JPH07249316A - Transparent conductive film and transparent substrate using the transparent conductive film - Google Patents

Transparent conductive film and transparent substrate using the transparent conductive film

Info

Publication number
JPH07249316A
JPH07249316A JP3996894A JP3996894A JPH07249316A JP H07249316 A JPH07249316 A JP H07249316A JP 3996894 A JP3996894 A JP 3996894A JP 3996894 A JP3996894 A JP 3996894A JP H07249316 A JPH07249316 A JP H07249316A
Authority
JP
Japan
Prior art keywords
film
transparent conductive
conductive film
oxide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3996894A
Other languages
Japanese (ja)
Inventor
Junichi Ebisawa
純一 海老沢
Kazuo Sato
一夫 佐藤
Akira Mitsui
彰 光井
Masami Miyazaki
正美 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP3996894A priority Critical patent/JPH07249316A/en
Publication of JPH07249316A publication Critical patent/JPH07249316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To coat a large surface area at high speed and prevent the deterioration of optical properties during heating treatment at high temperature in an oxidative atmosphere by setting the values of properties of a transparent conductive film consisting of zinc oxide as a main component. CONSTITUTION:A transparent substrate includes a transparent conductive film containing zinc oxide 2 as a main component. The transparent conductive film contains gallium at 0.1-15 atomic % of zinc and has a diffraction peak in an x-ray diffraction pattern by the (002) plane and the half-width of the diffraction line by the (002) plane is 1.2 or less. The specific resistance of the transparent conductive film is 10-2OMEGA'cm or less and the thickness of the film is within 10nm-5mum range. To make the appearance of the substrate good, at least one layer of an undercoat film 3 is formed between the transparent conductive film 2 and the substrate 4 or at least one layer of an overcoat film 1 is formed on the film 2 and the color tone of permeated or reflected light rays, and reflectance of visible light rays can be adjusted by utilizing the intefering phenomena of light and light absorption by the film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高性能を有する透明性
電導膜、および外観的な均一性や取り扱い性に優れた、
光学的選択透過性を有する透明部材に関する。
FIELD OF THE INVENTION The present invention provides a transparent conductive film having high performance and excellent appearance uniformity and handleability.
The present invention relates to a transparent member having optical selective transmission.

【0002】[0002]

【従来の技術】従来、光学的選択透過性を有する透明部
材としては、いくつかのタイプのものが知られている。
その一つに、暖房熱源や室温の物体からの輻射波長であ
る2μm以上の長波長の赤外線を特に有効に反射する、
いわゆるLow−Eと呼ばれるものがある。構成として
は、室外側から順に、ガラス、空気層、コート層を室外
側においたコートガラスの複層構成として、寒冷下で暖
房負荷を軽減するLow−E複層ガラスや、室外側から
順に、コート層を室内側においたコートガラス、空気
層、ガラスの複層構成として、温暖地で遮熱を目的に使
用されるサンベルトLow−Eが知られている。この範
疇の透明部材としては、透明基体上に、電導性の透明酸
化膜や膜厚約10nmの銀膜を含む積層膜をコートした
ものが知られている。
2. Description of the Related Art Heretofore, several types of transparent members having optical selective transmission have been known.
One of them is that it particularly effectively reflects infrared rays having a long wavelength of 2 μm or more, which is a radiation wavelength from a heating heat source or an object at room temperature,
There is a so-called Low-E. As the configuration, in order from the outdoor side, a glass, an air layer, a multi-layered configuration of a coated glass having a coat layer on the outdoor side, a Low-E multi-layer glass that reduces a heating load under cold weather, and an outdoor side in order, Sunbelt Low-E is known as a multi-layered structure of a coated glass, an air layer, and a glass in which a coating layer is placed on the indoor side, and which is used for the purpose of heat shield in a warm region. As a transparent member in this category, a transparent substrate coated with a laminated film including a conductive transparent oxide film and a silver film having a film thickness of about 10 nm is known.

【0003】透明電導性の酸化スズとしては、アンチモ
ンやフッ素をドーパントとして含むものが知られてお
り、これを用いた膜系が、スプレー法やCVD法により
工業的に生産されて、すでにLow−Eガラスとしても
上市されている。これらは機械的・化学的な耐久性に優
れるため、通常コートなしガラスと同様に扱うこともで
きる点は長所である。
As transparent conductive tin oxide, one containing antimony or fluorine as a dopant is known, and a film system using this is industrially produced by a spray method or a CVD method, and is already low- It is also marketed as E-glass. Since these have excellent mechanical and chemical durability, they can be handled in the same manner as uncoated glass, which is an advantage.

【0004】しかし、製法に由来する問題として、窓部
材で用いられるような大面積基板にコートする場合、面
内で膜厚や膜質がばらつき、光学的干渉条件のむらによ
る、外観的に干渉縞が発生してしまう点がある。対策と
して、干渉の不均一を打ち消すための層を用いた2層構
成で用いられるのが通常であるが、それでも完全に干渉
むらを解消するには至らず、外観的には次に述べるスパ
ッタ法による銀膜系にかなり劣る。
However, as a problem resulting from the manufacturing method, when a large area substrate such as that used for a window member is coated, the film thickness and the film quality vary within the surface, and interference fringes appear visually due to uneven optical interference conditions. There are points that will occur. As a countermeasure, it is usually used in a two-layer structure using a layer for canceling the non-uniformity of interference, but still it does not completely eliminate the interference unevenness, and the sputtering method described below in appearance is used. It is considerably inferior to the silver film type.

【0005】スパッタ法による銀膜を用いた膜系として
は、透明誘電体層/銀層/透明誘電体層の2層膜、ある
いはこれを繰り返し積層した5層膜以上のコート膜が知
られている。この銀系コート膜は、2μm以上の長波長
赤外線に対する反射率が非常に高く、Low−E性能の
点では前に挙げたなかで最も光学特性的に優れているも
のの一つである。またスパッタ法は大面積にわたって均
一なコートを行うのにきわめて適した方法であるので、
コート製品の面内で外観や特性のむらのない製品が安定
して得られる点も長所の一つである。しかし銀は、光学
的な選択反射性能の点では種々の金属材料のなかでも最
も優れる半面、耐久性の点では劣り、後工程で機械的な
傷がついたり、保管環境によっては腐食が発生して外観
に異常を生じるという問題がある。
As a film system using a silver film by the sputtering method, a two-layer film of transparent dielectric layer / silver layer / transparent dielectric layer or a coating film of five or more layers in which these layers are repeatedly laminated is known. There is. This silver-based coat film has a very high reflectance for long-wavelength infrared rays of 2 μm or more, and is one of the most excellent optical properties among the above mentioned in terms of Low-E performance. Also, since the sputtering method is a method that is extremely suitable for performing a uniform coating over a large area,
One of the advantages is that a coated product with stable appearance and characteristics can be obtained. However, silver is the best among various metallic materials in terms of optical selective reflection performance, but inferior in terms of durability because it is mechanically damaged in the post process and corrodes depending on the storage environment. There is a problem that the appearance becomes abnormal.

