JP3453805B2 - Transparent conductive film - Google Patents

Transparent conductive film

Info

Publication number
JP3453805B2
JP3453805B2 JP22467393A JP22467393A JP3453805B2 JP 3453805 B2 JP3453805 B2 JP 3453805B2 JP 22467393 A JP22467393 A JP 22467393A JP 22467393 A JP22467393 A JP 22467393A JP 3453805 B2 JP3453805 B2 JP 3453805B2
Authority
JP
Japan
Prior art keywords
film
oxide
conductive film
transparent conductive
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22467393A
Other languages
Japanese (ja)
Other versions
JPH06187833A (en
Inventor
純一 海老沢
一夫 佐藤
彰 光井
邦彦 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP22467393A priority Critical patent/JP3453805B2/en
Publication of JPH06187833A publication Critical patent/JPH06187833A/en
Application granted granted Critical
Publication of JP3453805B2 publication Critical patent/JP3453805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Liquid Crystal (AREA)
  • Surface Heating Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高性能を有する透明
膜、特に液晶表示素子、プラズマ発光素子等の表示用
透明電極太陽電池用透明電極、熱線反射膜、または
明発熱体用電極として有用な透明導電膜および該透明導
電膜を有する透明発熱体に関する。
The present invention relates to a transparent conductor having high performance.
Conductive film, particularly a liquid crystal display device, a plasma display transparent electrodes such as a light emitting element, a transparent electrode for a solar cell, the heat-ray reflection film or translucent <br/> useful magnetic Akirashirube film and said as a light heating element electrodes, about the transparent heating element which is transmissive Akirashirube <br/> conductive film.

【0002】[0002]

【従来の技術】透明導電膜は可視光域で高い透過率と高
い導電性を併有し、液晶表示素子、プラズマ発光素子、
EL(エレクトロ・ルミネッセンス)素子等の表示素子
用透明電極、太陽電池、TFT、その他各種受光素子の
透明電極に利用されている。また自動車および建築用の
熱線反射膜、フォトマスクその他各種用途の帯電防止
膜、冷凍ショーケースをはじめとする各種の防曇窓、自
動車のフロントガラス用の融氷・防曇機能付きガラス
(Electrically Heated Window、以下EHWと呼ぶ)な
どの透明発熱体の電極として広く用いられている。さら
に調光ガラスとしてのエレクトロクロミック素子用電極
にも用いられる。
2. Description of the Related Art A transparent conductive film has both high transmittance and high conductivity in the visible light range, and is used for liquid crystal display devices, plasma light emitting devices,
EL (electroluminescence) transparent electrodes for display elements, such as elements, a solar cell, TFT, are utilized in a transparent electrode of various other light receiving elements. In addition, heat-reflecting films for automobiles and buildings, antistatic films for photomasks and other applications, various anti-fog windows such as freezer showcases, glass with melting ice and anti-fog function for automobile windshields (Electrically Heated) It is widely used as an electrode of a transparent heating element such as a window (hereinafter referred to as EHW). Further, it is also used as an electrode for an electrochromic device as a light control glass.

【0003】従来、透明導電膜としてはガラス基板上に
堆積したアンチモンやフッ素をドーパントとして含む
酸化錫(SnO2、錫をドーパントとして含む酸化
インジウム(In23 )膜[以下ITO膜とよぶ]
酸化亜鉛等が知られており、特にITO膜は低抵抗
が容易であることから主として液晶等の表示素子用電極
として広く用いられている。
Conventionally, as the transparent conductive film was deposited on a glass substrate, tin oxide containing antimony or fluorine as a dopant (SnO 2) film, an indium oxide containing tin as a dopant (In 2 O 3) film [following ITO film Call]
Are known zinc oxide film or the like, I TO film especially is widely used as a display element electrode mainly liquid crystal or the like from easily Der Rukoto low resistance <br/> is.

【0004】リーチインドア用の導電ガラスは、スプレ
ー法により、数百℃に加熱された基板に原料液を噴霧
し、基板表面で熱分解反応させて、酸化錫膜を成膜して
作られる。膜に導電性を付与するためのドーパントにつ
いては、フッ素やアンチモンがよく用いられている。し
かしスプレー法では、リーチインドアやEHWで用い
られる、おおよそ1m×2m程度の大きな基板に対して
は、処理面積全面に対して、均一な膜質の膜を、均一な
膜厚で安定して生産するのは非常に難しい。
The conductive glass for reach indoors is formed by spraying a raw material liquid onto a substrate heated to several hundreds of degrees by a spraying method and causing a thermal decomposition reaction on the substrate surface to form a tin oxide film. Fluorine and antimony are often used as the dopant for imparting conductivity to the film. However , in the spray method, for a large substrate of about 1 m × 2 m used in reach indoors or EHW, a film having a uniform film quality and a uniform film is formed on the entire processing area. It is very difficult to produce thick and stable.

【0005】膜厚が均一でない場合、反射率や反射色の
むらが生じて、外観上、見苦しいものになる。また膜面
内にシート抵抗の不均一があると、通電時に局部的な異
常加熱や、加熱されない部分を生じて、機能上または安
全上好ましくない。またスプレー法では、成膜に際し
て、基板の背面への膜の回り込みが発生しやすく、さら
に周辺部や電極取出し部周辺など膜付けしたくない部
分を効果的にマスクするのが難しく、成膜後にエッチン
グや研磨などの手段によってこれを取り除く必要があ
り、工程上煩雑になりコストが嵩むという問題点があっ
た。
[0005] When the film thickness is not uniform, it occurs uneven reflectance and the reflection color, appearance, ing unsightly things. Further, if there is unevenness in the sheet resistance within the film plane, localized abnormal heating and when energized, to produce not heated portions, functionally or safety undesirable. In the spray method, during deposition, wraparound of film-to-back is likely to occur in the substrate, effectively difficult to mask the film with partially not want such peripheral portion and the electrode lead-out City area around Further, formed It is necessary to remove this by means such as etching or polishing after the film, which causes a problem that the process becomes complicated and the cost increases.

【0006】またEHWにはスパッタリング法によ
厚数百Åの金属薄膜を用いた膜系が用いられている。
金属膜としては、可視光域(400〜700nm)で車
両用窓材として必要な透明性を確保するために可視
で透過率が高い、自動車の電装系(12ないし24V)
で駆動できるために抵抗が低い、の2点を同時に満足す
ることが必要であることから、銀膜が用いられている。
[0006] In addition to EHW is, Ru good to sputter ring method
Membrane system using a metal thin film having a film thickness several hundred Å is used.
The metal film has a high transmittance in the visible light region (12 to 24V), which has a high transmittance in the visible light region (400 to 700 nm) in order to secure the transparency required as a window material for vehicles.
The silver film is used because it is necessary to simultaneously satisfy the two points that the resistance is low because it can be driven by.

【0007】通常、可視域での透明性を増して、か
ぎらぎらした外観となるのを防ぐ目的で、銀層の両
側を透明誘電体膜でみ、可視域での反射率が低減さ
れるように光学条件が調整された3層構成、または、
2層の両側と間を透明誘電体膜でんだ5層膜構成
用いられる。しかし、銀層ではいわゆるエレクトロマイ
グレーション現象が知られており、通電を続けると、膜
中の原子が粒界・粒内拡散を起こしてヒロックやボイ
ドを生成して膜切れを起こしやすい。
[0007] Usually, by increasing the transparency in the visible light region, <br/> one or, in order to prevent the a glaring appearance, viewed clamping both sides of the silver layer of a transparent dielectric film, a visible light region three-layer optical conditions are adjusted so that the reflectance is reduced in, or, I sandwiched by transparent dielectric film between both sides of the silver 2 layer 5 layer film structure, in use. However , a so-called electromigration phenomenon is known in the silver layer , and when current is continuously applied, silver atoms in the film are likely to cause grain boundaries / intragrain diffusion to generate hillocks and voids, which easily causes film breakage.

【0008】また、銀層は元来、環境に対する耐久性が
劣るので湿気などによる化学的なアタックを受けやす
く、信頼性向上の観点から銀の積層膜系にわる透明発
熱体に好適な膜系が望まれていた。
Also, the silver layer is originally durable against the environment.
Susceptible to chemical attack by moisture etc. so poor, a suitable membrane system has been desired in the silver layered membrane system from the viewpoint of reliability cash Waru transparent heating element.

【0009】透明基体に導電性を付与して、透明発熱体
としての機能を付与できる透明導電膜としては、蒸着法
やイオンプレーティング法によるドープされた酸化錫
蒸着法やイオンプレーティング法やスパッタリング
法によるITO、ドープされた酸化亜鉛膜がある。
しかし、酸化錫膜においては、前記したいわゆる物理蒸
着法では、透明発熱体に適した低抵抗の透明導電膜を形
成するのは難しい。
[0009] to impart conductivity to the transparent substrate, as is given in wear transparent conductive film with a function as a transparent heating element, vapor fusing method or an ion plating method doped tin oxide film by a vapor deposition method Ya ITO film by an ion plating method or a sputtering ring <br/> method, doped zinc oxide film, there is.
However, in the tin oxide film, a so-called physical vapor deposition mentioned above, it is difficult to form a transparent conductive film of low resistance suitable for transparent heating element.

