の説明】
1 基板
2 金属酸化物薄膜
3 金属薄膜
4 酸化物層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated film in which metal oxide thin films and metal thin films are alternately laminated on a substrate, and in particular, a transparent conductive thin film or heat ray reflective film disposed on the front surface of a plasma display panel (PDP). The present invention relates to a method for forming a laminated film having a low resistance and excellent conductivity that is useful as a sputtering method.
[0002]
[Prior art]
The front plate of the PDP is required to have excellent antireflection performance (that is, high visible light transmittance (visible light low reflectivity)), heat ray reflection (near infrared cut) performance, electromagnetic wave shielding performance, etc. Among such required performances, as a combination of heat ray reflectivity and electromagnetic shielding properties, a metal oxide thin film such as ITO (tin indium oxide) and a metal thin film such as Ag are alternately laminated on a PET film. A laminated film is provided.
[0003]
As a method for forming this laminated film, there are various methods such as a sputtering method, an ion plating method, a CVD method and the like, but the sputtering method is most preferable from the viewpoint of easy film thickness control. The formation of the metal thin film by the sputtering method is performed in an argon (Ar) atmosphere. When the metal oxide thin film is formed by the sputtering method, oxygen (O 2 ) is introduced into the atmosphere gas, and Ar / Performed in an O 2 atmosphere.
[0004]
[Problems to be solved by the invention]
However, in the laminated film of the metal oxide thin film and the metal thin film, the metal thin film is susceptible to oxidation, and the resistance value of the metal thin film is increased due to oxidative degradation, and the conductivity of the resulting laminated film is impaired. is there.
[0005]
An object of the present invention is to provide a laminated film having a low surface resistance value and excellent electrical conductivity by preventing such deterioration of the resistance value of the metal thin film.
[0006]
[Means for Solving the Problems]
Method of forming a laminated film of the present invention, by a sputtering method, method of forming a laminated film formed by lamination of a metallic oxide thin film and the metal thin film on the substrate, after forming the metal thin film, the metal oxide thin film formed By exposing the metal thin film to an oxygen gas atmosphere prior to the film, or by treating the surface of the metal thin film with oxygen plasma after the metal thin film is formed and before forming the metal oxide thin film, the interface between the metal oxide thin film of the metal thin film, with a thickness of 0.5 to 5 nm, and forming a laminated film oxide layer of the metal constituting the metal thin film is formed.
[0007]
As a result of examining the cause of the high resistance of the metal thin film in the conventional laminated film, the present inventors have found that the active oxygen (unstable oxygen) in the metal oxide thin film is different from the metal thin film in the conventional laminated film. It has been found that the metal thin film is oxidized, the metal thin film is corroded by moisture in the atmosphere, and the resistance value of the metal thin film is likely to deteriorate as a result.
[0008]
Accordingly, the present inventors have conducted further studies to reduce the influence of oxygen transfer from the metal oxide thin film to the metal thin film, moisture in the atmosphere, etc. As a result, the interface between the metal thin film and the metal oxide thin film By forming an oxide layer of the metal constituting the metal thin film on the surface, this oxide layer becomes a barrier layer, and from the movement of oxygen from the adjacent metal oxide thin film and the oxidative deterioration due to moisture in the atmosphere. It was found that the metal thin film can be protected.
[0009]
The present invention has been completed based on such findings. According to the present invention, it is possible to prevent deterioration of the resistance value due to oxidation of a metal thin film and obtain a highly conductive laminated film having a low surface resistance value. .
[0010]
This oxide layer is preferably formed on the surface opposite to the substrate side of the metal thin film.