【0006】また透明電導膜としては、酸化スズドープ
酸化インジウム(ITO)がよく知られている。ITO
はスパッタ法、化学的気相成長法(CVD)、スプレー
法などで成膜できるが、いずれの方法を用いてもインジ
ウムが希少な金属の一つであるため、膜材料費が高く、
工業的に窓部材として成立させるのは難しい。
As a transparent conductive film, tin oxide-doped indium oxide (ITO) is well known. ITO
Can be deposited by a sputtering method, a chemical vapor deposition method (CVD), a spray method or the like. However, since indium is one of rare metals regardless of which method is used, the film material cost is high.
It is difficult to industrially establish it as a window member.

【0007】他の透明導電膜としては、アルミナなどを
ドープした酸化亜鉛が知られており、10-4Ω・cm台
とITO膜に匹敵する低い比抵抗が得られているが、L
ow−Eとして必要な低抵抗膜の成膜に際して、ターゲ
ット性状の経時変化の影響を受けやすく、また成膜後に
非酸化性雰囲気での熱処理が必要であり、成膜速度が
0.5nm/秒程度以下ときわめて小さいため生産速度
が遅いなど、工業的な生産に適用するには致命的な問題
があり、広く用いられるには至っていない。
As another transparent conductive film, zinc oxide doped with alumina or the like is known, and a low specific resistance comparable to that of an ITO film, which is on the order of 10 −4 Ω · cm, is obtained.
When a low resistance film required for ow-E is formed, it is easily affected by changes in target properties over time, and heat treatment in a non-oxidizing atmosphere is required after the film formation, and the film formation rate is 0.5 nm / sec. Since it is extremely small, such as below, the production speed is slow and there is a fatal problem in applying it to industrial production, and it has not been widely used.

【0008】他に、透明誘電体を積層して、光学干渉に
よって長波長の赤外線に対して選択反射特性を持たせた
干渉フィルタが知られているが、全体の膜厚が数百nm
と厚くなり、かつ各層の膜厚を±5%以下の精度で制御
しなければならないので、窓部材等の大面積製品に対し
て工業的に適用するのは不可能に近い。
In addition, there is known an interference filter in which a transparent dielectric material is laminated to have a selective reflection characteristic for infrared rays having a long wavelength by optical interference, but the total film thickness is several hundred nm.
Since it becomes thicker and the film thickness of each layer must be controlled with an accuracy of ± 5% or less, it is almost impossible to industrially apply to large area products such as window members.

【0009】[0009]

【発明が解決しようとする課題】本発明は、従来技術が
有していた前述の欠点を解消し、直流スパッタ法により
高速で大面積コートが可能で、しかも機械的・化学的な
耐久性が改善されて、さらに大気雰囲気等の酸化性雰囲
気での高温熱処理においても光学特性が劣化しない高品
位かつ低コストの、光学的選択反射特性膜、特にLow
−E膜として工業的に有用な膜の提供を目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks of the prior art, enables high-speed coating of a large area by the DC sputtering method, and has mechanical and chemical durability. A high-quality and low-cost optically selective reflection characteristic film, particularly Low, which is improved and does not deteriorate in optical characteristics even in high temperature heat treatment in an oxidizing atmosphere such as an air atmosphere.
-The purpose is to provide a film that is industrially useful as an E film.

【0010】[0010]

【課題を解決するための手段】本発明は前述の課題を解
決すべくなされたものであり、酸化亜鉛を主成分とする
透明導電膜であって、該透明導電膜は、ガリウムを亜鉛
に対して0.1〜15原子%含有し、そのX線回折パタ
ーンにおいて(002)面による回折ピークを有し、
(002)面による回折線の半値幅が1.2度以下であ
る透明導電膜において、該透明導電膜の比抵抗が10-2
Ω・cm以下で、膜厚が10nm〜5μmの範囲にある
ことを特徴とする透明導電膜を提供する。
The present invention has been made to solve the above-mentioned problems, and is a transparent conductive film containing zinc oxide as a main component, the transparent conductive film containing gallium against zinc. 0.1 to 15 atomic% and has a diffraction peak due to the (002) plane in its X-ray diffraction pattern,
In a transparent conductive film in which the half width of the diffraction line by the (002) plane is 1.2 degrees or less, the specific resistance of the transparent conductive film is 10 -2.
Provided is a transparent conductive film having a thickness of 10 nm to 5 μm in a range of Ω · cm or less.

【0011】本発明における透明導電膜は、ガリウムを
亜鉛に対して0.5〜12原子%含有し、そのX線回折
パターンにおいて(002)面による回折ピークを有
し、(002)面による回折線の半値幅が0.6度以下
であることが好ましい。
The transparent conductive film in the present invention contains gallium in an amount of 0.5 to 12 atom% with respect to zinc, has a diffraction peak due to the (002) plane in its X-ray diffraction pattern, and has a diffraction peak due to the (002) plane. The full width at half maximum of the line is preferably 0.6 degrees or less.

【0012】また、本発明における透明導電膜は、比抵
抗が10-2Ω・cm以下で、膜厚が80nm〜5μmの
範囲、好ましくは、100nm〜300nmの範囲にあ
ることが好ましい。
The transparent conductive film in the present invention has a specific resistance of 10 -2 Ω · cm or less and a film thickness of 80 nm to 5 μm, preferably 100 nm to 300 nm.

【0013】膜厚が5μm超であると成膜時間が長くな
り、コスト増加を招く。膜厚が80nm未満、あるい
は、比抵抗が10-2Ω・cm超であるとLow−E性能
が不十分となる。
If the film thickness is more than 5 μm, the film formation time becomes long and the cost increases. If the film thickness is less than 80 nm or the specific resistance is more than 10 -2 Ω · cm, the Low-E performance becomes insufficient.

【0014】本発明の透明導電膜(以下、単に導電膜と
もいう)には、Zn、Ga以外の金属元素が本発明の目
的を損わない範囲で含まれていても支障ないが、できる
限り少量にとどめることが望ましい。
There is no problem if the transparent conductive film of the present invention (hereinafter also simply referred to as a conductive film) contains a metal element other than Zn and Ga within a range not impairing the purpose of the present invention, but as far as possible. It is desirable to keep the amount small.

【0015】本発明の透明導電膜を形成する基体にはガ
ラス、プラスチックなどを使用できる。基体がソーダラ
イムガラスのように、その成分としてアルカリ金属を含
む場合には、製膜時あるいは熱処理時あるいは長期間使
用時に基体から導電膜へのアルカリ金属の拡散を防止す
るために、基体と導電膜の間にSi、Al、Zrなどの
金属の酸化物を主成分とする下地層を形成することがよ
り好ましい。
Glass, plastic or the like can be used for the substrate forming the transparent conductive film of the present invention. When the substrate contains an alkali metal as its component, such as soda lime glass, in order to prevent the diffusion of the alkali metal from the substrate to the conductive film during film formation, heat treatment, or long-term use, the conductivity of the substrate and the conductive It is more preferable to form a base layer containing an oxide of a metal such as Si, Al, or Zr as a main component between the films.