【0010】またITO膜については、低抵抗が容易
であり、特にスパッタリング法にればEHWやリーチ
インドア用に適した大面積の基板にも均一な特性・膜厚
の透明導電膜を形成できるが、一方、インジウムが希
ため高価格で、製品の低価格化にはおのずから限界が
、透明発熱体の幅広い分野への応用が妨げられてい
た。またインジウムの資源埋蔵量は他の元素に比べても
特に少なく、亜鉛鉱の精練時の副産物として抽出される
ためにその生産量も亜鉛生産量に依存しており、大幅な
生産量の増大は困難である。
Further, it is easy to reduce the resistance of the ITO film.
, And the especially Ru can form a transparent conductive film by lever EHW and reach indoor uniform characteristics and thickness to the substrate having a large area suitable for the sputtering ring method, whereas, indium scarce
Such for a high price, the cost reduction of the product Ri naturally limits <br/> Oh, Applications: in a wide range of fields transparent heating element is hindered. In addition, the resource reserve of indium is particularly small compared to other elements, and since it is extracted as a by-product during refining of zinc ore, its production amount also depends on the zinc production amount. Have difficulty.

【0011】今後、表示素子用などの他の用途を含めた
透明導電膜の需要が拡大した場合、ITOの場合、原料
であるインジウムの安定供給にも問題がある。一方、酸
化亜鉛(ZnO)を主成分とする透明導電膜では、ドー
パントとしてアルミニウムを用いると10-4Ω・cm台
とITO膜に匹敵する低い比抵抗が得られるが、成膜に
際して、高エネルギー粒子ボンバードメントによる膜の
ダメージを避けるために基板をターゲットに対して垂直
配置したり、外部磁場を印加したりする工夫が必要であ
ったり、成膜後に非酸化性雰囲気での熱処理が必要であ
った。
In the future, when the demand for a transparent conductive film including other uses such as display devices is increased, in the case of ITO, there is a problem in stable supply of indium as a raw material. On the other hand, in the transparent conductive film mainly composed of zinc oxide (ZnO), although low resistivity comparable aluminum used when 10 -4 Ω · cm stand and the ITO film is Ru obtained as a dopant, during deposition, high In order to avoid film damage due to energetic particle bombardment, it is necessary to arrange the substrate vertically with respect to the target, to apply an external magnetic field, or to perform heat treatment in a non-oxidizing atmosphere after film formation. there were.

【0012】また、ターゲット性状の経時変化の影響を
受けやすいために低抵抗膜を再現性良く製造するのが困
難であったり、低抵抗膜の成膜速度が5Å/程度以下
と極めて小さいため工業生産においては生産速度が遅
いという致命的な問題があり、広く用いられるには至っ
ていない。
[0012] or a difficult to produce with good reproducibility a low resistance film on the influence susceptibility to damage of the temporal change of the target properties, since the deposition rate of the low resistance film is extremely small and not more than about 5 Å / sec However , in industrial production, there is a fatal problem that the production speed is slow, and it has not been widely used.

【0013】一方、表示素子等の電極に透明導電膜を応
用する場合、透明導電膜は素子作製プロセスにおける
00500℃程度の高温での熱処理にさらされる。こ
の場合、不活性ガス中での熱処理も可能であるが、雰囲
気を保持するための設備が必要となり、コスト増加を招
く。そこで工業的には大気中での熱処理が必要とされ
る。また、透明導電膜を発熱体使用する場合、透明
電膜は大気雰囲気で通電加熱された状態で使用される。
このため、発熱による抵抗値変化が少ないこと、すなわ
ち、酸化性雰囲気中での耐熱性が要求される。
Meanwhile, when applying the transparent conductive film electrode of such a display device, a transparent conductive film Keru Contact the device manufacturing process 3
It is exposed to heat treatment at a high temperature of about 00 to 500 ° C. In this case, it is also possible heat treatment in an inert gas, Ri Do requires facilities for maintaining the atmosphere, leading to increased cost. Where the industrial basis is a need for a heat treatment in the atmosphere. Also, when using a transparent conductive film to the heating element, a transparent conductive <br/> film is used in a state of being energized and heated at atmospheric Kikiri囲気.
Therefore, it is required that the change in resistance value due to heat generation is small, that is, heat resistance in an oxidizing atmosphere.

【0014】また、熱線反射ガラス透明導電膜を応用
する場合も曲げ加工や強化加工を行う際大気中
00℃以上の高温熱処理にさらされることがあるため、
同様な耐熱性が要求される。このように、透明導電膜を
工業分野に応用する場合には単に非酸化性雰囲気での耐
熱性ではなく、大気中での高い耐熱性が要求される。
Further, even if the application of the transparent conductive film is heat-reflecting glass, the atmosphere in performing bending or tempering, 6
00 ℃ or more of Kotogaa because that is exposed to high-temperature heat treatment,
Similar heat resistance is required. As described above, when the transparent conductive film is applied to the industrial field, not only heat resistance in a non-oxidizing atmosphere but high heat resistance in the air is required.

【0015】この点でITO膜は充分ではないが大気中
での耐熱性を有するためITOは主に液晶表示素子
等に用いられているこれは300℃付近の比較的低温
での耐熱性しか要求されないからである。これに対し
て、従来のZnO膜(添加物なし)は酸化性雰囲気にお
ける耐熱性がITOに比べると著しく劣っており、酸
化性雰囲気での耐熱性向上が実用化における課題であっ
た。
[0015] Since it ITO film is not sufficient in this respect to have a heat resistance in the atmosphere, the ITO film is mainly used in a liquid crystal display device or the like. This is because only heat resistance at relatively low temperatures around 300 ° C. is required. On the other hand, the conventional ZnO film (without additives) is significantly inferior to the ITO film in heat resistance in an oxidizing atmosphere, and improvement in heat resistance in an oxidizing atmosphere has been a problem in practical use.

【0016】nO膜の耐熱性を改善するために、従
来、特公平3−72011号公報に示されているよう
に、ZnOに周期律表第3族の不純物を添加することに
よって、アルゴン気流中や真空中等の非酸化性雰囲気に
おける耐熱性改善ることが提案されている。
[0016] To improve the heat resistance of the Z nO film, conventionally, as shown in Japanese Patent Kokoku 3-72011, by the addition of periodic table group III impurity into ZnO, a stream of argon Rukoto to improve the heat resistance in a non-oxidizing atmosphere of a medium or vacuum secondary have been proposed.

【0017】しかし、3族の不純物を添加した場合、
活性ガス雰囲気や還元性ガス雰囲気での耐熱性は向上す
るが、大気雰囲気における400℃での高温熱処理で
は、電気抵抗が4桁以上も増加するため導電膜として
は使用できないことも知られている(電子通信学会技術
報告,CPM84-8,55(1984) )。大気中での耐熱性の欠如の
ために、ZnO膜は透明導電膜としての実用化が遅れて
いる。
[0017] However, if the addition of Group 3 impurities, the heat resistance of an inert gas atmosphere or reducing gas atmosphere is improved, at a high temperature heat treatment at 400 ° C. in an air atmosphere, the electrical resistance is more than 4 orders of magnitude It is also known that it cannot be used as a conductive film because it also increases (Technical Report of IEICE, CPM84-8,55 (1984)) . For lack of heat resistance in the atmosphere, ZnO film is delayed practical use as the transparent conductive film.

【0018】このように表示素子基板、透明発熱体、熱
線反射ガラス透明導電膜を応用する場合、透明導電膜
大気中での高温加熱を経ても電気的特性および光学
的特性が損われないことが重要となる。しかし、ZnO
を主成分とする透明導電膜はITO代わる低コスト
材料として期待されながら、酸化性雰囲気での耐熱性が
不充分なため広範な実用化、工業化が遅れており、大気
中での耐熱性改善がZnO膜の最大の課題とされてき
た。
When the transparent conductive film is applied to the display element substrate, the transparent heating element, and the heat ray reflective glass as described above , the transparent conductive film loses its electrical and optical characteristics even after being heated to a high temperature in the atmosphere. We of Ikoto is important. And only, ZnO
The while the transparent conductive film composed mainly been expected as a low-cost materials that alternative to ITO film, extensive practical because the heat resistance is insufficient in an oxidizing atmosphere, and industrialization is delayed, heat in the air The improvement of the property has been regarded as the biggest problem of the ZnO film.

【0019】[0019]

【発明が解決しようとする課題】本発明は、従来技術が
有していた前述の欠点を解消し、高速で製造しても低抵
抗で高透過率の特性が得られ、かつ大気雰囲気等の酸化
性雰囲気での高温熱処理においても電気特性を損わな
高品位でかつ低コストの透明導電膜、特に表示素子
用電極、建築用および自動車用透明発熱体、熱線反射ガ
スに有用な透明性導電膜を提供することを目的とす
る。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks of the prior art, obtains characteristics of low resistance and high transmittance even when manufactured at a high speed, and can be used in an atmospheric environment. not impaired electrical properties even at high-temperature heat treatment in an oxidizing atmosphere, high quality and low cost of the transparent conductive film, particularly a display element electrodes, architectural and transparent heating body for a motor vehicle, the heat ray reflective moth <br/> and to provide a useful transparent conductive film la scan.