[0011]
In the present invention, it is particularly effective for a laminated film in which a metal oxide thin film and a metal thin film are alternately formed in multiple layers. As the metal oxide thin film, ITO, indium oxide, tin oxide, zinc oxide, titanium oxide and One type of metal oxide selected from the group consisting of silicon oxide or a thin film of two or more types of composite metal oxides may be mentioned. As the other metal oxide film, for example, a film obtained by doping a zinc oxide film with Al, Si, B, Ti, Sn, Mg, Cr, F, Ga or the like having an ion radius smaller than that of Zn 2+ can be used in the same manner. it can. The doping amount is usually preferably 10% or less by atomic ratio. The metal thin film is selected from the group consisting of Ag, Au, Pt, Cu, Al, Cr, Ti, Zn, Sn, Ni, Co, Hf, Nb, Ta, W, Zr, Pb, Pd and In. A thin film of one kind of metal or two or more kinds of alloys may be mentioned. In particular, a laminated film in which the metal oxide thin film is ITO and the metal thin film is an Ag thin film is suitable. According to the present invention, a transparent conductive thin film having a surface resistance value of 3.5Ω / □ or less is preferably provided. Is done .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the laminated film of the present invention will be described in detail with reference to the drawings.
[0013]
FIG. 1 is a cross-sectional view showing an embodiment of a laminated film of the present invention.
[0014]
This laminated film is a laminated film in which the metal oxide thin films 2 and the metal thin films 3 are alternately laminated on the substrate 1. Of the interfaces between the metal thin films 3 and the metal oxide thin films 2, Is a layer 4 made of a metal oxide constituting the metal thin film 3 on the opposite surface.
[0015]
In the present invention, the type and thickness of the metal oxide thin film 2 and the metal thin film 3 and the number of stacked layers are not particularly limited. Examples of the metal oxide thin film 2 include ITO, indium oxide, tin oxide, and zinc oxide. , One type of metal oxide selected from the group consisting of titanium oxide and silicon oxide, or a thin film of two or more types of composite metal oxides. Examples of the metal thin film 3 include Ag, Au, Pt, Cu, Al, Examples include thin films of one kind of metal or two or more kinds of alloys selected from the group consisting of Cr, Ti, Zn, Sn, Ni, Co, Hf, Nb, Ta, W, Zr, Pb, Pd, and In.
[0016]
The film thickness of the metal oxide thin film 2 is usually set as appropriate within a range of 20 to 200 nm, and the film thickness of the metal thin film 3 is normally determined as appropriate within a range of 5 to 20 nm.
[0017]
When the thickness of the oxide layer 4 formed on the upper surface of the metal thin film 3 is excessively large, the surface resistance value of the obtained laminated film becomes high, and when it is excessively thin, the function as a barrier layer can be effectively obtained. The resistance value deteriorates due to the oxidative deterioration of the metal thin film 3. Therefore, the thickness of the oxide layer 4 is set to 0.5 to 5 nm.
[0018]
In addition, as the board | substrate 1 which forms such a laminated film, the thing of various materials and thickness is used according to a use, However, In the use as front plates, such as PDP, polyester, polyethylene terephthalate (PET), Polybutylene terephthalate, polymethyl methacrylate (PMMA), acrylic, polycarbonate (PC), polystyrene, triacetate, polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, polyethylene, ethylene-vinyl acetate copolymer, polyurethane, cellophane, etc. Is a transparent film of PET, PC, PMMA, and usually has a thickness of about 1 μm to 10 mm, but may be a glass substrate.
[0019]
In such a laminated film of the present invention, when the metal oxide thin film 2 and the metal thin film 3 are alternately laminated by sputtering, the metal thin film 3 is formed and then the metal oxide thin film 2 is formed. It can be formed by exposing the metal thin film 3 to an oxygen gas atmosphere or by subjecting the surface of the metal thin film 3 to oxygen plasma treatment.
[0020]