【0016】本発明の導電膜の形成方法は特に限定され
ず、スパッタ法、真空蒸着法などの物理蒸着法やCVD
法などの化学蒸着法が用いられ、より低温基板温度で良
好な導電膜特性が得られる物理蒸着法が好ましい。なか
でも結晶性を促進させるために有効な高密度プラズマを
活性化手段として用いたスパッタ法、高磁場を用いた低
電圧スパッタ法、および、プラズマ活性化真空蒸着法が
低抵抗で耐熱性に優れる膜を得るうえでより好ましい。
The method for forming the conductive film of the present invention is not particularly limited, and it is a physical vapor deposition method such as a sputtering method or a vacuum vapor deposition method, or CVD.
A chemical vapor deposition method such as a chemical vapor deposition method is used, and a physical vapor deposition method capable of obtaining good conductive film characteristics at a lower substrate temperature is preferable. Above all, the sputtering method using high-density plasma as an activation means effective for promoting crystallinity, the low-voltage sputtering method using a high magnetic field, and the plasma-activated vacuum deposition method have low resistance and excellent heat resistance. It is more preferable for obtaining a film.

【0017】スパッタ法で本発明の透明導電膜を形成す
る際には、ターゲットについて、単に酸化亜鉛中に酸化
ガリウムを所定量添加して焼結するだけでなく、好まし
くは1400℃以上の温度で2時間以上保持する処理を
行って、酸化ガリウムを酸化亜鉛中に充分固溶させる処
理を行ったものを用いることが好ましい。なお、実施例
ではスパッタ法として直流法を示しているが、これを高
周波法で行ってもよいことはいうまでもない。
When the transparent conductive film of the present invention is formed by the sputtering method, the target is not only added with a predetermined amount of gallium oxide in zinc oxide and then sintered, but preferably at a temperature of 1400 ° C. or higher. It is preferable to use a treatment in which gallium oxide is sufficiently dissolved in zinc oxide by performing a treatment for holding it for 2 hours or more. Although the direct current method is shown as the sputtering method in the embodiments, it goes without saying that this may be performed by a high frequency method.

【0018】本発明の導電膜は、たとえばマグネトロン
直流スパッタ法を用いて作製された場合、4nm/秒ま
での高速で製膜された場合も低抵抗かつ大気中での高耐
熱性が確保されるため、実用的な成膜速度で膜を成長で
きるという効果もあわせもつ。
The conductive film of the present invention has low resistance and high heat resistance in the atmosphere even when it is formed by a magnetron DC sputtering method, for example, even when it is formed at a high speed up to 4 nm / sec. Therefore, it also has the effect that the film can be grown at a practical film forming speed.

【0019】本発明の透明基体においては、外観を調整
する目的で、透明導電膜層と基体の間に1層以上のアン
ダーコート膜、あるいは透明導電膜層の上に、1層以上
のオーバーコート膜を設けて、光の干渉現象や膜の吸収
を利用して透過・反射色調や可視光線反射率の調整がで
きる。
In the transparent substrate of the present invention, one or more undercoat films are provided between the transparent conductive film layer and the substrate or one or more overcoat films are formed on the transparent conductive film layer for the purpose of adjusting the appearance. By providing a film, the transmission / reflection color tone and the visible light reflectance can be adjusted by utilizing the light interference phenomenon and the film absorption.

【0020】前記アンダーコート膜の少なくとも1層ま
たはオーバーコート膜の少なくとも1層の膜材料として
は、たとえば、酸化ケイ素、酸化チタン、酸化ジルコニ
ウム、酸化スズ、酸化タンタル、酸化クロム、酸化ニオ
ブ、酸化ホウ素、酸化インジウム、酸化亜鉛、および酸
化セリウムからなる群から選ばれる少なくとも1種な
ど、あるいは、チタン、ジルコニウム、ハフニウム、ク
ロム、ニオブの金属、前記金属の窒化物、および前記金
属の酸窒化物からなる群から選ばれる少なくとも1種な
どが挙げられる。
The film material of at least one layer of the undercoat film or at least one layer of the overcoat film is, for example, silicon oxide, titanium oxide, zirconium oxide, tin oxide, tantalum oxide, chromium oxide, niobium oxide or boron oxide. , At least one selected from the group consisting of indium oxide, zinc oxide, and cerium oxide, or a metal of titanium, zirconium, hafnium, chromium, or niobium, a nitride of the metal, and an oxynitride of the metal. At least one selected from the group can be used.

【0021】このアンダーコート膜やオーバーコート膜
は、光学特性を調整する以外の目的にも有効に用いるこ
とができる。たとえば、合わせ前のコート製品の取り扱
い性を向上させるために耐久性を付与する目的に対して
効果がある。また他の基体とともに合わせ構造に、ある
いは複層構造にしたりする際に、合わせ構造における中
間膜やスペーサ、組み付ける他の部品等との接着性を調
整する目的や、透明基体を形成した後に、ガラス基板の
強化や曲げなどの高温を要する工程に耐えるための耐熱
性を付与したり、高温下での使用に対する信頼性を高め
たりするなどの目的に対しても効果がある。
The undercoat film and the overcoat film can be effectively used for the purpose other than adjusting the optical characteristics. For example, it is effective for the purpose of imparting durability in order to improve the handleability of the coated product before the combination. In addition, when forming a laminated structure or a multi-layered structure together with another substrate, the purpose is to adjust the adhesiveness with the intermediate film or spacer in the laminated structure, other parts to be assembled, or after forming the transparent substrate, the glass It is also effective for the purpose of imparting heat resistance to withstand a process requiring high temperature such as strengthening and bending of the substrate, and improving reliability for use under high temperature.

【0022】本発明の透明基体は、もちろん透明電導膜
が形成された基体単独でも用いることができるが、基体
をプラスチック板やガラス板と接着したり、強化処理し
たり、複層化したりすることもできる。
The transparent substrate of the present invention can of course be used alone as a substrate having a transparent conductive film formed thereon, but the substrate may be adhered to a plastic plate or a glass plate, strengthened, or laminated. You can also

【0023】図2に本発明の透明基体の断面構成図を示
し、1はオーバーコート層、2はガリウムドープ酸化亜
鉛層、3はアンダーコート層、4は基体を表す。
FIG. 2 is a sectional view showing the structure of the transparent substrate of the present invention. 1 is an overcoat layer, 2 is a gallium-doped zinc oxide layer, 3 is an undercoat layer, and 4 is a substrate.

【0024】[0024]

【作用】発明者らはZnO透明導電膜中のGa濃度をG
a/Zn原子比で0.5〜12%に制御し、かつ膜の
(002)X線回折線の半値幅が0.6度以下になるよ
うに膜の結晶性を制御することにより、比抵抗値が2×
10-4Ω・cmとITOと同等に低いものが通常の基板
配置で高速で製造した場合でも容易に得られることを見
出した。さらにこれらの膜は500℃以上での大気中熱
処理の後に導電性の劣化はなく、酸化性雰囲気での耐熱
性にきわめて優れることを見出した。
The inventors have determined that the Ga concentration in the ZnO transparent conductive film is G
By controlling the a / Zn atomic ratio to 0.5 to 12% and controlling the crystallinity of the film so that the half-width of the (002) X-ray diffraction line of the film is 0.6 degrees or less, Resistance value is 2 ×
It has been found that a material as low as 10 −4 Ω · cm, which is as low as ITO, can be easily obtained even when it is manufactured at high speed with a normal substrate arrangement. Further, they have found that these films do not deteriorate in conductivity after heat treatment in the air at 500 ° C. or higher and have extremely excellent heat resistance in an oxidizing atmosphere.

【0025】ZnOに単にGaを添加すること自体はす
でに報告されている(J.Electrochem.Soc,127,1636(198
0) 、Jpn.J.Appl.Phys,24,L781(1985))。前者はZnに
対して1原子%のGaを添加した例であり、後者はZn
に対して1〜4原子%のGaを添加したスパッタ法によ
る例である。しかしいずれの場合も電気的、光学的特性
について添加膜と無添加膜との比較検討を行った報告例
であり、耐熱性に関する検討および記述は一切みられな
い。またそれらの膜の導電性は従来のAl添加膜に比べ
て劣るものである。
The simple addition of Ga to ZnO has already been reported (J. Electrochem. Soc, 127, 1636 (198).
0), Jpn.J.Appl.Phys, 24, L781 (1985)). The former is an example in which 1 atomic% of Ga is added to Zn, and the latter is Zn.
Is an example by a sputtering method in which 1 to 4 atomic% of Ga is added. However, in all cases, these are reported examples of comparative examinations of the added film and the non-added film with respect to electrical and optical characteristics, and no examination or description regarding heat resistance is found. Moreover, the conductivity of these films is inferior to that of the conventional Al-added film.

【0026】一方、本発明はGa添加量と膜の結晶性を
制御することにより、電気特性の大幅な向上とともに大
気中での耐熱性を著しく向上させることができる。すな
わち耐熱性はGaを含むだけでは発現せず、Gaをある
特定の範囲の量含み、かつX線回折の半値幅の値が特定
の値以下である場合のみに現れることがわかった。
On the other hand, according to the present invention, by controlling the added amount of Ga and the crystallinity of the film, it is possible to greatly improve the electric characteristics and the heat resistance in the atmosphere. That is, it was found that the heat resistance does not appear only when Ga is contained, but it appears only when Ga is contained in an amount within a specific range and the half-value width of X-ray diffraction is not more than the specific value.

【0027】一般に、ZnOに周期律表第3族の金属を
添加すると電子密度が増加するために導電性が増加する
ことはよく知られている。これは3族すなわち3価の金
属が、2価のZnの位置に置換することにより、浅い電
気的ドナーを形成し自由電子を生成するためと考えられ
ている。また同時に過剰Znが格子間位置に生成するこ
とや酸素欠陥の生成によってもドナー形成による電子密
度の増加は説明できる。実際の膜ではこれらが混在した
状態になっているものと推定される。3族元素とZnの
イオン半径は同一ではないため置換した場合でも結晶格
子歪が生じることが考えられる。
In general, it is well known that the addition of a metal of Group 3 of the periodic table to ZnO increases the electron density and thus the conductivity. It is considered that this is because the group 3 or trivalent metal substitutes at the position of divalent Zn to form a shallow electric donor and generate a free electron. At the same time, an increase in electron density due to donor formation can also be explained by the generation of excess Zn at interstitial sites and the generation of oxygen defects. It is presumed that these are mixed in the actual film. Since the ionic radii of the Group 3 element and Zn are not the same, it is conceivable that crystal lattice distortion will occur even when they are replaced.

【0028】また3族元素はすべて置換可能なわけでは
なく、一部は結晶格子間または粒界等に析出していると
考えられる。なぜならば膜中から検出される3族元素の
量は、電子密度から理論的に算出される量より約1桁も
多いからである。これらの余剰な元素は格子歪を引き起
こすため、酸素空孔等の生成を引き起こすことが予想さ
れる。酸素空孔等の欠陥は高温の酸素雰囲気下で熱処理
すると減少し、同時に空孔により発生する電子密度も減
少するため抵抗増加が生じると解釈される。
It is considered that not all the Group 3 elements can be replaced, but some of them are precipitated between crystal lattices or at grain boundaries. This is because the amount of the Group 3 element detected in the film is larger by about one digit than the amount theoretically calculated from the electron density. Since these excess elements cause lattice distortion, it is expected that oxygen vacancies will be generated. It is considered that defects such as oxygen vacancies are reduced by heat treatment in a high-temperature oxygen atmosphere, and at the same time, the electron density generated by the vacancies is also reduced, resulting in an increase in resistance.

【0029】実際、Ga以外のAl、In、Bの3族元
素を添加したZnO膜は非酸化性雰囲気での耐熱性には
優れるが、大気中等の酸化性雰囲気での耐熱性はきわめ
て悪い。本発明者らはX線回折により膜の組成と結晶性
および大気中での熱的安定性の関係を詳細に調べた結
果、その添加元素が単に3族元素ではなくGaであり、
しかもその添加量がある特定の範囲であり、加えて膜の
X線回折の半値幅がある値以下の場合に限り大気中での
耐熱性に富む膜が得られることを見出した。
In fact, a ZnO film containing a group 3 element of Al, In, and B other than Ga has excellent heat resistance in a non-oxidizing atmosphere, but has extremely poor heat resistance in an oxidizing atmosphere such as the air. As a result of detailed examination of the relationship between the composition and crystallinity of the film and the thermal stability in the atmosphere by X-ray diffraction, the present inventors have found that the additive element is Ga, not simply the Group 3 element,
Moreover, it has been found that a film having a high heat resistance in the atmosphere can be obtained only when the added amount is within a specific range and in addition, the half width of the X-ray diffraction of the film is less than a certain value.

【0030】添加元素がAl、B、Inの場合とGaの
場合で大気中での耐熱性が異なる原因としてはイオン半
径の差が考えられる。すなわちAl、Bのイオン半径は
それぞれZnに比べて小さすぎ、逆にInは大きすぎ
る。Gaのイオン半径はZnのそれに最も近いため置換
した場合の格子歪は最も小さくなると考えられる。低抵
抗膜を得るためにはAl、B、Inを多量に添加する必
要があるが、この場合歪が増加し、酸素空孔が生成する
と考えられる。この欠陥は酸化性雰囲気中での高温熱処
理により容易に減少し、同時に欠陥により発生した自由
電子も減少するため、抵抗増加が起ると考えられる。
The difference in ionic radius is considered to be the cause of the difference in heat resistance in the atmosphere when the additive element is Al, B, In and Ga. That is, the ionic radii of Al and B are too small compared with Zn, respectively, and conversely In is too large. Since the ionic radius of Ga is the closest to that of Zn, it is considered that the lattice strain in the case of substitution is the smallest. In order to obtain a low resistance film, it is necessary to add a large amount of Al, B and In. In this case, it is considered that the strain increases and oxygen vacancies are generated. It is considered that this defect is easily reduced by high-temperature heat treatment in an oxidizing atmosphere, and at the same time, the number of free electrons generated by the defect is also reduced, so that the resistance is increased.

【0031】これに対してGa添加膜の場合、Gaの多
量添加によっても格子歪、酸素欠陥が生じにくいため酸
化性雰囲気での耐熱性も向上すると考えられる。Ga添
加の場合も耐熱性は膜の結晶性に強く依存することがわ
かり、結晶性のよい膜、すなわちX線回折線の半値幅が
ある値以下の場合、酸化性雰囲気での耐熱性が著しく向
上することがわかった。
On the other hand, in the case of a Ga-added film, it is considered that even if a large amount of Ga is added, lattice strain and oxygen defects are less likely to occur, so that the heat resistance in an oxidizing atmosphere is also improved. It was found that the heat resistance also strongly depends on the crystallinity of the film even when Ga is added, and when the film has good crystallinity, that is, when the half width of the X-ray diffraction line is less than a certain value, the heat resistance in an oxidizing atmosphere is remarkably high. It turned out to improve.

【0032】[0032]

【実施例】【Example】

[実施例1〜6]充分に洗浄したガラス基板(5cm×
5cm×1mm)上に直流マグネトロンスパッタ法によ
り、ZnO中に酸化ガリウム(Ga23 )を添加した
種々のターゲット(Ga/Zn比が0.3〜15原子
%)を用いてAr雰囲気中で、膜厚が80nm〜100
0nmのZnO透明導電膜を形成した。このとき用いた
ターゲットは、ZnO中に酸化ガリウムを添加した後、
1400℃以上の温度で2時間以上保持して、酸化ガリ
ウムをZnO中に充分固溶させた直径3インチのターゲ
ットである。
[Examples 1 to 6] A glass substrate (5 cm x
5 cm × 1 mm) by direct current magnetron sputtering using various targets (Ga / Zn ratio of 0.3 to 15 atom%) in which gallium oxide (Ga 2 O 3 ) is added to ZnO in an Ar atmosphere. , The film thickness is 80 nm to 100
A 0 nm ZnO transparent conductive film was formed. The target used at this time is, after adding gallium oxide into ZnO,
It is a target having a diameter of 3 inches in which gallium oxide is sufficiently dissolved in ZnO by holding it at a temperature of 1400 ° C. or more for 2 hours or more.

【0033】真空装置はあらかじめ10-6Torr以下
に排気した後、Arガスを0.01Torr導入してス
パッタを行った。基板温度は室温から300℃の範囲に
設定した。スパッタパワーは50Wを標準条件とした
が、高速製膜の例として400Wまで変化させた。
The vacuum apparatus was evacuated to 10 -6 Torr or less in advance, and then Ar gas was introduced at 0.01 Torr for sputtering. The substrate temperature was set in the range of room temperature to 300 ° C. The sputtering power was set to 50 W as a standard condition, but was changed to 400 W as an example of high speed film formation.

【0034】作製した膜中のGa含有量はZnO膜を塩
酸の2規定溶液中に溶解した後、ICP発光分析法によ
り定量分析して求めた。Ga含有量はZnに対する原子
%で表した。また比抵抗は4探針法により求めたシート
抵抗と、触針式膜厚計により測定した膜厚から算出し
た。
The Ga content in the produced film was determined by dissolving the ZnO film in a 2N solution of hydrochloric acid and then quantitatively analyzing it by ICP emission spectrometry. The Ga content is expressed in atomic% based on Zn. The specific resistance was calculated from the sheet resistance obtained by the 4-probe method and the film thickness measured by a stylus type film thickness meter.

【0035】導電膜のX線回折はCuのKα線を使用
し、比例係数管を用いたレートメータにて測定した。X
線回折の測定例を図1に示す。これは後述するようにG
aを添加したZnO膜の実施例3について(002)X
線回折ピークを拡大したものである。図に示すように、
(002)ピークの最大強度の1/2の強度となる回折
線の線幅(度で表す)を半値幅(半価幅)と呼ぶが、図
1の実施例3の場合、半値幅は0.28度である。
The X-ray diffraction of the conductive film was performed by using a Kα ray of Cu and using a rate meter using a proportional coefficient tube. X
An example of measurement of line diffraction is shown in FIG. This is G as described later
Regarding Example 3 of ZnO film to which a is added (002) X
It is an enlarged view of the line diffraction peak. As shown in the figure,
The line width (expressed in degrees) of the diffraction line having an intensity half the maximum intensity of the (002) peak is called a half-value width (half-value width). In the case of Example 3 in FIG. 1, the half-value width is 0. .28 degrees.

【0036】光学的性質としては透過率、反射率および
放射率について積分球を用いた分光器により測定した。
これらの導電膜について表1に示す条件で大気中熱処理
試験を行った。表2に大気中熱処理試験(500℃、1
0分)の前(上段)と後(下段)の特性を測定した結果
を示す。
As the optical properties, the transmittance, reflectance and emissivity were measured by a spectroscope using an integrating sphere.
These conductive films were subjected to a heat treatment test in air under the conditions shown in Table 1. Table 2 shows the heat treatment test in air (500 ° C, 1
The results of measuring the characteristics before (upper) and after (lower) 0 minutes) are shown.

【0037】表2に示す実施例1〜6はGa添加量が
0.5〜12原子%であり、かつ(002)X線回折線
の半値幅が0.6度以下の場合の膜についての耐熱性試
験結果である。実施例3の膜のX線回折線の半値幅は図
1に示すように0.28度であった。これらの膜は成膜
時において0.40以下と低い放射率を示すとともに、
500℃、10分間の大気中熱処理後にも放射率は低下
せず、同等であるかまたは逆に向上している。
Examples 1 to 6 shown in Table 2 relate to the films when the Ga addition amount is 0.5 to 12 atomic% and the half width of the (002) X-ray diffraction line is 0.6 degrees or less. It is a heat resistance test result. The full width at half maximum of the X-ray diffraction line of the film of Example 3 was 0.28 degrees as shown in FIG. These films have a low emissivity of 0.40 or less when formed, and
The emissivity does not decrease even after heat treatment in the atmosphere at 500 ° C. for 10 minutes, and the emissivity is equivalent or improved on the contrary.

【0038】透過率の変化はみられず大気中熱処理に対
して安定な膜であることがわかった。特に注目すべきは
実施例4に示される高速製膜の例であり、4nm/秒と
いう高速で製膜された場合にも半値幅が0.45度と小
さい膜は製膜直後にも0.32と低放射率であり、かつ
大気中熱処理後も安定であることがわかった。代表的な
測定例として実施例3の膜(膜厚:200nm)の分光
特性を図3に示す。
No change in transmittance was observed, and it was found that the film was stable against heat treatment in the atmosphere. Particularly noteworthy is the example of high-speed film formation shown in Example 4, and even when a film is formed at a high speed of 4 nm / sec, a film having a half width of 0.45 degrees and a small half value width of 0. It was found that it had a low emissivity of 32 and was stable even after heat treatment in the atmosphere. As a typical measurement example, the spectral characteristics of the film of Example 3 (film thickness: 200 nm) are shown in FIG.

【0039】[実施例7、比較例1〜4]各種Low−
Eとして、本発明に係る酸化ガリウムドープ酸化亜鉛膜
を用いた例(実施例7)と、他のドーパントを用いた透
明導電性酸化亜鉛膜や他の透明導電膜を用いた例(比較
例1〜4)とについて、その結果を表3に示す。
[Example 7, Comparative Examples 1 to 4] Various Low-
As E, an example using the gallium oxide-doped zinc oxide film according to the present invention (Example 7) and an example using a transparent conductive zinc oxide film using another dopant or another transparent conductive film (Comparative Example 1) The results are shown in Table 3.

【0040】比較例1は酸化スズドープ酸化インジウム
を用いた例で、この場合、純Ar雰囲気でスパッタ成膜
すると得られた膜は微吸収を呈するため、スパッタ雰囲
気中に微量の酸素を導入する必要がある。ところが、膜
の特性はスパッタ雰囲気中の酸素濃度やガス圧力に敏感
に依存するため、得られた膜は比抵抗の不均一が生じ
て、Low−E性能も面内分布を持つ。
Comparative Example 1 is an example using tin oxide-doped indium oxide. In this case, since a film obtained by sputter deposition in a pure Ar atmosphere exhibits slight absorption, it is necessary to introduce a small amount of oxygen into the sputtering atmosphere. There is. However, since the characteristics of the film sensitively depend on the oxygen concentration and gas pressure in the sputtering atmosphere, the obtained film has non-uniform specific resistance, and the Low-E performance also has an in-plane distribution.

【0041】比較例2は酸化アルミニウムドープ酸化亜
鉛を用いた例で、ターゲット性状の経時変化の影響を受
けやすく、膜特性が変動しやすかったり、成膜速度が
0.5nm/秒以下と著しく低い欠点がある。
Comparative Example 2 is an example using aluminum oxide-doped zinc oxide, which is easily affected by the change in target properties over time, the film characteristics are likely to change, and the film forming rate is extremely low at 0.5 nm / sec or less. There are drawbacks.

【0042】比較例3は酸化アンチモンドープ酸化スズ
を用いた例で、スパッタ法で低抵抗膜を得る条件幅が狭
く、極端に低い成膜速度でしか、必要な特性をもつ膜を
得ることができない。
Comparative Example 3 is an example using antimony oxide-doped tin oxide, and the range of conditions for obtaining a low resistance film by the sputtering method is narrow, and a film having the required characteristics can be obtained only at an extremely low film forming rate. Can not.

【0043】比較例4はスプレー(熱分解)法によるフ
ッ素ドープ酸化スズを用いた例で、成膜法の宿命で面内
に比抵抗および膜厚の不均一を完全になくすのは非常に
困難で、通常、±10%の膜厚分布が生じてしまう。そ
の結果、通常用いる1000〜200nmの膜厚で、膜
厚むらに対応した縞状の干渉色むらを呈して、外観が見
苦しく、商品価値を著しく下げる。
Comparative Example 4 is an example of using fluorine-doped tin oxide by a spray (pyrolysis) method, and it is very difficult to completely eliminate in-plane non-uniformity of resistivity and film thickness due to the fate of the film forming method. Therefore, a film thickness distribution of ± 10% usually occurs. As a result, in a commonly used film thickness of 1000 to 200 nm, a striped interference color unevenness corresponding to the film thickness unevenness is exhibited, the appearance is unsightly, and the commercial value is remarkably reduced.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】[0047]

【発明の効果】表2からわかるように、Ga濃度がGa
/Zn原子比で0.5〜12原子%の膜は、成膜時にお
いて10-3Ω・cmから10-4Ω・cm台の高い導電性
を示すとともに、良好なLow−E特性を示す。またこ
れらの膜は、大気中熱処理後でも導電性およびLow−
E特性は低下せず、同等であるかまたは逆に向上する。
透過率についても変化はみられず高温大気中で安定な膜
であることがわかる。
As can be seen from Table 2, the Ga concentration is Ga
A film having an atomic ratio of Zn / Zn of 0.5 to 12 atomic% exhibits high conductivity of the order of 10 −3 Ω · cm to 10 −4 Ω · cm at the time of film formation, and also exhibits good Low-E characteristics. . In addition, these films have a low conductivity and a low conductivity even after heat treatment in the atmosphere.
The E-characteristics do not deteriorate and are equivalent or, on the contrary, improved.
There is no change in the transmittance, indicating that the film is stable in the high temperature atmosphere.

【0048】本発明による、酸化ガリウムドープ酸化亜
鉛層を選択的光学反射層に用いた透明基体は、薄い銀層
等の金属薄層を用いた選択的光学反射体の膜系と比べ
て、複層化や合わせ化の工程前の取り扱い性や、使用時
の長期信頼性や環境からのアタックに対する安定性など
において優れる。
The transparent substrate according to the present invention in which the gallium oxide-doped zinc oxide layer is used as the selective optical reflection layer is more complex than the film system of the selective optical reflector using a thin metal layer such as a thin silver layer. Excellent in handling before layering and layering, long-term reliability during use, and stability against environmental attack.

【0049】また、大面積基板に均一な膜厚・膜質分布
で成膜が可能な直流スパッタ法で成膜ができるため、た
とえば1m幅以上の大面積が必要な、たとえばLow−
E性能を有する窓部材や自動車のフロントガラスや電車
車両や航空機などの窓、さらに店舗などの冷凍ショーケ
ースなどの防曇用途などに応用できる。また小サイズの
基板を並べて複数枚同時に成膜できるので、生産効率も
優れる。
Since a film can be formed on a large-area substrate with a uniform film thickness and film quality distribution by the DC sputtering method, a large area of, for example, 1 m width or more is required.
It can be applied to window members with E performance, windshields of automobiles, windows of train cars and aircraft, and anti-fog applications such as frozen showcases in stores. Further, since a plurality of small-sized substrates can be arranged side by side to form a film simultaneously, the production efficiency is excellent.

【0050】また酸化ガリウムドープ酸化亜鉛層に対す
るオーバーコート層もしくはアンダーコート層のうち、
1層以上を、たとえば窒化チタン、窒化ジルコニウム、
窒化ハフニウム、窒化クロムなどの窒化物や金、白金な
どの貴金属などをはじめとする熱線や可視光線を吸収・
反射する材料群から選ばれる材料で構成することによ
り、本発明のコートされた透明基体に対して熱線反射性
能を持たせたり、可視光線透過率を基体よりも低い値に
調整することもできる。
Of the overcoat layer or undercoat layer for the gallium oxide-doped zinc oxide layer,
One or more layers, for example titanium nitride, zirconium nitride,
Absorbs heat rays and visible light such as nitrides such as hafnium nitride and chromium nitride, and precious metals such as gold and platinum.
By using a material selected from the group of reflective materials, the coated transparent substrate of the present invention can be provided with heat ray reflection performance and the visible light transmittance can be adjusted to a value lower than that of the substrate.

【0051】また、オーバーコート層とアンダーコート
層の両方もしくは一方を用いて、その膜材料と膜厚を調
整することにより光学干渉条件を調整して、本発明のコ
ートされた透明基体に対して、反射率や透過や反射の色
調を調整することもできる。これによりたとえば可視域
での反射率を下げ、ぎらぎらした外観にならないように
したり、好みの反射色調を得たりすることができる。
Further, the optical interference condition is adjusted by adjusting the film material and the film thickness of both or one of the overcoat layer and the undercoat layer, and with respect to the coated transparent substrate of the present invention. It is also possible to adjust the reflectance and the color tone of transmission and reflection. As a result, for example, the reflectance in the visible range can be lowered so as not to give a dazzling appearance, or a desired reflection color tone can be obtained.

【0052】以上示したようにGa濃度とX線回折線の
半値幅をある特定の範囲に制御することにより、導電
性、透過率の高い透明導電膜が実現できることに加え
て、大気中熱処理によっても導電性が全く損われない、
耐酸化性透明導電膜を得ることができる。したがって、
これらの基板は高透明性、低抵抗、大気中耐熱性、低コ
ストの各要素を供えているため、各種表示素子や太陽電
池および受光素子などの透明電極、建築用および自動車
用の熱線反射膜、選択透過膜、および電磁波遮蔽膜、さ
らに、自動車の防曇、防水用や冷凍ショーケースなどや
その他の建築用の透明基体、あるいはフォトマスクや建
築用などの帯電防止膜、などとして最適なものとなり、
きわめて広範囲な分野への応用が可能となる。
As described above, by controlling the Ga concentration and the half-width of the X-ray diffraction line within a specific range, a transparent conductive film having high conductivity and high transmittance can be realized. The conductivity is not lost at all,
An oxidation resistant transparent conductive film can be obtained. Therefore,
Since these substrates are provided with the elements of high transparency, low resistance, heat resistance in the air, and low cost, they are used as transparent electrodes for various display elements, solar cells and light receiving elements, heat ray reflective films for construction and automobiles. Optimum as a selective transmission film, an electromagnetic wave shielding film, a transparent base for automobiles such as anti-fogging and waterproofing, waterproofing showcases and other constructions, or an antistatic film for photomasks and constructions, etc. Next to
It can be applied to a very wide range of fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例3の透明導電膜の(002)X線回折線
半値幅を示すグラフ
FIG. 1 is a graph showing the full width at half maximum of a (002) X-ray diffraction line of a transparent conductive film of Example 3.

【図2】本発明の透明基体の断面構成図FIG. 2 is a sectional configuration diagram of a transparent substrate of the present invention.

【図3】実施例3の透明導電膜の分光特性を示すグラフFIG. 3 is a graph showing spectral characteristics of the transparent conductive film of Example 3.

【符号の説明】[Explanation of symbols]

1:オーバーコート層 2:ガリウムドープ酸化亜鉛層 3:アンダーコート層 4:基体 1: Overcoat layer 2: Gallium-doped zinc oxide layer 3: Undercoat layer 4: Substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮崎 正美 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masami Miyazaki 1150 Hazawa-machi, Kanagawa-ku, Yokohama, Kanagawa Prefecture Asahi Glass Co., Ltd. Central Research Laboratory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】酸化亜鉛を主成分とする透明導電膜であっ
て、該透明導電膜は、ガリウムを亜鉛に対して0.1〜
15原子%含有し、そのX線回折パターンにおいて(0
02)面による回折ピークを有し、(002)面による
回折線の半値幅が1.2度以下であり、かつ、該透明導
電膜の比抵抗が10-2Ω・cm以下で、膜厚が80nm
〜5μmの範囲にあることを特徴とする透明導電膜。
1. A transparent conductive film containing zinc oxide as a main component, wherein the transparent conductive film contains gallium in an amount of 0.1 to 0.1.
It contains 15 atomic% and has an X-ray diffraction pattern of (0
The film has a diffraction peak of the (02) plane, a half-value width of the diffraction line of the (002) plane of 1.2 degrees or less, and a specific resistance of the transparent conductive film of 10 -2 Ω · cm or less. Is 80 nm
A transparent conductive film having a thickness of ˜5 μm.
【請求項2】前記透明導電膜は、ガリウムを亜鉛に対し
て0.5〜12原子%含有し、そのX線回折パターンに
おいて(002)面による回折ピークを有し、(00
2)面による回折線の半値幅が0.6度以下であること
を特徴とする請求項1の透明導電膜。
2. The transparent conductive film contains gallium in an amount of 0.5 to 12 atom% with respect to zinc, and has an X-ray diffraction pattern having a diffraction peak due to a (002) plane,
2. The transparent conductive film according to claim 1, wherein the half width of the diffraction line by the plane 2) is 0.6 degree or less.
【請求項3】基体上に、請求項1または2の透明導電膜
を有することを特徴とする透明基体。
3. A transparent substrate comprising the transparent conductive film according to claim 1 or 2 on the substrate.
【請求項4】前記基体と前記透明導電膜との間に1層以
上のアンダーコート膜および/または前記透明導電膜上
に1層以上のオーバーコート膜を有することを特徴とす
る請求項3の透明基体。
4. The undercoat film of one or more layers between the substrate and the transparent conductive film and / or the overcoat film of one or more layers on the transparent conductive film. Transparent substrate.
【請求項5】前記アンダーコート膜の少なくとも1層ま
たは前記オーバーコート膜の少なくとも1層の膜材料
は、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化
スズ、酸化タンタル、酸化クロム、酸化ニオブ、酸化ホ
ウ素、酸化インジウム、酸化亜鉛、および酸化セリウム
からなる群から選ばれる少なくとも1種からなることを
特徴とする請求項4の透明基体。
5. The film material of at least one layer of the undercoat film or at least one layer of the overcoat film is silicon oxide, titanium oxide, zirconium oxide, tin oxide, tantalum oxide, chromium oxide, niobium oxide, boron oxide. 5. The transparent substrate according to claim 4, comprising at least one selected from the group consisting of, indium oxide, zinc oxide, and cerium oxide.
【請求項6】前記アンダーコート膜の少なくとも1層ま
たは前記オーバーコート膜の少なくとも1層の膜材料
は、チタン、ジルコニウム、ハフニウム、クロム、ニオ
ブの金属、前記金属の窒化物、および前記金属の酸窒化
物からなる群から選ばれる少なくとも1種からなること
を特徴とする請求項4の透明基体。
6. The film material of at least one layer of the undercoat film or at least one layer of the overcoat film is a metal of titanium, zirconium, hafnium, chromium, niobium, a nitride of the metal, or an acid of the metal. The transparent substrate according to claim 4, comprising at least one selected from the group consisting of nitrides.
【請求項7】請求項3〜6いずれか1項の透明基体を有
することを特徴とする合わせ構造体または複層構造体。
7. A laminated structure or a multi-layer structure comprising the transparent substrate according to any one of claims 3 to 6.
JP3996894A 1994-03-10 1994-03-10 Transparent conductive film and transparent substrate using the transparent conductive film Pending JPH07249316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3996894A JPH07249316A (en) 1994-03-10 1994-03-10 Transparent conductive film and transparent substrate using the transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3996894A JPH07249316A (en) 1994-03-10 1994-03-10 Transparent conductive film and transparent substrate using the transparent conductive film