【0020】[0020]

【課題を解決するための手段】本発明は、酸化亜鉛を主
成分とする透明導電膜であって、ガリウムを亜鉛に対し
0.5〜12原子%含有し、該透明導電膜のX線回折
パターンにおいて(002)面による回折ピークを有
し、回折ピークの半値幅が0.6度以下である透明導
膜を提供する。
Means for Solving the Problems The present invention is a transparent conductive film mainly containing zinc oxide, gallium containing 0.5 to 12 atomic% with respect to zinc, X-rays of the transparent Akirashirubedenmaku in the diffraction pattern includes a diffraction peak due to (002) plane half width of the diffraction peak that provides der Ru permeable Akirashirubeden film than 0.6 degrees.

【0021】また、基体上に、上記の透明導電膜を有す
る透明発熱体を提供する。
Further , the above-mentioned transparent conductive film is provided on the substrate.
To provide a transparent heating element.

【0022】本発明の透明導電膜は、比抵抗が10-2Ω
・cm以下で、膜厚が100Å以上5μ以下の範囲に
あることが好ましい。膜厚が100Å未満であると不連
続膜になりやすく、また段差部へのコーティングにおい
て膜破断を起こしやすいなどの問題がある。また、膜厚
が5μm超になると成膜時間が長くなり、コスト増加を
招く。一方、比抵抗が10-2Ω・cm以下であると前述
の膜厚範囲において透明発熱体として必要なシート抵抗
を満足できる。
The transparent conductive film of the present invention has a specific resistance of 10 -2 Ω.
· Cm or less, the film thickness is preferably in the 5 [mu] m or less in the range of 100 Å. If the film thickness is less than 100Å, a discontinuous film is likely to be formed, and there is a problem that the film is likely to be broken in coating the step portion. The thickness becomes longer deposition time becomes a 5 [mu] m greater, the cost is increased. On the other hand, the specific resistance is cut with satisfaction sheet resistance required as transparent heating element in the aforementioned thickness range to be equal to or less than 10 -2 Ω · cm.

【0023】本発明の透明導電膜(以下、単に導電膜と
もいう)には、Zn、Ga以外の金属元素が本発明の目
的を損わない範囲で含まれていても支障ないができる
限り少量にとどめることが望ましい。
The transparent conductive film (hereinafter, simply referred to as conductive layer) of the present invention is, Zn, but there is no problem even be included in not jeopardized the objectives of the present invention metal element other than Ga, as much as possible It is desirable to keep the amount small.

【0024】また、本発明の透明導電膜を形成する基体
にはガラス、プラスチック等を使用できる。基体がソー
ダライムガラスのように、その成分としてアルカリ金属
を含む場合には、膜時熱処理時または長期使用時
おける基体から導電膜へのアルカリ金属の拡散を防止す
るために、基体と導電膜の間にSi、Al、Zr等の金
属の酸化物を主成分とする下地層(アルカリバリアーコ
ート)を形成することがより好ましい。
Further, the substrate to form a transparent conductive film of the present invention is glass, you can use a plastic or the like. Substrate as soda lime glass, if it contains alkali metal as its component, during film, the heat treatment or to prevent diffusion of alkali metals from the substrate definitive <br/> during long-term use to the conductive film For this purpose, an underlayer (alkaline barrier coat) containing a metal oxide such as Si, Al or Zr as a main component is provided between the substrate and the conductive film.
It is more preferable to form the chromatography vii).

【0025】本発明の導電膜の形成方法に関しては特に
限定されず、スパッタリング法、真空蒸着法等の物理蒸
着法やCVD法等の化学蒸着法が用いられるが、より低
基板温度で良好な導電性が得られる物理蒸着法が好ま
しい。なかでも結晶性を促進させるために有効な高密度
プラズマを活性化手段として用いたスパッタリング法、
高磁場を用いた低電圧スパッタリング法、または、プラ
ズマ活性化真空蒸着法が低抵抗で耐熱性に優れる膜を得
うえでより好ましい。スパッタリング法で本発明の透
明導電膜を形成する際に用いるターゲットについて
単に酸化亜鉛中に酸化ガリウムを所定量添加して焼結す
るだけでなく、例えば1400℃以上の温度で2時間以
上保持する処理を行って、酸化ガリウムを酸化亜鉛中に
分固溶させる処理を行ったものを用いる。なお、実施
例ではスパッタリング法として直流スパッタリング法を
示しているが、高周波スパッタリング法で行ってもよ
い。
The method for forming the conductive film of the present invention is not particularly limited, and a physical vapor deposition method such as a sputtering method or a vacuum vapor deposition method, or a chemical vapor deposition method such as a CVD method can be used, but it is lower.
A physical vapor deposition method is preferable because it provides good conductivity at a low substrate temperature. Above all, a sputtering method using a high-density plasma effective as a means for activating crystallinity,
Low-voltage sputtering method using a high magnetic field, or, more preferred for plasma activated vacuum deposition method to obtain a film having excellent heat resistance at low resistance. The target used in forming the transparent conductive film of the present invention by a sputtering method,
Not only sintering by adding a predetermined amount of gallium oxide in the zinc oxide, for example, by performing a process of holding more than 2 hours at 1400 ° C. or higher temperatures, <br/> charge fraction gallium oxide in the zinc oxide Ru used after subjected to processing to solid solution. Although in the embodiment shows a DC sputtering method as the sputtering method, even if a high-frequency sputtering method
Yes.

【0026】本発明導電膜においては、マグネトロン
直流スパッタリング法を用いて成膜され場合、40Å
/秒までの高速で膜された場合も低抵抗かつ大気中で
の高耐熱性が確保されるため、実用的な成膜速度で成膜
できる。
[0026] In the conductive film of the present invention, if that will be deposited by Ma Gunetoron DC Sputtering method, 40 Å
/ Because sometimes fast until seconds is film of high heat resistance at low resistance and the atmosphere is ensured, Ru can be deposited <br/> at a practical deposition rate.

【0027】本発明の透明発熱体においては、外観を調
整する目的で、透明導電膜層と基体の間に1層以上のア
ンダーコート膜、および/または、透明導電膜層の上
層以上のオーバーコート膜を設けて、光の干渉現象や
膜の吸収を利用して透過・反射色調や可視光反射率調
できる。
[0027] In the transparent heating element of the present invention for the purpose of adjusting the appearance, one or more layers of the undercoat film between the transparent conductive film layer and the substrate, and / or, on the transparent conductive film layer
Provided one or more layers of the overcoat film, Ru can temper <br/> integer interference phenomenon and film transmission and reflection color tone or a visible light the reflectivity by utilizing absorption of light.

【0028】前記アンダーコート膜の1層以上またはオ
ーバーコート膜の1層以上の膜材料としては、えば、
酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化錫、
酸化タンタル、酸化クロム、酸化ニオブ、酸化ホウ素、
酸化インジウム、酸化亜鉛および酸化セリウムからなる
群から選ばれる1種以上など、または、チタン、ジルコ
ニウム、ハフニウム、クロム、ニオブの金属、前記金属
の窒化物および前記金属の酸窒化物からなる群から選ば
れる1種以上などを挙げることができる。
Examples of the one or more layers of film material of one or more layers or overcoat film of the undercoat layer, if example embodiment,
Silicon oxide, titanium oxide, zirconium oxide, tin oxide,
Tantalum oxide, chromium oxide, niobium oxide, boron oxide,
Indium oxide, such as one or more selected from the group consisting of oxidized zinc Contact and cerium oxide, or titanium, zirconium, hafnium, chromium, niobium metal, a nitride contact and the metal oxynitride of the metal One or more selected from the group consisting of

【0029】記のアンダーコート膜やオーバーコート
膜は、光学特性を調整する以外の目的にも用いることが
できる。例えば、合わせ前のコート製品の取り扱い性を
向上させるために耐久性を付与する目的に用いられる。
また他の基体とともに合わせ構造または複層構造にした
り、電極リードの取出し部を取付けたりする際に、合
せ構造における中間膜、複層構造におけるスペーサ、
または組み付ける他の部品等との接着性を調整する目
に用いられる。また透明発熱体を形成した後に、1)
合わせガラス化、2)バスバーや電極形成、または3)
ガラス基板の強化や曲げなどの高温を要する工程に耐
えるための耐熱性を付与したり、高温下での使用に対す
る信頼性を高めたりする等の目的に用いられる。
[0029] The above Symbol undercoat film and the overcoat film of, can have use also for purposes other than to adjust the optical properties. For example, Ru is used for the purpose of imparting durability to improve the handling properties of the previous coating products combined.
Further also the structure combined with other substrates or the multilayer structure, at the time of or attach the extraction portion of the electrode lead, if
Spacer ligament, in the multi-layer structure in that put in I was structure,
Or assemble other components, and is used for the purpose of adjusting the adhesion between. Also after forming the transparent heating element 1)
Laminated glass , 2) Bus bar and electrode formation , or 3)
Strengthening or bending of the glass substrate, or to impart heat resistance to withstand the step of requiring a high temperature such as, Ru used for purposes such and increasing the reliability for use at high temperatures.

【0030】本発明の透明発熱体は、透導電膜が形成
された基体単独でも用いることができるが、例えば自動
車用の安全規格を満足するために、強化処理したり、対
になる透明基体と樹脂フィルムを介してまたは樹脂フィ
ルムのみと接着処理したりすることができる。
The transparent heating element of the present invention can be used in the substrate alone transparency conductive film is formed, for example, in order to satisfy the safety standards for motor vehicles, strengthening treatment or a transparent substrate to be paired and also through the resin film can be or only with adhesion treatment resin film.

【0031】本発明の透明発熱体においては、2箇所以
上の、通電のための電極取出し部が設けられていること
が好ましい。電極取出し部に直流、交流、または直流と
交流が重畳された電圧が、連続してまたはパルス状にオ
ン・オフさせ印加されて、透明発熱そのジュール
熱により加熱される。
[0031] In the transparent heating element of the present invention, more than two portions, Rukoto have electrode extraction portion is provided for the energization
Is preferred. DC to the electrode extraction portion, alternating, or voltage DC and AC is superimposed is, or is applied by turning on and off in pulses in succession, the transparent heating element is heated by the Joule heat.

【0032】本発明の透明発熱体においては、必要に応
じて、通電加熱時の温度制御、異常発熱、または透明発
熱体の割れなどの異常検出を目的とし、検出手段を設
けることができる。
[0032] In the transparent heating element of the present invention, if necessary, the temperature control during electric heating, abnormal heating, or for the purpose of fault detection, such as cracks in the transparent heating element, may be provided detecting means.

【0033】図3に本発明の透明発熱体の断面構成図
を、また図4に本発明の透明導電膜を用いたEHWの平
面図を示す。図中において、1はオーバーコート層、2
はガリウムドープ酸化亜鉛層(本発明の透明導電膜)
3はアンダーコート層、4は基板、5は上辺バスバー、
6は透明発熱膜コート部分、7は下辺バスバー、8は基
板を表す。
FIG. 3 is a sectional view of the transparent heating element of the present invention, and FIG. 4 is a plan view of an EHW using the transparent conductive film of the present invention. In the figure, 1 is an overcoat layer, 2
Is a gallium-doped zinc oxide layer (the transparent conductive film of the present invention) ,
3 is an undercoat layer, 4 is a substrate, 5 is an upper bus bar,
6 is a transparent heating film coating portion, 7 is a lower side bus bar, and 8 is a substrate.

【0034】[0034]

【作用】本発明者らはZnO透明導電膜中のGa濃度を
原子比で0.5%以上、12%以下に制御し、かつ膜の
(002)面によるX線回折ピークの半値幅が0.6度
以下になるように膜の結晶性を制御することにより、2
×10-4Ω・cmというITO同等低い比抵抗が通
常の基板配置で高速で製造した場合でも容易に得られる
ことを見出した。得られた導電膜は500℃以上での大
気中熱処理の後に導電性の劣化はなく、酸化性雰囲気で
の耐熱性に極めて優れていた
The present inventors controlled the Ga concentration in the ZnO transparent conductive film to 0.5% or more and 12% or less in atomic ratio, and the half-width of the X-ray diffraction peak due to the (002) plane of the film was 0. by controlling the crystallinity of the film to be less than .6 degrees, 2
× 10 -4 Ω · cm and ITO film equivalent low resistivity say it was found to be obtained easily even when produced at high speed in a conventional substrate arrangement. Obtained conductive film is not conductive degradation after atmospheric heat treatment at 500 ° C. or higher, it had very excellent heat resistance in an oxidizing atmosphere.

【0035】ZnOに単にGaを添加すること自体はす
でに報告されている(J.Electrochem.Soc,127,1636(198
0) 、Jpn.J.Appl.Phys,24,L781(1985))。前者は、Zn
に対して1原子%のGaを添加した膜の例であり、後者
はZnに対して14原子%のGaを添加したスパッ
タリング法による)膜の例である。しかしいずれの場合
も電気的特性、光学的特性について添加膜と無添加膜と
の比較検討を行った報告例であり、耐熱性に関する検討
および記述は一切みられない。またそれらの膜の導電性
は従来のAl添加ZnO膜に比べて劣る
The simple addition of Ga to ZnO has already been reported (J. Electrochem. Soc, 127, 1636 (198).
0), Jpn.J.Appl.Phys, 24, L781 (1985)). The former is Zn
Is an example of a film in which 1 atomic% of Ga is added, and the latter is an example of a film in which 1 to 4 atomic% of Ga is added to Zn ( by a sputtering method ) . However, in all cases, it is a report example in which the addition film and the non-addition film were compared and examined for electrical characteristics and optical characteristics , and no examination or description regarding heat resistance was found. Further, the conductivity of these films is inferior to that of the conventional Al-doped ZnO film.

【0036】これに対して本発明はGa添加量と膜の結
晶性を制御することにより、電気特性を大幅向上
せ、かつ大気中での耐熱性を著しく向上させ。すなわ
ち耐熱性はGaを含むだけでは発現せず、Gaをある特
定の範囲の量含み、かつX線回折ピークの半値幅の値が
特定の値以下である場合のみに発現する
The present invention is by controlling the crystallinity of the Ga concentration and the film contrast, it is significantly improved electrical characteristics
Allowed, and significantly improve the heat resistance in the atmosphere. That heat resistance do not express only comprises Ga, wherein the amount of a particular range of the Ga, and the value of the half-value width of the X-ray diffraction peaks are expressed only when it is below a certain value.

【0037】一般に、ZnOに3族元素を添加すると電
子密度が増加するために導電性が増加する。これは3族
すなわち3価の元素が、2価のZnの位置に置換するこ
とにより、浅い電気的ドナーを形成し自由電子を生成す
るためと考えられている。また同時に過剰Znが格子間
位置に生成することや酸素欠陥の生成によってもドナー
形成による電子密度の増加は説明できる。実際の膜では
これらが混在した状態になっているものと推定される。
3族元素とZnのイオン半径は同一ではないため置換し
た場合でも結晶格子歪が生じることが考えられる。
[0037] In general, the conductivity is increased because the electron density The addition of Group 3 element in ZnO is increased. It is considered that this is because a group 3 element, that is, a trivalent element substitutes at the divalent Zn position to form a shallow electric donor and generate a free electron. The increase in electron density by donors formed by generation of it and oxygen defects excess Zn is generated on interstitial sites simultaneously Ru can be explained. It is presumed that these are mixed in the actual film.
Since the ionic radii of the Group 3 element and Zn are not the same, it is conceivable that crystal lattice distortion will occur even when they are replaced.

【0038】また3族元素はすべて置換可能なわけでは
なく、一部は結晶格子間または粒界等に析出していると
考えられる。なぜならば膜中から検出される3族元素の
量は、電子密度から理論的に算出される量より約1桁も
多いからである。これらの余剰な元素は格子歪を引き起
こすため、酸素空孔等の生成を引き起こすことが予想さ
れる。酸素空孔等の欠陥は高温の酸素雰囲気下で熱処理
すると減少するため、同時に空孔により発生する電子密
度も減少して抵抗増加が生じると解釈される。
It is considered that not all the Group 3 elements can be replaced, but some of them are precipitated between crystal lattices or at grain boundaries. This is because the amount of the Group 3 element detected in the film is larger by about one digit than the amount theoretically calculated from the electron density. Since these excess elements cause lattice distortion, it is expected that oxygen vacancies will be generated. Since defects such as oxygen vacancies are reduced by heat treatment in a high-temperature oxygen atmosphere, it is considered that the electron density generated by the vacancies is also reduced and the resistance is increased.

【0039】実際、Ga以外のAl、In、Bの3族元
素を添加したZnO膜は非酸化性雰囲気での耐熱性には
優れるものの、大気中等の酸化性雰囲気での耐熱性は極
めて悪い。本発明者らはX線回折により膜の組成と結晶
性および大気中での熱的安定性の関係を詳細に調べた結
果、その添加元素が単に3族元素ではなくGaであり、
しかもその添加量がある特定の範囲であり、加えて膜の
X線回折ピークの半値幅がある値以下の場合に限り大気
中での耐熱性に富む膜が得られることを見出した。
Actually, the ZnO film to which a group 3 element of Al, In, and B other than Ga is added has excellent heat resistance in a non-oxidizing atmosphere, but has extremely poor heat resistance in an oxidizing atmosphere such as the air. As a result of detailed examination of the relationship between the composition and crystallinity of the film and the thermal stability in the atmosphere by X-ray diffraction, the present inventors have found that the additive element is Ga, not simply the Group 3 element,
Moreover, it has been found that a film having high heat resistance in the atmosphere can be obtained only when the added amount is within a specific range and in addition, the half width of the X-ray diffraction peak of the film is less than a certain value.

【0040】添加元素がAl、B、Inの場合とGaの
場合で大気中での耐熱性が異なる原因としてはイオン半
径の差考えられる。すなわちAl、Bのイオン半径は
それぞれZnに比べて小さすぎ、逆にInは大きすぎ
る。Gaのイオン半径はZnのそれに最も近いため置換
した場合の格子歪は最も小さくなると考えられる。低抵
抗膜を得るためにはAl、B、Inを多量に添加する必
要があるが、この場合歪が増加し、酸素空孔が生成する
と考えられる。この欠陥は酸化性雰囲気中での高温熱処
理により容易に減少し、同時に欠陥により発生した自由
電子も減少するため、抵抗増加が起ると考えられる。
The additive element Al, B, as the cause of heat resistance is different in the atmosphere in cases of In and Ga it is thought that the difference in ionic radius. That is, the ionic radii of Al and B are too small compared with Zn, respectively, and conversely In is too large. Since the ionic radius of Ga is the closest to that of Zn, it is considered that the lattice strain in the case of substitution is the smallest. In order to obtain a low resistance film, it is necessary to add a large amount of Al, B and In. In this case, it is considered that the strain increases and oxygen vacancies are generated. It is considered that this defect is easily reduced by high-temperature heat treatment in an oxidizing atmosphere, and at the same time, the number of free electrons generated by the defect is also reduced, so that the resistance is increased.

【0041】これに対してGa添加膜の場合、Gaの多
量添加によっても格子歪、酸素欠陥が生じにくいため酸
化性雰囲気での耐熱性も向上すると考えられる。Ga添
加の場合も耐熱性は膜の結晶性に強く依存することがわ
かり、結晶性のよい膜、すなわちX線回折ピークの半値
幅がある値以下の場合、酸化性雰囲気での耐熱性が著し
く向上することがわかった。
On the other hand, in the case of a Ga-added film, it is considered that even if a large amount of Ga is added, lattice strain and oxygen defects are less likely to occur, so that the heat resistance in an oxidizing atmosphere is also improved. It was found that the heat resistance strongly depends on the crystallinity of the film even when Ga is added, and when the half-width of the X-ray diffraction peak is a certain value or less, the heat resistance in an oxidizing atmosphere is remarkably high. It turned out to improve.

【0042】[0042]

【実施例】[実施例1〜6および比較例1〜9] 以下本発明の実施例について図表を参照しながら詳細に
説明する。アルカリバリアーコートとして約500Åの
膜厚のシリカ膜が形成されたガラス基板(5cm×5c
m×1mm)を用意し、充分に洗浄したシリカコートガ
ラス基板上に直流スパッタリング法により、ZnO中に
酸化ガリウム(Ga2 3 )を添加した種々のターゲッ
ト(Ga/Zn比が0.315原子%)を用いてAr
雰囲気中で、膜厚が3000Å10000ÅのZnO
透明導電膜を形成した。このとき用いたターゲットは、
ZnO中に酸化ガリウムを添加した後、1400℃以上
の温度で2時間以上保持して、酸化ガリウムをZnO中
に充分固溶させたターゲットである。
EXAMPLES [Examples 1 to 6 and Comparative Examples 1 to 9] Examples of the present invention will be described in detail below with reference to the drawings. A glass substrate (5 cm x 5 c) on which a silica film with a thickness of about 500 Å is formed as an alkali barrier coat.
m × 1 mm), and various targets (Ga / Zn ratio of 0.3 to 0.3) were prepared by adding gallium oxide (Ga 2 O 3 ) into ZnO by direct current sputtering on a sufficiently washed silica-coated glass substrate. 15 atomic%) using Ar
ZnO having a film thickness of 3000Å to 10000Å in the atmosphere
A transparent conductive film was formed. The target used at this time is
This is a target in which gallium oxide is added to ZnO and then kept at a temperature of 1400 ° C. or higher for 2 hours or more to sufficiently dissolve gallium oxide in ZnO.

【0043】真空装置はあらかじめ10-6Torr以下
に排気した後、Arガスを0.01Torr導入してス
パッタリングを行った。基板温度は室温300℃の範
囲に設定した。またスパッタリングパワーは50Wを標
準条件としたが、高速膜の例として400Wまで変化
させた。
The vacuum apparatus was evacuated to 10 -6 Torr or less in advance, and then Ar gas was introduced at 0.01 Torr for sputtering. The substrate temperature was set in the range of room temperature to 300 ° C. The sputtering power was set to standard conditions to 50W but was changed from 400W Examples of high-speed film formation.

【0044】また、不純物を添加しないZnOターゲッ
ト、およびZnO中に酸化アルミニウム(Al2
3 )、酸化インジウム(In23または酸化ホウ素
(B2 3 )を添加した種々のターゲット(Al/Zn
比が4原子%、In/Zn比が5原子%、B/Zn比が
4.5原子%)を焼結法により作製し、これを用いて比
較例のサンプルを作製した。
[0044] Further, ZnO target not doped with impurities, and in ZnO, aluminum oxide (Al 2 O
3 ), indium oxide (In 2 O 3 ) or boron oxide (B 2 O 3 ) added to various targets (Al / Zn)
A ratio of 4 atomic%, an In / Zn ratio of 5 atomic%, and a B / Zn ratio of 4.5 atomic%) were prepared by a sintering method, and a sample of a comparative example was prepared by using this.

【0045】作製した膜中のGa含有量はZnO膜を
規定塩酸溶液中に溶解した後、ICP発光分析法により
測定した。Ga含有量は亜鉛に対する原子%で表した。
また比抵抗は4探針法により求めたシート抵抗と、触
針式膜厚計により測定した膜厚から算出した。
The Ga content in the prepared film was 2 times that of the ZnO film.
After dissolving in specified hydrochloric acid solution, by ICP emission spectrometry
Measured . The Ga content is expressed in atomic% based on zinc.
The specific resistance was calculated from the sheet resistance obtained by the 4-probe method and the film thickness measured by a stylus type film thickness meter.

【0046】導電膜のX線回折分析はCuのKα線を使
用し、比例係数管を用いたレートメーターにて行った。
X線回折スペクトルの測定例を図1、2に示す。これは
後述するようにGaを添加したZnO膜の実施例3と比
較例4について(002)面によるX線回折ピークを
拡大したものである。図に示すように、(002)面に
よる回折ピークの最大強度の1/2の強度となる位置の
ピーク幅(度で表す)を半値幅(半価幅)とよぶ(表中
では「(002)面ピーク半値幅」という)が、図1の
実施例3の場合半値幅は0.28度、図2の比較例4
の場合の半値幅は0.82度である。
The X-ray diffraction analysis of the conductive film was performed by using a Kα ray of Cu and a rate meter using a proportional coefficient tube.
An example of measurement of the X-ray diffraction spectrum is shown in FIGS. This is an enlarged X-ray diffraction peak by the (002) plane in Example 3 and Comparative Example 4 of the ZnO film added with Ga as described later. As shown in the figure, on the (002) plane
At the position where the intensity is half the maximum intensity of the diffraction peak
The peak width (expressed in degrees) is called the half-value width (half-value width) (in the table )
"(002) plane peak half width"), but the half width in the case of Example 3 in FIG. 1 is 0.28 degrees, and Comparative Example 4 in FIG.
In this case, the full width at half maximum is 0.82 degrees.

【0047】可視光透過率は積分球を用いた分光器によ
測定し、400700nmの波長の平均値で評価し
た。これらの導電膜について表1に示す条件で大気中熱
処理試験を行った。表2および表3に熱処理前後の特性
変化について測定した結果を示す。
The visible light transmittance measured by a spectrometer using an integrating sphere, was evaluated by the average value of the wavelength of 400 ~ 700 nm. These conductive films were subjected to a heat treatment test in air under the conditions shown in Table 1. Tables 2 and 3 show the results of measurement of changes in properties before and after heat treatment.

【0048】[0048]

【表1】 [Table 1]

【0049】表2に示す実施例16はGa添加量が
0.512原子%であり、かつ(002)面による
線回折ピークの半値幅が0.6度以下の場合の膜につい
ての耐熱性試験結果である。実施例3の膜のX線回折
ークの半値幅は図1に示すように0.28度であった。
これらの膜は成膜時において10-3Ω・cmから10-4
Ω・cm台の高い導電性を示すとともに、500℃、1
0分間の大気中熱処理後にも導電性は低下せず、同等で
あるかまたは逆に向上している。
In Examples 1 to 6 shown in Table 2, the added amount of Ga is 0.5 to 12 atom %, and the X due to the (002) plane is
It is a heat resistance test result about the film | membrane in case the half value width of a line diffraction peak is 0.6 degrees or less. The X-ray diffraction pattern of the film of Example 3
The full width at half maximum of the peak was 0.28 degrees as shown in FIG.
These films are formed from 10 −3 Ω · cm to 10 −4 during film formation.
Shows high conductivity in the Ω · cm range, 500 ° C, 1
Even after the heat treatment in the atmosphere for 0 minutes, the conductivity does not decrease, and the conductivity is equal or, conversely, improved.

【0050】可視光透過率の変化はみられず大気中熱処
理に対して安定な膜であることがわかった。特に注目す
べきは実施例4に示される高速膜の例であ、40Å
/秒という高速で膜された場合にも半値幅が0.4
5度と小さい膜は膜直後にも2×10-4Ω・cm台の
低抵抗であり、かつ大気中熱処理後も安定であった。
It was found that the visible light transmittance did not change and the film was stable against heat treatment in the atmosphere. Of particular note Ri example der fast film shown in Example 4, 40 Å
/ Even if it is deposited at a high speed of seconds, the half value width of 0.4
5 degrees and less film is also 2 × 10 -4 Ω · cm stand low resistance immediately after film formation, and was stable after the atmosphere heat treatment.

【0051】[0051]

【表2】 [Table 2]

【0052】これに対して比較例1は無添加ZnOであ
り、従来から知られるように耐熱性は全く見られなかっ
た。Gaを0.3原子%添加すると比較例2に示すよう
に半値幅は良好であるにもかかわらず、実用上は全く不
充分な耐熱性しか得られなかった。
[0052] In contrast to the specific Comparative Examples 1 is not added ZnO, it was not observed at all heat resistance as known in the art. When Ga was added in an amount of 0.3 atomic%, the half-value width was good as shown in Comparative Example 2, but practically only insufficient heat resistance was obtained.

【0053】比較例3、4はGa添加量が0.5原子%
以上であるが、半値幅が0.6超の例である。この場
合、膜後の抵抗は低いものの大気中熱処理により大幅
抵抗増加が起った。比較例5はGa添加量が15原子
例であるが、半値幅が0.6以下であるにもかかわ
らず大気中熱処理により抵抗増加が見られた。比較例1
〜5においては、抵抗変化に伴い、可視光透過率も変化
(増加)している。これは大気中熱処理による酸化の影
響を反映したものと考えられる。
In Comparative Examples 3 and 4, the amount of Ga added is 0.5 atom%.
The above is an example in which the half width exceeds 0.6. In this case, substantially the atmospheric heat treatment resistance low after deposition
A significant increase in resistance occurred. Comparative Example 5 is an example in which the Ga addition amount is 15 atomic% , but an increase in resistance was observed due to the heat treatment in the atmosphere even though the half width was 0.6 or less. Comparative Example 1
In Nos. 5 to 5, the visible light transmittance also changes (increases) as the resistance changes. This is considered to reflect the effect of oxidation due to heat treatment in the atmosphere.

【0054】Ga以外の3族元素であるAl、In、B
を添加した場合比較例6〜9に示した。いずれの場合
も半値幅は0.6度以下であるにもかかわらず大気中で
の耐熱性は全く見られず、可視光透過率変化もあっ
た。比較例7のAl添加の場合、スパッタリングパワー
を増加させて高速膜を試みたが、比較例6に示す低速
膜の場合にべて膜後の抵抗は増加し、かつ耐熱性
も劣化した。このようにGa以外の3族元素添加の場合
はX線回折ピークの半値幅が小さくても耐熱性向上
かった。
Al, In, B which are Group 3 elements other than Ga
When addedToComparisonExample 6~ 9. In either case
Even though the half-width is less than 0.6 degrees,
The heat resistance ofvisible lightTransmittanceofChangeAh
It was In the case of adding Al in Comparative Example 7, sputteringRing power
Increase the speedSuccessA membrane was tried, but the low speed shown in Comparative Example 6
SuccessIn case of membraneratioAllSuccessResistance after film increases and heat resistance
Also deteriorated. Thus, in the case of adding a Group 3 element other than Ga
Is X-ray diffractionpeakHeat resistance even when the half-width of is smallofImprovementIs
Nawon.

【0055】[0055]

【表3】 [Table 3]

【0056】[実施例7] 充分に洗浄したソーダライムシリカガラス(10cm×
10cm×2mm厚)の基板上にスクリーン印刷・焼成
により向かい合った2辺にバスバーを形成した。バスバ
ーの長さは8cmであり、バスバーとバスバーとの間隔
は8cmであった。この基板上に直流スパッタリング
により、酸化亜鉛中に酸化ガリウムを7.5%添加した
ターゲットを用いて圧力0.01Torrのアルゴン雰
囲気中で膜厚が2000Åの酸化亜鉛透明導電(本発
明の透明導電膜)を形成した。このとき用いたターゲッ
トは、ZnO中に酸化ガリウムを添加した後、1400
℃以上の温度で2時間以上保持して、酸化ガリウムをZ
nO中に充分固溶させたターゲットである。なお成膜中
に特に基板加熱はわなかった。
Example 7 Soda-lime silica glass (10 cm ×
A bus bar was formed on two opposite sides by screen printing and firing on a 10 cm × 2 mm thick substrate. The length of the bus bar was 8 cm, and the distance between the bus bars was 8 cm. This DC Sputtering method on a substrate, a zinc oxide transparent conductive film having a film thickness of 2000Å in an argon atmosphere at a pressure of 0.01Torr using a target in which the gallium oxide was added 7.5% in the zinc oxide (the onset
Bright transparent conductive film) . The target used at this time was 1400 after adding gallium oxide into ZnO.
Keep gallium oxide in Z
The target is a solid solution in nO. It should be noted in particular the substrate heating during the film formation was not I row.

【0057】前記の成膜された基板と、電極取出し部を
切り欠いたもう一枚のソーダライムガラス(10cm×
8.5cm×2mm厚)とをポリビニルブチラール(P
VB)膜を用いて合せ処理をった後、バスバー電極
間の抵抗を測定したところ、50.4Ωであった。電極
間に電圧22Vを印加して単位面積当たりの発熱量1
00W/m2 で通電試験をったところ、6週間経過後
も、抵抗値、外観とも変化を示さず一定であった。
The substrate on which the film was formed and another soda lime glass (10 cm ×
8.5 cm x 2 mm thick) and polyvinyl butyral (P
VB) After film Tsu line was I if treatment were used to measure the resistance between the bus bar electrode was 50.4Omu. A voltage of 22 V is applied between the electrodes to generate heat 15 per unit area.
00W / m 2 at a current test was Tsu rows, even after 6 weeks, the resistance was constant showed no change with appearance.

【0058】[比較例10] 実施例7と同様のバスバー付き基板に、金属亜鉛、Ag
のターゲットを備えたインライン式スパッタリング装置
を用いて、ZnO/Ag/ZnOの3層からなる高透過
率の導電膜を成膜した。ZnO層は金属亜鉛をターゲッ
トとして、アルゴンと酸素の混合ガス雰囲気中で、反応
性スパッタリングにより成膜した。Ag層は銀をターゲ
ットとして、純アルゴン雰囲気中で成膜した。各層の膜
厚は、基板側から順に450Å、100Å、450Åと
した。この積層膜はバスバー間で測定した端子間抵抗が
7.1Ωであった。
[Comparative Example 10] A substrate having a bus bar similar to that of Example 7 was coated with metallic zinc and Ag.
Using an in-line type sputtering ring apparatus having a target, and a conductive film of high transmittance comprising three layers of ZnO / Ag / ZnO. ZnO layer as a target of metallic zinc, in a mixed gas atmosphere of argon and oxygen was deposited by reactive sputtering ring. The Ag layer was formed in a pure argon atmosphere with silver as a target. The film thickness of each layer was 450Å, 100Å, and 450Å in order from the substrate side. This laminated film had a terminal resistance of 7.1Ω measured between the bus bars.

【0059】実施例7と同様に、前記の基板と、電極取
出し部を切り欠いたもう一枚のソーダライムガラス(1
0cm×8.5cm×2mm厚)とをPVB膜を用いて
合わせ処理をった後、バスバー間に電圧8.2Vを印
加して単位面積当たりの発熱量1500W/m2 で通電
試験をったところ、外観は変化なかったが、3週間経
過後に端子間抵抗が12.9Ωまで増加した。引き続き
通電試験をったところ、6週間目に100Ωを超
In the same manner as in Example 7, the above-mentioned substrate and another soda lime glass (1
After the 0 cm × 8.5 cm × 2 mm thick) were Tsu row processing combined with PVB film, the applied voltage 8.2V operation test in calorific 1 500 W / m 2 per unit area between the bus bar where was Tsu line, but the appearance did not change, the inter-terminal resistance has increased to 12.9Ω after a lapse of three weeks. Continue at the current test was Tsu row, exceeded the 100Ω to 6 weeks
It was

【0060】[比較例11] 実施例7と同様のバスバー付き基板に、ITOターゲッ
ト(In23 −7.5wt%SnO2 )を用いて、イ
ンライン式直流スパッタリング装置により膜厚2400
ÅのITO層を形成した。スパッタリングガスとしては
アルゴンと、アルゴン量に対して2%の酸素を加えた混
合ガスを用いて、マスフローメーターでスパッタリング
中の成膜室圧力が0.01Torrになるように導入し
た。なお成膜中に特に基板加熱はわなかった。30c
m角の基板面内でのシート抵抗分布を測定したところ、
±30%のバラツキがあった。バスバー電極間に22V
の電圧を印加したところ、高抵抗部分ではほとんど発熱
せず、電熱ガラスとして機能に問題があることがわかっ
た。
[0060] The same bus bar with the substrate and Comparative Example 11 Example 7, using an ITO target (In 2 O 3 -7.5wt% SnO 2), thickness 2400 in-line type DC Sputtering device
An ITO layer of Å was formed. And argon as the sputtering gas, with 2% oxygen mixture gas added to argon amount, deposition chamber pressure of Sputtering <br/> in a mass flow meter was introduced so as to 0.01Torr . It should be noted in particular the substrate heating during the film formation was not I row. 30c
When the sheet resistance distribution in the m-square substrate surface was measured,
There was a variation of ± 30%. 22V between bus bar electrodes
It was found that when high voltage was applied, almost no heat was generated in the high resistance part, and there was a problem in the function as electrothermal glass.