When the metal thin film 3 is exposed to an oxygen gas atmosphere, the substrate may be heated. As a method of plasma treatment, a method in which plasma is generated in a system in which O 2 is mixed in an inert gas such as Ar or a system only of O 2 and reaction (oxidation) can be caused on the surface of an object to be processed. Any method can be used. The voltage application method may be direct current, alternating current, microwave, or the like.
[0021]
In the method for forming a laminated film of the present invention, other film forming conditions are not particularly limited, and the laminated film can be formed according to a conventional method.
[0022]
That is, for example, a metal target and a metal oxide target are set in a vacuum chamber of a sputtering apparatus, a substrate is disposed, the inside of the vacuum chamber is evacuated, Ar gas and O 2 gas are introduced, and a pressure of 0.1 is set. A metal oxide thin film is formed by adjusting the voltage to about 1.0 Pa and applying a voltage to the metal oxide target. O 2 concentration in the atmosphere gas at that time, i.e., the volume ratio of O 2 to the sum of Ar gas and O 2 is preferably a 1~10vol%.
[0023]
Next, by replacing the atmospheric gas with the inside of the system as an Ar gas atmosphere of about 0.1 to 1.0 Pa, a voltage is applied to the metal target to form a metal thin film. Thereafter, the metal thin film is exposed to oxygen gas to form an O 2 gas atmosphere of about 1 to 5 Pa by replacing the atmospheric gas to form an oxide layer on the surface of the metal thin film. Thereafter, if necessary, the metal oxide thin film, the metal thin film, and the oxide layer are repeatedly formed to form a laminated film.
[0024]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0025]
Example 1
ITO and Ag were set as targets of a magnetron DC sputtering apparatus, and a laminated film was formed using a PET film having a thickness of 188 μm as a substrate.
[0026]
First, after evacuating the vacuum tank to 1 × 10 −4 Pa or less with a turbo molecular pump, Ar gas 200 cc / min and O 2 gas 6 cc / min are introduced into the vacuum system so that the pressure becomes 0.5 Pa. Adjusted. In this state, a voltage was applied to the ITO target to form an ITO thin film on the substrate. Next, the gas in the vacuum chamber was entirely replaced with Ar gas to adjust the pressure to 0.5 Pa, and then a voltage was applied to the Ag target to form an Ag thin film. The gas in the vacuum chamber was all replaced with O 2 gas, the pressure was adjusted to 100 Pa, and held for 1 minute to form an oxide layer on the surface of the Ag thin film. At this time, the substrate was not heated. Thereafter, an ITO thin film was formed again in the same Ar / O 2 gas atmosphere as described above, and an ITO thin film with a thickness of 30 nm / Ag thin film with a thickness of 15 nm / Ag 2 O layer with a thickness of 5 nm / film on the substrate. A laminated film of ITO thin films having a thickness of 30 nm was formed.
[0027]
A weather resistance test was performed in which this laminated film was exposed to a wet heat atmosphere of 60 ° C. and 90% RH for 48 hours, and the surface resistance values before and after the test were examined. The results are shown in Table 1.
[0028]
Comparative Example 1
In Example 1, a laminated film was formed in the same manner except that the oxide layer was not formed. Similarly, the surface resistance values before and after the weather resistance test were examined, and the results are shown in Table 1.
[0029]
From Table 1, it can be seen that by forming the oxide layer, a laminated film having a low resistance value, excellent conductivity, and excellent weather resistance can be formed.
[0030]
[Table 1]
Figure 0004432206
[0031]
In addition, by switching the atmospheric gas in the same manner as in Example 1, a laminated film of ITO, Ag7 layer and barrier 3 layer was formed and used as an electromagnetic shielding heat ray cut film placed on the front surface of the PDP. However, good characteristics could be obtained over a long period of time.
[0032]
【The invention's effect】
As described above in detail, according to the present invention, a multilayer laminated film of a metal thin film and a metal oxide thin film, which has a low surface resistance value and is useful as an electromagnetic wave shielding heat ray cut film for a front panel of a PDP. A characteristic laminate film is provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a laminated film of the present invention.
[Explanation of symbols]
1 Substrate 2 Metal oxide thin film 3 Metal thin film 4 Oxide layer