Publications (1)

Publication Number Publication Date
JPH07249316A true JPH07249316A (en) 1995-09-26

Family

ID=12567762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3996894A Pending JPH07249316A (en) 1994-03-10 1994-03-10 Transparent conductive film and transparent substrate using the transparent conductive film

Country Status (1)

Country Link
JP (1) JPH07249316A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109406A (en) * 2005-10-11 2007-04-26 Kochi Univ Of Technology Substrate with zinc oxide-based transparent conductive film for touch panel
WO2007148773A1 (en) * 2006-06-22 2007-12-27 Mitsubishi Paper Mills Limited Method for producing conductive material
JP2008004375A (en) * 2006-06-22 2008-01-10 Mitsubishi Paper Mills Ltd Conductive member, and its developing method
JP2008049518A (en) * 2006-08-23 2008-03-06 Toppan Printing Co Ltd Transparent conductive laminate
JP2008066699A (en) * 2006-08-10 2008-03-21 Kochi Univ Of Technology Transparent electromagnetic shielding film
US7396580B2 (en) 2002-02-26 2008-07-08 Fujikura Ltd. Substrate for transparent electrodes
WO2009031399A1 (en) * 2007-09-05 2009-03-12 Murata Manufacturing Co., Ltd. Transparent conductive film and method for producing transparent conductive film
JP2010519720A (en) * 2007-02-26 2010-06-03 エルジー・ケム・リミテッド Conductive laminate and manufacturing method thereof
JP4517255B2 (en) * 2000-03-31 2010-08-04 東洋紡績株式会社 Transparent conductive film for touch panel, transparent conductive sheet for touch panel, and touch panel
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
US8895427B2 (en) 2008-09-04 2014-11-25 Kaneka Corporation Substrate having a transparent electrode and method for producing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4517255B2 (en) * 2000-03-31 2010-08-04 東洋紡績株式会社 Transparent conductive film for touch panel, transparent conductive sheet for touch panel, and touch panel
US7396580B2 (en) 2002-02-26 2008-07-08 Fujikura Ltd. Substrate for transparent electrodes
US8133807B2 (en) 2002-02-26 2012-03-13 Fujikura Ltd. Substrate for transparent electrodes
JP2007109406A (en) * 2005-10-11 2007-04-26 Kochi Univ Of Technology Substrate with zinc oxide-based transparent conductive film for touch panel
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
US8012676B2 (en) 2006-06-22 2011-09-06 Mitsubishi Paper Mills Limited Process for preparing conductive material
WO2007148773A1 (en) * 2006-06-22 2007-12-27 Mitsubishi Paper Mills Limited Method for producing conductive material
JP2008004375A (en) * 2006-06-22 2008-01-10 Mitsubishi Paper Mills Ltd Conductive member, and its developing method
JP2008066699A (en) * 2006-08-10 2008-03-21 Kochi Univ Of Technology Transparent electromagnetic shielding film
JP2008049518A (en) * 2006-08-23 2008-03-06 Toppan Printing Co Ltd Transparent conductive laminate
JP2010519720A (en) * 2007-02-26 2010-06-03 エルジー・ケム・リミテッド Conductive laminate and manufacturing method thereof
WO2009031399A1 (en) * 2007-09-05 2009-03-12 Murata Manufacturing Co., Ltd. Transparent conductive film and method for producing transparent conductive film
JPWO2009031399A1 (en) * 2007-09-05 2010-12-09 株式会社村田製作所 Transparent conductive film and method for producing transparent conductive film
JP5040991B2 (en) * 2007-09-05 2012-10-03 株式会社村田製作所 Transparent conductive film and method for producing transparent conductive film
US8895427B2 (en) 2008-09-04 2014-11-25 Kaneka Corporation Substrate having a transparent electrode and method for producing the same

Similar Documents

Publication Publication Date Title
CA1335887C (en) Neutral sputtered films of metal alloy oxides
EP0622645B1 (en) Thin film coated filter and method of manufacture
US5413864A (en) Low emissivity film
US4610771A (en) Sputtered films of metal alloy oxides and method of preparation thereof
US4861669A (en) Sputtered titanium oxynitride films
KR920001387B1 (en) Low emissivity film for automotive heat load reduction
FI90050C (en) Product with high permeability and low emission capacity and process for its production
EP0343695B1 (en) Sputtered films for metal alloy oxides
US4948677A (en) High transmittance, low emissivity article and method of preparation
US6352755B1 (en) Alkali metal diffusion barrier layer
JP4836376B2 (en) Protective layer for sputter coated articles
JP3453805B2 (en) Transparent conductive film
JPH02217339A (en) Transparent electrically conductive glass
EP1430332B1 (en) Optical coatings and associated methods
KR101302259B1 (en) Low Emissivity Glass Having Improved Durability
US10745798B2 (en) Coated article with low-E coating having IR reflecting system with silver and zinc based barrier layer(s)
JP2003034828A (en) Ag ALLOY FILM FOR SHIELDING ELECTROMAGNETIC WAVE, BODY HAVING Ag ALLOY FILM FOR SHIELDING ELECTROMAGNETIC WAVE, AND SPUTTERING TARGET OF Ag ALLOY FOR SHIELDING ELECTROMAGNETIC WAVE
JP2020510591A (en) Coated article having a LOW-E coating with a doped silver IR reflective layer
JPH07249316A (en) Transparent conductive film and transparent substrate using the transparent conductive film
US4806221A (en) Sputtered films of bismuth/tin oxide
JPH08111123A (en) Transparent conductive film, producing method thereof and sputtering terget
KR100187963B1 (en) A low emissivity film
EP0705801B1 (en) Alkali metal diffusion barrier layer
US5178966A (en) Composite with sputtered films of bismuth/tin oxide
CN112225469A (en) Single-silver low-emissivity glass and preparation method thereof