【0061】[実施例8] 実施例7と同様にしてガリウムドープ酸化亜鉛膜を形成
した透明導電膜付きのガラス基板を作成する際に、同じ
真空槽内に設けられたジルコニウム−シリコン合金(組
成は原子比でZr/Si=1/2)ターゲットを用い
て、アルゴン−酸素プラズマ中での反応スパッタリング
により、ジルコニア−シリカ膜のオーバーコートおよび
アンダーコートを、真空を破らずにガラス基板上に連続
して形成した。すなわち全体の膜構成としてはガラス基
板側から、膜厚300Åのジルコニア−シリカ膜、膜厚
1200Åのガリウムドープ酸化亜鉛膜、膜厚300Å
のジルコニア−シリカ膜となる。
Example 8 When a glass substrate with a transparent conductive film on which a gallium-doped zinc oxide film was formed was prepared in the same manner as in Example 7, a zirconium-silicon alloy (composition) provided in the same vacuum chamber was prepared. Is an atomic ratio of Zr / Si = 1/2), and a zirconia-silica film overcoat and undercoat are continuously formed on a glass substrate without breaking vacuum by reactive sputtering in argon-oxygen plasma. Formed. That is, from the glass substrate side, the zirconia-silica film having a film thickness of 300Å, the gallium-doped zinc oxide film having a film thickness of 1200Å, and the film film having a film thickness of 300Å
Zirconia-silica film.

【0062】これにスクリーン印刷法によりバスバーお
よび電極取出し部を印刷して300℃で焼き付けた後、
電極取出し部にリード線を半田付けした。その後、同一
寸法のガラスとスペーサを挟んでシーラントで封着して
複層ガラス化して電熱ガラスとした。シーラントを貫通
して外部へ取り出したリード線で、バスバー電極間の抵
抗を測定したところ108Ωであった。バスバー間に電
圧32.2Vを印加して通電試験をったところ、6週
間経過後も、抵抗値、外観とも変化を示さず、一定であ
った
A bus bar and an electrode lead-out portion were printed on this by a screen printing method, and after baking at 300 ° C.,
A lead wire was soldered to the electrode extraction portion. Then sealed with a sealant across the glass and space Sa of the same size
It was made into a multi-layer glass to obtain an electric heating glass. When the resistance between the bus bar electrodes was measured with a lead wire penetrating the sealant and taken out to the outside, it was 108Ω. Where a current test was Tsu line by applying a voltage 32.2V between the bus bars, also after 6 weeks, the resistance value, showed no change with appearance, was constant.

【0063】[0063]

【発明の効果】表2から明らかなように、Ga濃度が原
子比で0.512原子%ある膜は、成膜時において
10-3Ω・cmから10-4Ω・cm台の高い導電性を示
すとともに、大気中熱処理後にも導電性は低下せず、同
等であるかまたは逆に向上する。可視光透過率の変化は
みられず高温大気中で安定な膜である
As is clear from Table 2 , a film having a Ga concentration of 0.5 to 12 atomic% in atomic ratio has a Ga concentration of 10 −3 Ω · cm to 10 −4 Ω · cm. In addition to exhibiting high conductivity, the conductivity does not decrease even after heat treatment in the air, and the conductivity is equivalent or improved. The visible light transmittance is not changed and the film is stable in high temperature atmosphere.

【0064】これに対して表3の比較例1、2に示すよ
うにGa含有量が0.5原子%以下の膜ではX線回折
ークの半値幅が0.6度以下であっても、大気中熱処理
後に抵抗の大幅な増加が見られる。同時に熱処理により
可視光透過率も変化している。また比較例3、4に示
ようにGa量が0.5原子%以上であっても半値幅が
0.6度である場合、大気中熱処理により抵抗増加が
見られる。
On the other hand, as shown in Comparative Examples 1 and 2 in Table 3, the X-ray diffraction pattern was found in the films having a Ga content of 0.5 atomic% or less.
Even if the full width at half maximum of the peak is 0.6 degrees or less, the resistance is significantly increased after the heat treatment in the atmosphere. At the same time by heat treatment
The visible light transmittance is also changing. Also if Ga amount shown to <br/> so in Comparative Examples 3 and 4 are half width even 0.5 atomic% or more is 0.6 degrees greater than the resistance increases by the atmosphere heat treatment is observed.

【0065】さらに比較例5に示ようにGa濃度が1
2原子%の膜では同様に熱処理後に抵抗の大幅な増加
が見られる。添加物がGa以外の3族元素である場合
比較例6〜9に示すが、いずれの場合も半値幅は0.6
度以下であるにもかかわらず大気中での耐熱性は全く見
られない。
[0065] more Ga concentration as are shown in Comparative Example 5 1
Similarly, for a film containing more than 2 atomic%, a large increase in resistance is observed after heat treatment. Shows the case the additive is a Group 3 element other than Ga in <br/> Comparative Example 6-9, in either case half width 0.6
Despite heat resistance in the atmosphere is less than degrees have such at all.

【0066】本発明による、ガリウムドープ酸化亜鉛層
を発熱体層に用いた透明発熱体は、薄い銀層等の金属薄
層を用いた透明発熱体用の膜系と比べて、通電に対する
長期信頼性や環境からのアタックに対する安定性などに
おいて優っている。
The transparent heating element using the gallium-doped zinc oxide layer according to the present invention as a heating element layer has a long-term reliability against electric current as compared with a film system for a transparent heating element using a thin metal layer such as a thin silver layer. It excels in stability and stability against attacks from the environment.

【0067】また、大面積基板に均一な膜厚・膜質分布
で成膜が可能な直流スパッタリング法で成膜できるた
め、例えば1m以上の大面積が必要な、例えば自動車
のフロントガラスの防曇用途など応用でき、また小サ
イズの基板を並べて複数枚同時に成膜できるので、生産
効率の点でも優れている。
[0067] In addition, a large since the area substrate uniform film thickness and film quality distribution in film formation cut with film by a DC sputtering ring method capable, for example, a large area of more than 1m width is required, for example, the windshield of a motor vehicle It can be applied, such as the anti-fogging applications, and because kills with plural simultaneously film side by side substrate of a small size, is also excellent in production efficiency.

【0068】以上示したようにGa濃度とX線回折ピー
の半値幅をある特定の範囲に制御することにより、導
電性、可視光透過率の高い透明導電膜が実現できること
に加えて、大気中熱処理によっても導電性が全く損われ
ない、耐酸化性透明導電膜を得ることができる。したが
って、本発明の透明導電膜は高透明性、低抵抗、大気中
耐熱性、低コスト各要素をえているため、1)各種
表示素子太陽電池受光素子等の透明電極用の膜
2)建築用自動車用の熱線反射膜、選択透過膜または
電磁波遮蔽膜、3)自動車の防曇ガラス、冷凍ショーケ
ース、またはその他の建築用ガラスに用いる透明発熱体
用の膜、4)フォトマスクや建築用等の帯電防止膜、等
として好適であり、極めて広範囲な分野応用できる。
As shown above, the Ga concentration and the X-ray diffraction peak
By controlling the specific range of the half width of click, conductive, in addition to high transparency conductive film having a visible light transmittance can be realized, conductivity not crack at all damaged by the atmosphere heat treatment, oxidation resistance Ru can be obtained a transparent conductive film. Thus, the transparent conductive film of the present invention is high transparency, low resistance, the atmosphere heat resistance, since the e Bei each element of low cost, 1) various display devices, solar cells, membranes for the transparent electrode of the light reception element ,
2) construction and heat ray reflection film for an automobile, selectively permeable membrane or <br/> electromagnetic wave shielding film, 3) Auto antifogging glass, the freezing showcase or transparent heating body used for other architectural glass,
Film use, 4) photomasks and antistatic film construction such as, preferably der as such is, Ru can be applied to an extremely wide range of fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例3の透明導電膜の(002)面による
線回折ピークの半値幅を示すグラフ
FIG. 1 is an X of a (002) plane of a transparent conductive film of Example 3.
Graph showing half-width of line diffraction peak

【図2】比較例4の透明導電膜の(002)面による
線回折ピークの半値幅を示すグラフ
FIG. 2 is an X of the (002) plane of the transparent conductive film of Comparative Example 4.
Graph showing half-width of line diffraction peak

【図3】本発明の透明発熱体の断面構成図FIG. 3 is a sectional configuration diagram of the transparent heating element of the present invention.

【図4】本発明の透明導電膜を用いたEHWの平面図FIG. 4 is a plan view of an EHW using the transparent conductive film of the present invention.

【符号の説明】 1:オーバーコート層 2:ガリウムドープ酸化亜鉛層 3:アンダーコート層 4:基板 5:上辺バスバー 6:透明発熱膜コート部分 7:下辺バスバー 8:基板[Explanation of symbols] 1: Overcoat layer 2: gallium-doped zinc oxide layer 3: Undercoat layer 4: substrate 5: Upper bus bar 6: Transparent heating film coating part 7: Lower bus bar 8: Substrate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−141909(JP,A) 特開 平1−133961(JP,A) 特開 昭62−122011(JP,A) 特開 昭62−154411(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 5/14 H05B 3/20 307 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-141909 (JP, A) JP-A-1-133961 (JP, A) JP-A-62-12011 (JP, A) JP-A-62-1 154411 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01B 5/14 H05B 3/20 307

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化亜鉛を主成分とする透明導電膜であっ
て、ガリウムを亜鉛に対して0.5〜12原子%含有
し、該透明導電膜のX線回折パターンにおいて(00
2)面による回折ピークを有し、該回折ピークの半値幅
が0.6度以下である透明導電膜。
1. A transparent conductive film containing zinc oxide as a main component, which contains gallium in an amount of 0.5 to 12 atomic% with respect to zinc, and has an X-ray diffraction pattern of (00
2) A transparent conductive film having a diffraction peak due to a plane and having a half width of the diffraction peak of 0.6 degrees or less.
【請求項2】前記透明導電膜の比抵抗が10-2Ω・cm
以下で、膜厚が100Å以上5μm以下の範囲にある請
求項1に記載の透明導電膜。
2. The specific resistance of the transparent conductive film is 10 −2 Ω · cm.
The transparent conductive film according to claim 1, having a film thickness of 100 Å or more and 5 μm or less.
【請求項3】基体上に、請求項1または2に記載の透明
導電膜を有する透明発熱体。
3. A transparent heating element having the transparent conductive film according to claim 1 on a substrate.
【請求項4】前記基体と前記透明導電膜との間に1層以
上のアンダーコート膜を有し、および/または、前記透
明導電膜上に1層以上のオーバーコート膜を有する、請
求項3に記載の透明発熱体。
4. The one or more undercoat film is provided between the substrate and the transparent conductive film, and / or the one or more overcoat film is provided on the transparent conductive film. The transparent heating element described in.
【請求項5】前記アンダーコート膜の1層以上または前
記オーバーコート膜の1層以上の膜材料は、酸化ケイ
素、酸化チタン、酸化ジルコニウム、酸化錫、酸化タン
タル、酸化クロム、酸化ニオブ、酸化ホウ素、酸化イン
ジウム、酸化亜鉛および酸化セリウムからなる群から選
ばれる1種以上であるか、または、チタン、ジルコニウ
ム、ハフニウム、クロム、ニオブの金属、前記金属の窒
化物および前記金属の酸窒化物からなる群から選ばれる
1種以上である請求項4に記載の透明発熱体。
5. One or more layers before or under the undercoat film
The film material for one or more layers of the overcoat film is made of silicon oxide.
Element, titanium oxide, zirconium oxide, tin oxide, tan oxide
Tal, chromium oxide, niobium oxide, boron oxide, in oxide
Selected from the group consisting of dium, zinc oxide and cerium oxide
More than one type, or titanium, zirconium
Metals such as aluminum, hafnium, chromium, and niobium;
Selected from the group consisting of oxides and oxynitrides of said metals
The transparent heating element according to claim 4, which is one or more kinds.
【請求項6】請求項3、4またはに記載の透明発熱体
を有する、合わせ構造体または複層構造体。
6. A laminated structure or a multilayer structure having the transparent heating element according to claim 3, 4, or 5 .
JP22467393A 1992-09-11 1993-09-09 Transparent conductive film Expired - Fee Related JP3453805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22467393A JP3453805B2 (en) 1992-09-11 1993-09-09 Transparent conductive film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26956192 1992-09-11
JP4-269561 1992-09-11
JP22467393A JP3453805B2 (en) 1992-09-11 1993-09-09 Transparent conductive film

Publications (2)

Publication Number Publication Date
JPH06187833A JPH06187833A (en) 1994-07-08
JP3453805B2 true JP3453805B2 (en) 2003-10-06

Family

ID=26526194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22467393A Expired - Fee Related JP3453805B2 (en) 1992-09-11 1993-09-09 Transparent conductive film

Country Status (1)

Country Link
JP (1) JP3453805B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4517255B2 (en) * 2000-03-31 2010-08-04 東洋紡績株式会社 Transparent conductive film for touch panel, transparent conductive sheet for touch panel, and touch panel
JP4844000B2 (en) * 2005-04-28 2011-12-21 凸版印刷株式会社 Manufacturing method of color filter substrate
JP2007039293A (en) * 2005-08-05 2007-02-15 Idemitsu Kosan Co Ltd Method for producing oxide powder of zinc-based metal
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
KR101165498B1 (en) * 2006-06-22 2012-07-13 미쓰비시 세이시 가부시키가이샤 Method for producing conductive material
WO2009031399A1 (en) * 2007-09-05 2009-03-12 Murata Manufacturing Co., Ltd. Transparent conductive film and method for producing transparent conductive film
JP2008177625A (en) * 2008-05-07 2008-07-31 Masayoshi Murata Substrate for thin-film solar cell, manufacturing method therefor, and the thin-film solar cell using the same
DE112009002023T5 (en) 2008-08-19 2011-06-30 Lintec Corp. Molded article, method of manufacturing the same, electronic device part and electronic device
WO2010026899A1 (en) 2008-09-04 2010-03-11 株式会社カネカ Substrate with transparent electrode and method for manufacturing substrate with transparent electrode
WO2010032490A1 (en) * 2008-09-19 2010-03-25 株式会社アルバック Solar cell and manufacturing method therefor
JP5379530B2 (en) 2009-03-26 2013-12-25 リンテック株式会社 Molded body, manufacturing method thereof, electronic device member and electronic device
KR101489551B1 (en) 2009-05-22 2015-02-03 린텍 가부시키가이샤 Molded object, process for producing same, member for electronic device, and electronic device
TW201112265A (en) * 2009-09-22 2011-04-01 chuan-sheng Lv Method of manufacturing transparent conductive thin films for flexible polymer substrate and transparent conductive thin films
WO2011102198A1 (en) 2010-02-19 2011-08-25 リンテック株式会社 Transparent conductive film, process for producing same, and electronic device employing transparent conductive film
US20120295120A1 (en) 2010-03-31 2012-11-22 Lintec Corporation Transparent conductive film, process for producing same, and electronic device employing transparent conductive film
JP5697230B2 (en) 2010-03-31 2015-04-08 リンテック株式会社 Molded body, manufacturing method thereof, member for electronic device, and electronic device
WO2012023389A1 (en) 2010-08-20 2012-02-23 リンテック株式会社 Molding, production method therefor, part for electronic devices and electronic device
TWI457235B (en) 2010-09-21 2014-10-21 Lintec Corp A gas barrier film, a manufacturing method thereof, an electronic device element, and an electronic device
TWI535561B (en) 2010-09-21 2016-06-01 Lintec Corp A molded body, a manufacturing method thereof, an electronic device element, and an electronic device
KR20140140187A (en) * 2013-05-28 2014-12-09 삼성코닝어드밴스드글라스 유한회사 ZnO BASED SPUTTERING TARGET AND PHOTOVOLTAIC CELL HAVING PASSIVATION LAYER DEPOSITED BY THE SAME
JP2019021599A (en) 2017-07-21 2019-02-07 株式会社東芝 Transparent electrode and method for producing the same, and electronic device using the transparent electrode
JP7020458B2 (en) * 2019-07-12 2022-02-16 Agc株式会社 Glass substrate with film and its manufacturing method

Also Published As

Publication number Publication date
JPH06187833A (en) 1994-07-08

Similar Documents

Publication Publication Date Title
JP3453805B2 (en) Transparent conductive film
EP1503967B1 (en) Transparent substrate comprising a conductive layer
US5028759A (en) Low emissivity film for a heated windshield
US5902505A (en) Heat load reduction windshield
CA1335887C (en) Neutral sputtered films of metal alloy oxides
US6905776B1 (en) Conductive transparent layers and method for their production
US5270517A (en) Method for fabricating an electrically heatable coated transparency
EP0578046B1 (en) Transparent conductive film, and target and material for vapor deposition to be used for its production
US5976683A (en) Coating system transparent to light and reflecting thermal radiation
JP5725481B2 (en) Low emission glass containing dielectric layer and method for producing the same
JPH08336923A (en) Heat resistant window or window shield having high transmission and low radiation rate and manufacture thereof
WO1991002102A1 (en) Film based on silicon dioxide and production thereof
JPH06199544A (en) Transparent substrate with transparent layer and production of said layer
JPH05334924A (en) Manufacture of transparent conductive film
JP2012533514A (en) Low emission glass and manufacturing method thereof
JP4067141B2 (en) Transparent conductive film, method for producing the same, and sputtering target
JP2003034828A (en) Ag ALLOY FILM FOR SHIELDING ELECTROMAGNETIC WAVE, BODY HAVING Ag ALLOY FILM FOR SHIELDING ELECTROMAGNETIC WAVE, AND SPUTTERING TARGET OF Ag ALLOY FOR SHIELDING ELECTROMAGNETIC WAVE
JP2020510591A (en) Coated article having a LOW-E coating with a doped silver IR reflective layer
KR101302273B1 (en) Low emissivity glass and preparing method thereof
US8722210B2 (en) Low emissivity glass and method for manufacturing the same
JP2917432B2 (en) Method for producing conductive glass
JP4168689B2 (en) Thin film laminate
KR0179462B1 (en) Alkali metal diffusion barrier layer
JPH07249316A (en) Transparent conductive film and transparent substrate using the transparent conductive film
JPH07325313A (en) Conductive laminate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees