JP2004207383A - Electromagnetic shielding film - Google Patents

Electromagnetic shielding film Download PDF

Info

Publication number
JP2004207383A
JP2004207383A JP2002372840A JP2002372840A JP2004207383A JP 2004207383 A JP2004207383 A JP 2004207383A JP 2002372840 A JP2002372840 A JP 2002372840A JP 2002372840 A JP2002372840 A JP 2002372840A JP 2004207383 A JP2004207383 A JP 2004207383A
Authority
JP
Japan
Prior art keywords
film
electromagnetic shielding
target
shielding film
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002372840A
Other languages
Japanese (ja)
Inventor
Yasutaka Tsuda
康孝 津田
Katsuto Tanaka
勝人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2002372840A priority Critical patent/JP2004207383A/en
Publication of JP2004207383A publication Critical patent/JP2004207383A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that doping of a different kind of metal into an Ag film causes such defects as an increase in surface resistance and reflectivity of the Ag film, resulting in making it difficult to use the Ag film in a front face of a display such as a PDP. <P>SOLUTION: In an electromagnetic shielding film wherein the Ag film and an oxide film are alternately formed on a base material, a zinc oxide film containing 1-10 at.% of Al is formed between the Ag film and the oxide film. In the electromagnetic shielding film, the uppermost layer is made of the oxide film. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、表示装置、特にプラズマディスプレイ(以後PDPと称す)等の前面に用いられる電磁遮蔽膜に関する。
【0002】
【従来の技術】
基体上に酸化物膜、Ag膜、酸化物膜を順に3層積層したもの、または酸化物膜、Ag膜、酸化物膜、Ag膜、酸化物膜を順次5層積層したもの等、酸化物膜、Ag膜が交互に積層され最上層膜が酸化物膜でなる(2n+1)層(n≧1)積層されたものが、表示装置、特にPDPから漏洩する電磁波を遮断するための電磁遮蔽膜として使用されている。
【0003】
また、PDP前面フィルター用電磁遮蔽膜として、透明基体/ITO/Ag/ITO(特許文献1)、あるいは、透明基体/TiO2/Ag/TiO2という膜構成を有するものが挙げられる(特許文献2)。
【0004】
しかし、このような膜では耐久性、特に耐湿性に問題があり、空気中の湿度により白色斑点や白濁を生じる。これらの白色斑点や白濁は空気中の水分によりAgの凝集が促進され、Agの塊ができることにより生じると考えられている。
【0005】
これを防ぐために従来技術ではAg膜に種々の金属をドーピングすることにより、Agの凝集を抑制し、これにより電磁遮蔽膜の耐湿性を向上させる方法が知られている。(特許文献3)
【0006】
【特許文献1】
特許第3004271号公報
【特許文献2】
特開2000−246831号公報
【特許文献3】
特開平9−291355号公報
【0007】
【発明が解決しようとする課題】
Ag膜に異種金属をドーピングすると、Ag膜の表面抵抗値の上昇、反射率の上昇等の不具合を生じ、PDP等の表示装置の前面に用いることが困難であった。
【0008】
【課題を解決するための手段】
本発明の電磁遮蔽膜は、基体上にAg膜と酸化物膜が交互に成膜されてなる電磁遮蔽膜において、Ag膜と酸化物膜の間に、Alを1〜10原子%含有したAl含有酸化亜鉛膜が成膜されてなることを特徴とする電磁遮蔽膜である。
【0009】
また、前記電磁遮蔽膜において、最上層が酸化物膜でなることを特徴とする電磁遮蔽膜である。
【0010】
【発明の実施の形態】
本発明の電磁遮蔽膜は、図1に示すように、基体1上に酸化物膜2とAg膜3とが交互に2n層(n≧1)積層され、最上層が酸化物膜でなり、さらに、Ag膜と酸化物膜の間に、Al含有酸化亜鉛膜を積層し、(4n+1)層でなる。
【0011】
透明基体としては、ガラスの他に、樹脂フィルム、プラスチック板等の可視光に透明なものが使用できる。また、強化された強化ガラス(例えば、表面圧縮応力が100MN/m2程度)、或いは半強化ガラス(例えば、表面圧縮応力が40〜80MN/m2程度)を用いると、ガラスが割れにくいのでより好ましい。
【0012】
また、表示装置に用いられる前面板ガラス自体を透明基体として利用することもできる。
【0013】
酸化物膜はITO、酸化チタン、酸化亜鉛、酸化スズ、酸化インジウム、酸化モリブデン、酸化タンタル、酸化ジルコニウム、酸化ニオブ等である。
【0014】
Al含有酸化亜鉛膜は、Alを1〜4原子%ドープしたZnOターゲット(以下AlZnOターゲットと呼ぶ)を用い、スパッタリング装置によって成膜することができる。スパッタリングを行うときの真空チャンバー内の圧力は、2×10―4Pa以下とすることが好ましい。
【0015】
酸素ガスを多量に使用する反応性スパッタをもちいて、Ag膜に酸化物膜を成膜すると、Agが酸化されてしまい、目的の電磁遮蔽膜を作製することはできない。
【0016】
本発明の電磁遮蔽膜は、前述するAlZnOターゲットを用いて、Ag膜にAl含有酸化亜鉛膜を形成下後、酸化物膜を成膜するため、前述するAg膜の酸化が防げるので、反応性スパッタで酸化物膜を成膜することができる。
【0017】
本発明の電磁遮蔽膜は、Al含有酸化亜鉛膜をAg膜と酸化物膜との間に設けるものであるが、酸化物層のないAg膜をAl含有酸化亜鉛膜で挟んだものも、金属層の耐湿性を向上させた電磁遮蔽膜として用いることが可能である。
【0018】
【実施例】
以下、図面を参照しながら本発明を詳細に説明する。
【0019】
実施例1
透明基体として、大きさが1000mm×580mm×約3mm(厚さ)のフロートガラス基板(可視光線透過率:90.4%、ガラスの周縁部の黒枠プリントおよびブスバー付き、半強化加工品)の表面上に、DCマグネトロンスパッタリング装置を用いて成膜した。
【0020】
先ず、スパッタリング装置のカソードに予めITOターゲット、Agターゲット、Alを4原子%ドープしたZnOターゲット(以下AZOターゲット)を取り付けたのち、成膜前の圧力が2×10―4Pa以下となるように真空チャンバー内の排気を行った。成膜は以下の順で行った。
【0021】
(1)成膜室の雰囲気をAr:O2=97:3とした後、ITOターゲットに所定の電力を印加しITOの膜厚が40nmとなるようにガラス基板の搬送速度を調節して成膜を行った。
【0022】
(2)成膜室の雰囲気をAr:O2=97:3としたのち、AZOターゲットに所定の電力を印加しAZOの膜厚が5nmとなるようにガラス基板の搬送速度を調節して成膜を行った。
【0023】
(3)成膜室の雰囲気をAr100%としたのち、Agターゲットに所定の電力を印加し、金属層の膜厚が12nmとなるようにガラス基板の搬送速度を調節して成膜を行った。
【0024】
(4)成膜室の雰囲気を再びAr:O2=97:3としたのち、AZOターゲットに所定の電力を印加しAZOの膜厚が5nmとなるようにガラス基板の搬送速度を調節して成膜を行った。
【0025】
(5)成膜室の雰囲気をAr:O2=97:3としたのち、ITOターゲットに所定の電力を印加しITOの膜厚が40nmとなるようにガラス基板の搬送速度を調節して成膜を行った。
【0026】
以上のようにガラス基板上にG/ITO(40nm)/AZO(5nm)/Ag(12nm)/AZO(5nm)/ITO(40nm)という膜構成が形成された電磁遮蔽膜を作製した。
【0027】
耐湿性は、60℃、相対湿度90%の雰囲気中に6日間放置するという耐湿性試験を行い、評価した。評価基準は、直径1mm以上の白色斑点が現れなければ○(実用上問題なし)とした。
【0028】
作製した電磁遮蔽膜について、耐湿試験後の外観は、ごく微少の斑点は見られたものの、1mm以上の目立った白色斑点および白濁は観察されず良好であった。
【0029】
実施例2
実施例1と同じ成膜基板を用い、スパッタ装置のカソードに予めDCスパッタリングが可能になるように、TiO2の化学量論組成よりも酸素の少ないターゲット組成に設計して導電性を持たせたTiOxターゲット(1<x<2)、Agターゲット、AZOターゲットを取り付けたのち、成膜前の圧力が2×10―4Pa以下となるように真空チャンバー内の排気を充分に行った。
【0030】
(1)成膜室の雰囲気をAr:O2=98:2としたのち、TiOxターゲットに所定の電力を印加しTiO2の膜厚が40nmとなるようにガラス基板の搬送速度を調節して成膜を行った。
【0031】
(2)成膜室の雰囲気をAr:O2=97:3としたのち、AZOターゲットに所定の電力を印加しAZOの膜厚が5nmとなるようにガラス基板の搬送速度を調節して成膜を行った。
【0032】
(3)成膜室の雰囲気をAr100%としたのち、Agターゲットに所定の電力を印加し、金属層の膜厚が12nmとなるようにガラス基板の搬送速度を調節して成膜を行った。
【0033】
(4)成膜室の雰囲気を再びAr:O2=97:3としたのち、AZOターゲットに所定の電力を印加し、AZOの膜厚が5nmとなるようにガラス基板の搬送速度を調節して成膜を行った。
【0034】
(5)成膜室の雰囲気をAr:O2=98:2としたのち、TiOxターゲットに所定の電力を印加しTiO2の膜厚が40nmとなるようにガラス基板の搬送速度を調節して成膜を行った。
【0035】
以上のようにガラス基板上にG/TiO2(40nm)/AZO(5nm)/Ag(12nm)/AZO(5nm)/TiO2(40nm)という膜構成が形成された電磁遮蔽膜を作製した。
【0036】
上記電磁遮蔽膜について、60℃、相対湿度90%の雰囲気中に6日間放置するという耐湿試験を行った。耐湿試験後の外観は、ごく微少の斑点は見られたものの、1mm以上の目立った白色斑点および白濁は観察されず良好であった。
【0037】
実施例3
実施例1と同じ成膜基板を用い、スパッタ装置のカソードに予めZnターゲット、Agターゲット、AZOターゲットを取り付けたのち、成膜前の圧力が2×10―4Pa以下となるように真空チャンバー内の排気を充分に行っい、次の手順で電磁遮蔽膜を作製した。
【0038】
(1)成膜室の雰囲気をAr:O2=10:90としたのち、Znターゲットに所定の電力を印加しZnOの膜厚が40nmとなるようにガラス基板の搬送速度を調節して成膜を行った。ここでは成膜時の雰囲気ガスとして酸素を導入し金属のZnターゲットからZnO膜を成膜する反応性スパッタリングを行っている。
【0039】
(2)成膜室の雰囲気をAr:O2=97:3としたのち、AZOターゲットに所定の電力を印加しAZOの膜厚が5nmとなるようにガラス基板の搬送速度を調節して成膜を行った。
【0040】
(3)成膜室の雰囲気をAr100%としたのち、Agターゲットに所定の電力を印加し、金属層の膜厚が12nmとなるようにガラス基板の搬送速度を調節して成膜を行った。
【0041】
(4)成膜室の雰囲気を再びAr:O2=97:3としたのち、AZOターゲットに所定の電力を印加しAZOの膜厚が5nmとなるようにガラス基板の搬送速度を調節して成膜を行った。
【0042】
(5)成膜室の雰囲気をAr:O2=10:90としたのち、Znターゲットに所定の電力を印加しZnOの膜厚が40nmとなるようにガラス基板の搬送速度を調節して成膜を行った。
【0043】
以上のようにガラス基板上にG/ZnO(40nm)/AZO(5nm)/Ag(12nm)/AZO(5nm)/ZnO(40nm)という膜構成が形成された電磁遮蔽膜を作製した。
【0044】
上記電磁遮蔽膜について、60℃、相対湿度90%の雰囲気中に6日間放置するという耐湿試験を行った。耐湿試験後の外観は、ごく微少の斑点は見られたものの、1mm以上の目立った白色斑点および白濁は観察されず良好であった。
【0045】
比較例1
実施例1と同じ成膜基板を用い、スパッタ装置のカソードに予めITOターゲット、Agターゲットを取り付けたのち、成膜前の圧力が2×10―4Pa以下となるように真空チャンバー内の排気を充分に行った。
【0046】
(1)成膜室の雰囲気をAr:O2=97:3としたのち、ITOターゲットに所定の電力を印加しITOの膜厚が40nmとなるようにガラス基板の搬送速度を調節して成膜を行った。
【0047】
(2)成膜室の雰囲気をAr100%としたのち、Agターゲットに所定の電力を印加し、金属層の膜厚が12nmとなるようにガラス基板の搬送速度を調節して成膜を行った。
【0048】
(3)成膜室の雰囲気をAr:O2=97:3としたのち、ITOターゲットに所定の電力を印加しITOの膜厚が40nmとなるようにガラス基板の搬送速度を調節して成膜を行った。
【0049】
以上のようにガラス基板上にG/ITO(40nm)/Ag(12nm)/ITO(40nm)という膜構成が形成された電磁遮蔽膜を作製した。
【0050】
上記電磁遮蔽膜について、60℃、相対湿度90%の雰囲気中に6日間放置するという耐湿試験を行った。耐湿試験後の外観は、1mm以上の白色斑点が無数に現れ、また全面に白濁が観察された、実用不可能な電磁遮蔽膜であった。
【0051】
【発明の効果】
本発明の電磁遮蔽膜は、PDP等の表示装置に用いるための耐湿性に優れた電磁遮蔽膜を提供するものである。
【図面の簡単な説明】
【図1】本発明の電磁遮蔽膜の構成を示す概念図である。
【符号の説明】
1 基体
2 Ag膜
3 酸化物膜
4 Al含有酸化亜鉛膜
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electromagnetic shielding film used on a front surface of a display device, particularly, a plasma display (hereinafter, referred to as a PDP) or the like.
[0002]
[Prior art]
An oxide film, an Ag film, an oxide film in which three layers are sequentially stacked on a substrate, or an oxide film, an Ag film, an oxide film, an Ag film, an oxide film in which five layers are sequentially stacked, and the like. An electromagnetic shielding film for blocking electromagnetic waves leaking from a display device, particularly a PDP, in which a film and an Ag film are alternately laminated and a (2n + 1) layer (n ≧ 1) composed of an oxide film as an uppermost film is laminated. Has been used as
[0003]
Further, as an electromagnetic shielding film for a PDP front filter, a film having a film structure of transparent substrate / ITO / Ag / ITO (Patent Document 1) or transparent substrate / TiO2 / Ag / TiO2 is cited (Patent Document 2).
[0004]
However, such a film has a problem in durability, particularly in moisture resistance, and causes white spots and cloudiness due to humidity in the air. It is considered that these white spots and white turbidity are caused by the aggregation of Ag due to the moisture in the air and the formation of Ag aggregates.
[0005]
In order to prevent this, in the prior art, a method is known in which the Ag film is doped with various metals to suppress Ag aggregation, thereby improving the moisture resistance of the electromagnetic shielding film. (Patent Document 3)
[0006]
[Patent Document 1]
Japanese Patent No. 3004271 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2000-246831 [Patent Document 3]
JP-A-9-291355
[Problems to be solved by the invention]
When the Ag film is doped with a dissimilar metal, problems such as an increase in the surface resistance of the Ag film and an increase in the reflectance occur, and it has been difficult to use the Ag film on the front surface of a display device such as a PDP.
[0008]
[Means for Solving the Problems]
The electromagnetic shielding film of the present invention is an electromagnetic shielding film in which an Ag film and an oxide film are alternately formed on a substrate, wherein an Al film containing 1 to 10 atomic% of Al is provided between the Ag film and the oxide film. An electromagnetic shielding film formed by forming a zinc oxide containing film.
[0009]
Further, in the electromagnetic shielding film, the uppermost layer is an oxide film.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
In the electromagnetic shielding film of the present invention, as shown in FIG. 1, 2n layers (n ≧ 1) of oxide films 2 and Ag films 3 are alternately laminated on a substrate 1, and the uppermost layer is an oxide film. Further, an Al-containing zinc oxide film is stacked between the Ag film and the oxide film to form a (4n + 1) layer.
[0011]
As the transparent substrate, other than glass, a resin film, a plastic plate, or the like that is transparent to visible light can be used. Further, it is more preferable to use reinforced tempered glass (for example, surface compressive stress is about 100 MN / m2) or semi-tempered glass (for example, surface compressive stress is about 40 to 80 MN / m2) because the glass is hard to be broken.
[0012]
Further, the front glass plate used for the display device itself can be used as a transparent substrate.
[0013]
The oxide film is made of ITO, titanium oxide, zinc oxide, tin oxide, indium oxide, molybdenum oxide, tantalum oxide, zirconium oxide, niobium oxide, or the like.
[0014]
The Al-containing zinc oxide film can be formed by a sputtering apparatus using a ZnO target doped with 1 to 4 atomic% of Al (hereinafter, referred to as an AlZnO target). The pressure in the vacuum chamber at the time of performing sputtering is preferably less 2 × 10- 4 Pa.
[0015]
When an oxide film is formed on an Ag film by using reactive sputtering using a large amount of oxygen gas, Ag is oxidized, and a desired electromagnetic shielding film cannot be formed.
[0016]
Since the electromagnetic shielding film of the present invention forms an oxide film after forming an Al-containing zinc oxide film on an Ag film using the above-described AlZnO target, the oxidation of the Ag film described above can be prevented. An oxide film can be formed by sputtering.
[0017]
The electromagnetic shielding film of the present invention is provided with an Al-containing zinc oxide film between an Ag film and an oxide film. The layer can be used as an electromagnetic shielding film with improved moisture resistance.
[0018]
【Example】
Hereinafter, the present invention will be described in detail with reference to the drawings.
[0019]
Example 1
The surface of a float glass substrate (visible light transmittance: 90.4%, with black frame print and busbar on the periphery of glass, semi-reinforced product) with a size of 1000 mm x 580 mm x about 3 mm (thickness) as a transparent substrate A film was formed thereon using a DC magnetron sputtering apparatus.
[0020]
First, pre-ITO target to the cathode of the sputtering apparatus, Ag target, then fitted with a 4 atomic% doped ZnO target (hereinafter AZO target) and Al, such that the pressure before film formation becomes less 2 × 10- 4 Pa The vacuum chamber was evacuated. Film formation was performed in the following order.
[0021]
(1) After setting the atmosphere of the film forming chamber to Ar: O 2 = 97: 3, predetermined power is applied to the ITO target, and the transfer speed of the glass substrate is adjusted so that the ITO film thickness becomes 40 nm. The membrane was made.
[0022]
(2) After setting the atmosphere of the film forming chamber to Ar: O 2 = 97: 3, predetermined power is applied to the AZO target, and the transfer speed of the glass substrate is adjusted so that the film thickness of AZO becomes 5 nm. The membrane was made.
[0023]
(3) After setting the atmosphere of the film forming chamber to 100% Ar, a predetermined electric power was applied to the Ag target, and the film was formed by adjusting the transfer speed of the glass substrate so that the thickness of the metal layer became 12 nm. .
[0024]
(4) After the atmosphere of the film forming chamber is again set to Ar: O 2 = 97: 3, a predetermined electric power is applied to the AZO target, and the transfer speed of the glass substrate is adjusted so that the film thickness of AZO becomes 5 nm. A film was formed.
[0025]
(5) After setting the atmosphere of the film forming chamber to Ar: O 2 = 97: 3, a predetermined power is applied to the ITO target, and the transfer speed of the glass substrate is adjusted so that the ITO film thickness becomes 40 nm. The membrane was made.
[0026]
As described above, an electromagnetic shielding film having a film configuration of G / ITO (40 nm) / AZO (5 nm) / Ag (12 nm) / AZO (5 nm) / ITO (40 nm) was formed on a glass substrate.
[0027]
The moisture resistance was evaluated by performing a moisture resistance test in which the sample was left in an atmosphere at 60 ° C. and a relative humidity of 90% for 6 days. The evaluation criteria was ○ (no practical problem) unless white spots with a diameter of 1 mm or more appeared.
[0028]
The appearance of the prepared electromagnetic shielding film after the moisture resistance test was good, although very small spots were observed, but no noticeable white spots of 1 mm or more and white turbidity were observed.
[0029]
Example 2
Using the same film-forming substrate as in Example 1, a target composition containing less oxygen than the stoichiometric composition of TiO 2 was designed to have conductivity so that DC sputtering could be performed on the cathode of the sputtering apparatus in advance. TiOx target (1 <x <2), Ag target, then fitted with AZO target, was thoroughly evacuated in vacuum chamber so that the pressure before film formation becomes less 2 × 10- 4 Pa.
[0030]
(1) After setting the atmosphere of the film forming chamber to Ar: O 2 = 98: 2, a predetermined power is applied to the TiOx target, and the transfer speed of the glass substrate is adjusted so that the TiO 2 film thickness becomes 40 nm. A film was formed.
[0031]
(2) After setting the atmosphere of the film forming chamber to Ar: O 2 = 97: 3, predetermined power is applied to the AZO target, and the transfer speed of the glass substrate is adjusted so that the film thickness of AZO becomes 5 nm. The membrane was made.
[0032]
(3) After setting the atmosphere of the film forming chamber to 100% Ar, a predetermined electric power was applied to the Ag target, and the film was formed by adjusting the transfer speed of the glass substrate so that the thickness of the metal layer became 12 nm. .
[0033]
(4) After the atmosphere of the film forming chamber is again set to Ar: O 2 = 97: 3, a predetermined electric power is applied to the AZO target, and the transfer speed of the glass substrate is adjusted so that the AZO film thickness becomes 5 nm. To form a film.
[0034]
(5) After setting the atmosphere of the film forming chamber to Ar: O 2 = 98: 2, a predetermined power is applied to the TiOx target, and the transfer speed of the glass substrate is adjusted so that the TiO 2 film thickness becomes 40 nm. A film was formed.
[0035]
As described above, an electromagnetic shielding film having a film configuration of G / TiO 2 (40 nm) / AZO (5 nm) / Ag (12 nm) / AZO (5 nm) / TiO 2 (40 nm) was formed on a glass substrate.
[0036]
The electromagnetic shielding film was subjected to a moisture resistance test in which it was left in an atmosphere at 60 ° C. and a relative humidity of 90% for 6 days. The appearance after the moisture resistance test was good, although very small spots were observed, but no noticeable white spots of 1 mm or more and white turbidity were observed.
[0037]
Example 3
Using the same film forming substrate as in Example 1, previously Zn target to the cathode of the sputtering apparatus, Ag target, then fitted with AZO target, the vacuum chamber so that the pressure before film formation becomes less 2 × 10- 4 Pa Was sufficiently exhausted, and an electromagnetic shielding film was produced in the following procedure.
[0038]
(1) After setting the atmosphere of the film forming chamber to Ar: O 2 = 10: 90, a predetermined power is applied to the Zn target, and the transfer speed of the glass substrate is adjusted so that the ZnO film thickness becomes 40 nm. The membrane was made. Here, reactive sputtering for forming a ZnO film from a metal Zn target by introducing oxygen as an atmosphere gas at the time of film formation is performed.
[0039]
(2) After setting the atmosphere of the film forming chamber to Ar: O 2 = 97: 3, predetermined power is applied to the AZO target, and the transfer speed of the glass substrate is adjusted so that the film thickness of AZO becomes 5 nm. The membrane was made.
[0040]
(3) After setting the atmosphere of the film forming chamber to 100% Ar, a predetermined electric power was applied to the Ag target, and the film was formed by adjusting the transfer speed of the glass substrate so that the thickness of the metal layer became 12 nm. .
[0041]
(4) After the atmosphere of the film forming chamber is again set to Ar: O 2 = 97: 3, a predetermined electric power is applied to the AZO target, and the transfer speed of the glass substrate is adjusted so that the film thickness of AZO becomes 5 nm. A film was formed.
[0042]
(5) After setting the atmosphere in the film forming chamber to Ar: O 2 = 10: 90, a predetermined power is applied to the Zn target, and the transfer speed of the glass substrate is adjusted so that the ZnO film thickness becomes 40 nm. The membrane was made.
[0043]
As described above, an electromagnetic shielding film having a film configuration of G / ZnO (40 nm) / AZO (5 nm) / Ag (12 nm) / AZO (5 nm) / ZnO (40 nm) was formed on a glass substrate.
[0044]
The electromagnetic shielding film was subjected to a moisture resistance test in which it was left in an atmosphere at 60 ° C. and a relative humidity of 90% for 6 days. The appearance after the moisture resistance test was good, although very small spots were observed, but no noticeable white spots of 1 mm or more and white turbidity were observed.
[0045]
Comparative Example 1
Using the same film forming substrate as in Example 1, previously ITO target to the cathode of a sputtering apparatus, then fitted with a Ag target, the evacuation of the vacuum chamber so that the pressure before film formation becomes less 2 × 10- 4 Pa Went well.
[0046]
(1) After setting the atmosphere of the film formation chamber to Ar: O 2 = 97: 3, predetermined power is applied to the ITO target, and the transfer speed of the glass substrate is adjusted so that the ITO film thickness becomes 40 nm. The membrane was made.
[0047]
(2) After setting the atmosphere of the film formation chamber to 100% Ar, a predetermined electric power was applied to the Ag target, and the film formation was performed by adjusting the transfer speed of the glass substrate so that the thickness of the metal layer became 12 nm. .
[0048]
(3) After setting the atmosphere of the film forming chamber to Ar: O 2 = 97: 3, predetermined power is applied to the ITO target, and the transfer speed of the glass substrate is adjusted so that the ITO film thickness becomes 40 nm. The membrane was made.
[0049]
As described above, an electromagnetic shielding film having a film configuration of G / ITO (40 nm) / Ag (12 nm) / ITO (40 nm) was formed on a glass substrate.
[0050]
The electromagnetic shielding film was subjected to a moisture resistance test in which it was left in an atmosphere at 60 ° C. and a relative humidity of 90% for 6 days. The appearance after the moisture resistance test was an impractical electromagnetic shielding film in which white spots of 1 mm or more appeared innumerably and cloudiness was observed on the entire surface.
[0051]
【The invention's effect】
The electromagnetic shielding film of the present invention provides an electromagnetic shielding film having excellent moisture resistance for use in a display device such as a PDP.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a configuration of an electromagnetic shielding film of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Substrate 2 Ag film 3 Oxide film 4 Al-containing zinc oxide film

Claims (2)

基体上にAg膜と酸化物膜が交互に成膜されてなる電磁遮蔽膜において、Ag膜と酸化物膜の間に、Alを1〜10原子%含有したAl含有酸化亜鉛膜が成膜されてなることを特徴とする電磁遮蔽膜。In an electromagnetic shielding film in which an Ag film and an oxide film are alternately formed on a substrate, an Al-containing zinc oxide film containing 1 to 10 atomic% of Al is formed between the Ag film and the oxide film. An electromagnetic shielding film, comprising: 最上層が酸化物膜でなることを特徴とする請求項1に記載電磁遮蔽膜。The electromagnetic shielding film according to claim 1, wherein the uppermost layer is an oxide film.
JP2002372840A 2002-12-24 2002-12-24 Electromagnetic shielding film Pending JP2004207383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002372840A JP2004207383A (en) 2002-12-24 2002-12-24 Electromagnetic shielding film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002372840A JP2004207383A (en) 2002-12-24 2002-12-24 Electromagnetic shielding film

Publications (1)

Publication Number Publication Date
JP2004207383A true JP2004207383A (en) 2004-07-22

Family

ID=32811330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002372840A Pending JP2004207383A (en) 2002-12-24 2002-12-24 Electromagnetic shielding film

Country Status (1)

Country Link
JP (1) JP2004207383A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005020655A1 (en) * 2003-08-25 2005-03-03 Asahi Glass Company, Limited Electromagnetic shielding multilayer body and display using same
JP2006121085A (en) * 2004-10-18 2006-05-11 Samsung Corning Co Ltd Electromagnetic-wave shielding filter, its manufacturing method, and plasma display panel unit
WO2006090798A1 (en) * 2005-02-25 2006-08-31 Asahi Glass Company, Limited Electromagnetic shielding laminate and display using same
JP2006327177A (en) * 2005-04-26 2006-12-07 Tokai Rubber Ind Ltd Transparent laminated film, transparent laminate and plasma display
JP2007150323A (en) * 2003-08-25 2007-06-14 Asahi Glass Co Ltd Electromagnetic wave shielding laminate and display device using same
JP2008105251A (en) * 2006-10-25 2008-05-08 Tokai Rubber Ind Ltd Transparent laminated film and transparent laminate
JP2011138135A (en) * 2010-01-04 2011-07-14 Samsung Corning Precision Materials Co Ltd Transparent conductive film and display filter including the same
JP2012506486A (en) * 2008-10-21 2012-03-15 アプライド マテリアルズ インコーポレイテッド Transparent conductive zinc oxide display film and method for producing the same
JP2016536462A (en) * 2013-09-02 2016-11-24 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Low radiation coating and functional building materials for joinery including the same
CN112768483A (en) * 2017-05-22 2021-05-07 唯亚威通讯技术有限公司 Induced transmission filter

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034577A (en) * 2003-08-25 2010-02-12 Asahi Glass Co Ltd Electromagnetic wave shielding laminate display employing the same
WO2005020655A1 (en) * 2003-08-25 2005-03-03 Asahi Glass Company, Limited Electromagnetic shielding multilayer body and display using same
JP2007150323A (en) * 2003-08-25 2007-06-14 Asahi Glass Co Ltd Electromagnetic wave shielding laminate and display device using same
US7771850B2 (en) 2003-08-25 2010-08-10 Asahi Glass Company, Limited Electromagnetic wave shielding laminate and display device employing it
JP2006121085A (en) * 2004-10-18 2006-05-11 Samsung Corning Co Ltd Electromagnetic-wave shielding filter, its manufacturing method, and plasma display panel unit
WO2006090798A1 (en) * 2005-02-25 2006-08-31 Asahi Glass Company, Limited Electromagnetic shielding laminate and display using same
JPWO2006090798A1 (en) * 2005-02-25 2008-07-24 旭硝子株式会社 Electromagnetic wave shielding laminate and display device using the same
JP2006327177A (en) * 2005-04-26 2006-12-07 Tokai Rubber Ind Ltd Transparent laminated film, transparent laminate and plasma display
JP2008105251A (en) * 2006-10-25 2008-05-08 Tokai Rubber Ind Ltd Transparent laminated film and transparent laminate
JP2012506486A (en) * 2008-10-21 2012-03-15 アプライド マテリアルズ インコーポレイテッド Transparent conductive zinc oxide display film and method for producing the same
JP2011138135A (en) * 2010-01-04 2011-07-14 Samsung Corning Precision Materials Co Ltd Transparent conductive film and display filter including the same
JP2016536462A (en) * 2013-09-02 2016-11-24 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Low radiation coating and functional building materials for joinery including the same
CN112768483A (en) * 2017-05-22 2021-05-07 唯亚威通讯技术有限公司 Induced transmission filter

Similar Documents

Publication Publication Date Title
JP4655939B2 (en) Manufacturing method of transparent electrode
JP2001328198A (en) Laminated film and method of forming laminated film
JP2007250430A (en) Transparent conductive thin film and transparent conductive film using same
WO2007142330A1 (en) Transparent conductive film, process for production of the film, and sputtering target for use in the production of the film
US20110194181A1 (en) Film forming method for antireflection film, antireflection film, and film forming device
JP2004207383A (en) Electromagnetic shielding film
CN102636931A (en) Electro-chromic layer, coated element and preparation method of coated element
JP4078520B2 (en) Manufacturing method of filter with antireflection function for display device
JP2005019205A (en) Transparent conductive film and its manufacturing method
JPH08111123A (en) Transparent conductive film, producing method thereof and sputtering terget
WO2010004937A1 (en) Method for manufacture of touch panel, and film formation apparatus
JP3840735B2 (en) Manufacturing method of oxide film
JP6319302B2 (en) Transparent conductor and method for producing the same
JP2004277780A (en) Layered structure of silver alloy, and electrode, electric wiring, reflective film and reflective electrode using it
JP4168689B2 (en) Thin film laminate
WO2011019040A1 (en) Substrate having transparent conductive film attached thereto, and substrate for plasma display panel
JPH06136159A (en) Transparent conductive film and its production
JPH07178866A (en) Heat ray-blocking film and production thereof
JPH07249316A (en) Transparent conductive film and transparent substrate using the transparent conductive film
JP2007119303A (en) Low radiation laminate
JP2002343150A (en) Transparent electric conductive film and its manufacturing method
JP2001052529A (en) Transparent conductive thin film laminate
JPH0756131A (en) Production of transparent conductive film
KR20150080849A (en) Composite transparent electrodes
JPH06251632A (en) Transparent conductive film having high flexibility and manufacture thereof