Claims (8)

スパッタリング法により基板上に金属酸化物薄膜と金属薄膜とを積層形成する積層膜の形成方法において、金属薄膜の成膜後、金属酸化物薄膜の成膜に先立ち、該金属薄膜を酸素ガス雰囲気に晒すことにより、或いは、金属薄膜の成膜後、金属酸化物薄膜の成膜に先立ち、該金属薄膜の表面を酸素プラズマで処理することにより、該金属薄膜の金属酸化物薄膜との界面に、膜厚0.5〜5nmの、該金属薄膜を構成する金属の酸化物層が形成されている積層膜を形成することを特徴とする積層膜の形成方法By sputtering, in the formation method of a multilayer film laminated with a metallic oxide thin film and the metal thin film on the substrate, after forming the metal thin film, prior to deposition of the metal oxide thin film, oxygen gas and the metal thin film The interface between the metal thin film and the metal oxide thin film is exposed to the atmosphere, or after the metal thin film is formed and before the metal oxide thin film is formed, the surface of the metal thin film is treated with oxygen plasma. And forming a laminated film having a thickness of 0.5 to 5 nm on which a metal oxide layer constituting the metal thin film is formed . 請求項1において、該酸化物層は、該金属薄膜の基板側と反対側の面に形成されていることを特徴とする積層膜の形成方法2. The method for forming a laminated film according to claim 1, wherein the oxide layer is formed on a surface opposite to the substrate side of the metal thin film. 請求項1又は2において、該積層膜が、金属酸化物薄膜と金属薄膜とが交互に多層に積層形成された積層膜であることを特徴とする積層膜の形成方法 3. The method for forming a laminated film according to claim 1, wherein the laminated film is a laminated film in which metal oxide thin films and metal thin films are alternately laminated in multiple layers. 請求項1ないし3のいずれか1項において、金属酸化物薄膜がITO、酸化インジウム、酸化スズ、酸化亜鉛、酸化チタン及び酸化ケイ素よりなる群から選ばれる1種の金属酸化物又は2種以上の複合金属酸化物の薄膜であることを特徴とする積層膜の形成方法The metal oxide thin film according to any one of claims 1 to 3, wherein the metal oxide thin film is selected from the group consisting of ITO, indium oxide, tin oxide, zinc oxide, titanium oxide, and silicon oxide, or two or more types of metal oxide thin films. A method for forming a laminated film , which is a thin film of a composite metal oxide. 請求項1ないし4のいずれか1項において、金属薄膜がAg,Au,Pt,Cu,Al,Cr,Ti,Zn,Sn,Ni,Co,Hf,Nb,Ta,W,Zr,Pb,Pd及びInよりなる群から選ばれる1種の金属又は2種以上の合金の薄膜であることを特徴とする積層膜の形成方法5. The metal thin film according to claim 1, wherein the metal thin film is Ag, Au, Pt, Cu, Al, Cr, Ti, Zn, Sn, Ni, Co, Hf, Nb, Ta, W, Zr, Pb, Pd. and a method of forming the multilayer film, which is a one metal or two or more kinds of alloy thin film selected from the group consisting of in. 請求項4又は5において、金属酸化物薄膜がITO薄膜であり、金属薄膜がAg薄膜であることを特徴とする積層膜の形成方法6. The method for forming a laminated film according to claim 4, wherein the metal oxide thin film is an ITO thin film, and the metal thin film is an Ag thin film. 請求項1ないし6のいずれか1項において、該積層膜が、透明導電性薄膜であることを特徴とする積層膜の形成方法The method for forming a laminated film according to claim 1, wherein the laminated film is a transparent conductive thin film. 請求項1ないし7のいずれか1項において、該積層膜の表面抵抗値が3.5Ω/□以下であることを特徴とする積層膜の形成方法The method for forming a laminated film according to claim 1, wherein the laminated film has a surface resistance value of 3.5Ω / □ or less.
JP2000146892A 2000-05-18 2000-05-18 Method for forming laminated film Expired - Fee Related JP4432206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000146892A JP4432206B2 (en) 2000-05-18 2000-05-18 Method for forming laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000146892A JP4432206B2 (en) 2000-05-18 2000-05-18 Method for forming laminated film

Publications (2)

Publication Number Publication Date
JP2001328198A JP2001328198A (en) 2001-11-27
JP4432206B2 true JP4432206B2 (en) 2010-03-17

Family

ID=18653164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000146892A Expired - Fee Related JP4432206B2 (en) 2000-05-18 2000-05-18 Method for forming laminated film

Country Status (1)

Country Link
JP (1) JP4432206B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101449116B1 (en) * 2012-08-29 2014-10-08 현대자동차주식회사 Multi coating layer and method for producing the same
CN108074991A (en) * 2017-12-06 2018-05-25 中国航发北京航空材料研究院 A kind of composite transparent conductive film

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US7993773B2 (en) 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US20070264564A1 (en) 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
US7550769B2 (en) * 2004-06-11 2009-06-23 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device and semiconductor device
KR101021536B1 (en) 2004-12-08 2011-03-16 섬모픽스, 인코포레이티드 Deposition of ??????
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
US7531239B2 (en) * 2005-04-06 2009-05-12 Eclipse Energy Systems Inc Transparent electrode
JP2006327177A (en) * 2005-04-26 2006-12-07 Tokai Rubber Ind Ltd Transparent laminated film, transparent laminate and plasma display
US8062708B2 (en) 2006-09-29 2011-11-22 Infinite Power Solutions, Inc. Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
TWI441937B (en) 2007-12-21 2014-06-21 Infinite Power Solutions Inc Method for sputter targets for electrolyte films
KR101606183B1 (en) 2008-01-11 2016-03-25 사푸라스트 리써치 엘엘씨 Thin film encapsulation for thin film batteries and other devices
EP2266183B1 (en) 2008-04-02 2018-12-12 Sapurast Research LLC Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
JP5529459B2 (en) * 2008-08-06 2014-06-25 憲一 ▲高▼木 Coating method
EP2319101B1 (en) 2008-08-11 2015-11-04 Sapurast Research LLC Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
KR101613671B1 (en) 2008-09-12 2016-04-19 사푸라스트 리써치 엘엘씨 Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
EP2474056B1 (en) 2009-09-01 2016-05-04 Sapurast Research LLC Printed circuit board with integrated thin film battery
ES2364309B1 (en) * 2010-02-19 2012-08-13 Institut De Ciencies Fotoniques, Fundacio Privada TRANSPARENT ELECTRODE BASED ON THE COMBINATION OF OXIDES, METALS AND TRANSPARENT DRIVING OXIDES.
JP5777611B2 (en) * 2010-05-12 2015-09-09 名阪真空工業株式会社 Transparent conductive substrate
WO2011156392A1 (en) 2010-06-07 2011-12-15 Infinite Power Solutions, Inc. Rechargeable, high-density electrochemical device
JP5786403B2 (en) * 2011-03-29 2015-09-30 凸版印刷株式会社 Transparent conductive laminate and touch panel using the same
JP6108210B2 (en) * 2012-01-31 2017-04-05 日立金属株式会社 Multilayer wiring film for electronic parts
JPWO2014175181A1 (en) * 2013-04-22 2017-02-23 コニカミノルタ株式会社 Transparent conductor and electronic device
CN103572230B (en) * 2013-11-05 2016-07-06 研创应用材料(赣州)股份有限公司 A kind of method preparing electric conductive oxidation indium stannum zinc thin film
JP6303559B2 (en) * 2014-02-07 2018-04-04 東レ株式会社 Laminated film and method for producing the same
CN104064257B (en) * 2014-07-11 2017-05-03 张家港康得新光电材料有限公司 Low-resistance ITO transparent conductive film
JP6048526B2 (en) 2015-03-26 2016-12-21 Tdk株式会社 Transparent conductor and touch panel
JP6601199B2 (en) 2015-12-11 2019-11-06 Tdk株式会社 Transparent conductor
WO2021095550A1 (en) 2019-11-15 2021-05-20 三菱マテリアル株式会社 Laminated structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110468A (en) * 1990-08-29 1992-04-10 Seiko Instr Inc Hard protective film and its production
JPH05112865A (en) * 1991-10-18 1993-05-07 Kawatetsu Mining Co Ltd Formation of oxide thin film
JP3293912B2 (en) * 1992-12-10 2002-06-17 松下電器産業株式会社 Method of forming oxide thin film
JP3004222B2 (en) * 1996-05-28 2000-01-31 三井化学株式会社 Transparent laminate and display filter using the same
JP3787410B2 (en) * 1997-05-13 2006-06-21 キヤノン株式会社 Deposited film manufacturing method and photovoltaic device manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101449116B1 (en) * 2012-08-29 2014-10-08 현대자동차주식회사 Multi coating layer and method for producing the same
CN108074991A (en) * 2017-12-06 2018-05-25 中国航发北京航空材料研究院 A kind of composite transparent conductive film

Also Published As

Publication number Publication date
JP2001328198A (en) 2001-11-27

Similar Documents

Publication Publication Date Title
JP4432206B2 (en) Method for forming laminated film
JP5023556B2 (en) Conductive laminate, electromagnetic wave shielding film for plasma display, and protective plate for plasma display
JP4893097B2 (en) Conductive laminate and protective plate for plasma display
JP2002341111A (en) Functional thin film having optical and electrical characteristics
TW201022463A (en) Method for forming anti-reflection film, anti-reflection film, and film formation apparatus
US8545648B2 (en) Method for producing heat insulating laminate structure, heat insulating laminate structure, and transparent laminate film for the same
WO2006090798A1 (en) Electromagnetic shielding laminate and display using same
JPH0791089B2 (en) Heat ray reflective glass
JP3053668B2 (en) Heat shielding film
JPH05334924A (en) Manufacture of transparent conductive film
JP2002323606A (en) Functional thin film having optical and electrical properties
KR101764053B1 (en) Ag alloy film for reflecting electrode or wiring electrode, reflecting electrode or wiring electrode, and ag alloy sputtering target
JP4078520B2 (en) Manufacturing method of filter with antireflection function for display device
JP4068993B2 (en) Transparent conductive laminated film
JP2004263290A (en) Electromagnetic-shielding ag alloy film, electromagnetic-shielding ag alloy film formed body, and ag alloy sputtering target for depositing electromagnetic-shielding ag alloy film
WO2014171149A1 (en) Transparent conductive material and method for manufacturing same
JPH07178866A (en) Heat ray-blocking film and production thereof
JP2001329363A (en) Method form forming laminated film and laminated film
JP2001328199A (en) Laminated film
JP2004207383A (en) Electromagnetic shielding film
JP3924849B2 (en) Transparent conductive film and electromagnetic wave shielding filter using the same
JPH1049306A (en) Transparent conductive film for touch panel
JP2001164382A (en) Electrically conductive photoselective transmissive sheet
JP2001179868A (en) Method for manufacturing transparent laminate
JP2697000B2 (en) Article coated with optical film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees