WO2011019040A1 - Substrate having transparent conductive film attached thereto, and substrate for plasma display panel - Google Patents

Substrate having transparent conductive film attached thereto, and substrate for plasma display panel Download PDF

Info

Publication number
WO2011019040A1
WO2011019040A1 PCT/JP2010/063576 JP2010063576W WO2011019040A1 WO 2011019040 A1 WO2011019040 A1 WO 2011019040A1 JP 2010063576 W JP2010063576 W JP 2010063576W WO 2011019040 A1 WO2011019040 A1 WO 2011019040A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
transparent conductive
substrate
film
barrier layer
Prior art date
Application number
PCT/JP2010/063576
Other languages
French (fr)
Japanese (ja)
Inventor
健 岡東
秀文 小高
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2011526770A priority Critical patent/JPWO2011019040A1/en
Priority to CN2010800361033A priority patent/CN102471147A/en
Publication of WO2011019040A1 publication Critical patent/WO2011019040A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • C03C2217/948Layers comprising indium tin oxide [ITO]

Definitions

  • the present invention relates to a substrate with a transparent conductive film and a substrate for a plasma display panel (PDP) using the substrate with a transparent conductive film.
  • PDP plasma display panel
  • a transparent conductive film and a bus electrode are formed in this order on a glass substrate.
  • indium oxide, zinc oxide, and tin oxide are known.
  • ITO tin-doped indium oxide
  • the reason why ITO is widely used is its low resistance and good patterning property.
  • indium has few reserve resources, and the development of alternative materials is desired.
  • a tin oxide (SnO 2 ) film is a material that is expected as an alternative material, but in order to impart conductivity to tin oxide, it is necessary to use antimony as a dopant, which may cause environmental concerns in the future. was there.
  • tin oxide is the main component, and at least one element selected from the A dopant group consisting of niobium, tungsten, tantalum, bismuth and molybdenum, and copper element are used as dopants.
  • Including transparent conductive films have been proposed.
  • copper element is a component contained as a sintering aid for the sputtering target, and it is the element of the A dopant group that imparts conductivity to tin oxide.
  • Patent Document 2 in order to solve the above problem, at least one element selected from an A dopant group composed mainly of tin oxide and made of zinc, niobium, titanium, magnesium, aluminum, and zirconium, tungsten, There has been proposed a transparent conductive film containing, as a dopant, at least one element selected from a B dopant group made of tantalum and molybdenum.
  • a silver paste containing glass frit is applied on the transparent conductive film and then fired at 500 to 600 ° C. (see Patent Document 3).
  • a glass frit to be contained in the silver paste a lead glass frit has been mainly used in the past.
  • a bismuth oxide containing bismuth oxide (Bi 2 O 3 ) as a main component is required in view of the requirement for lead-free. It is thought to move to glass frit.
  • the present invention has a contact resistance when forming a bus electrode using a silver paste containing bismuth glass frit on a transparent conductive film mainly composed of tin oxide. It is an object of the present invention to provide a substrate with a transparent conductive film in which the rise is prevented, and a substrate for PDP using the substrate with a transparent conductive film.
  • Bi 2 O 3 bismuth oxide
  • SnO 2 tin oxide
  • the barrier layer is selected from the group consisting of TiO 2 , Nb 2 O 5 , ITO (tin-doped indium oxide), TZO (tin-zinc oxide), and GZO (gallium-doped zinc oxide). It is preferable to consist of any of the above metal oxides.
  • the barrier layer preferably has a thickness of 1 to 50 nm.
  • the transparent conductive film containing tin oxide (SnO 2 ) as a main component preferably contains 0.1 to 10 atomic percent of tantalum (Ta) as a dopant in terms of element.
  • the thickness of the transparent conductive film is preferably 50 nm or more and 1 ⁇ m or less.
  • a bus electrode is formed by applying a silver paste containing bismuth-based glass frit on the barrier layer of the substrate with a transparent conductive film of the present invention and baking at a temperature of 500 to 600 ° C.
  • a substrate for a plasma display panel (PDP) is provided.
  • a barrier layer is formed on a transparent conductive film containing tin oxide as a main component. Therefore, when forming a bus electrode using a silver paste containing a bismuth-based glass frit, The contact resistance between the transparent conductive film and the bus electrode is prevented from increasing.
  • substrate with a transparent conductive film of this invention does not impair the characteristics, such as the electroconductivity of a transparent conductive film, transparency, by forming a barrier layer on a transparent conductive film. Since the substrate for PDP of the present invention has a low contact resistance between the transparent conductive film and the bus electrode, a PDP manufactured using the substrate as a front panel of the PDP is expected to have excellent display quality.
  • FIG. 1 is a schematic view showing a basic configuration of a substrate with a transparent conductive film of the present invention.
  • FIG. 2 is a schematic view showing a state in which bus electrodes are formed on a barrier layer of a substrate with a transparent conductive film in Examples.
  • FIG. 3 is a SEM photograph of the state of the surface after dissolving and removing the bus electrode in Example 1.
  • FIG. 4 is a SEM photograph of the surface state after dissolving and removing the bus electrode in Example 4.
  • FIG. 5 is an SEM photograph of the surface state after dissolving and removing the bus electrode in Comparative Example 1.
  • FIG. 1 is a schematic view showing a basic configuration of a substrate with a transparent conductive film of the present invention.
  • a transparent conductive film 2 and a barrier layer 3 are laminated on a glass transparent substrate 1 in this order.
  • a transparent conductive film 2 and a barrier layer 3 are laminated on a glass transparent substrate 1 in this order.
  • the constituent material of the glass transparent substrate can be widely selected from those used as a glass substrate for PDP, and various glass materials such as soda lime glass, high strain point glass and non-alkali glass can be used. Among these, the glass substrate composition described in Japanese Patent No. 2738036 and Japanese Patent No. 3669022 is particularly preferable.
  • the glass transparent substrate preferably has a spectral transmittance of 80% or more in the range of 425 to 475 nm, 510 to 560 nm, and 600 to 650 nm.
  • the size and thickness of the glass transparent substrate are not particularly limited, for example, those having a length and width of about 400 to 3000 mm can be preferably used.
  • the thickness is preferably 0.7 to 3.0 mm, more preferably 1.5 to 3.0 mm.
  • a transparent conductive film containing tin oxide (SnO 2 ) as a main component is used.
  • the transparent conductive film containing tin oxide as a main component means that the content of tin oxide is 80 atomic% or more in terms of tin element.
  • the transparent conductive film may be a film formed only of tin oxide, but it is usually preferable to add a dopant for the purpose of imparting conductivity to the tin oxide. Examples of the dopant added for this purpose include tantalum (Ta), tungsten (W), bismuth (Bi), and molybdenum (Mo).
  • Indium and antimony have been conventionally used as dopants added for the purpose of imparting conductivity to tin oxide, but the former is an expensive element, and the latter is environmentally concerned in the future. Therefore, it is preferably not used for the transparent conductive film in the present invention. For this reason, it is preferable that the transparent conductive film in this invention does not contain indium and antimony substantially, and these content is 0.1 atomic% or less in element conversion.
  • the dopant content in the transparent conductive film is 0.1 to 10 atomic% in terms of element. It is preferable that it is 0.5 to 5 atomic%.
  • the sputtering target used for forming a transparent conductive film mainly composed of tin oxide includes a sintering aid. Agents are usually added. Therefore, the transparent conductive film containing tin oxide as a main component usually contains a component of such a sintering aid.
  • the sintering aid added to the sputtering target include copper (Cu), zinc (Zn), niobium (Nb), titanium (Ti), magnesium (Mg), aluminum (Al), and zirconium (Zr). It is done.
  • the content of the sintering aid component in the transparent conductive film containing tin oxide as a main component is preferably 10 atomic% or less in terms of element.
  • the transparent conductive film mainly composed of tin oxide is composed of tin oxide, a dopant added for the purpose of imparting conductivity to the above-described tin oxide, and components other than the components of the sintering aid (hereinafter referred to as “others”
  • the content of the other component is preferably 10 atomic% or less in terms of element.
  • the transparent conductive film containing tin oxide as a main component preferably has a specific resistance of 5 ⁇ 10 ⁇ 2 ⁇ cm or less, more preferably 1 ⁇ 10 ⁇ 2 ⁇ cm or less, and more preferably 0.5 ⁇ 10 ⁇ 2 ⁇ cm. Or less, more preferably 9 ⁇ 10 ⁇ 3 ⁇ cm or less.
  • the transparent conductive film mainly composed of tin oxide preferably has a thickness of 1 ⁇ m or less. If a film thickness is 1 micrometer or less, there is no possibility that a transparent conductive film may have optical defects, such as a haze.
  • the film thickness of the transparent conductive film is more preferably 0.4 ⁇ m or less, and further preferably 0.25 ⁇ m or less. Moreover, it is preferable that the film thickness of a transparent conductive film is 50 nm or more.
  • the transparent conductive film mainly composed of tin oxide is preferably excellent in transparency, and specifically, the visible light transmittance is preferably 80% or more.
  • sputtering is performed using a sputtering target having a desired composition, specifically, a sputtering target having the same composition as the transparent conductive film to be formed.
  • the sputtering method to be used is not particularly limited, but a DC sputtering method using a DC power source, a DC pulse sputtering method, an AC sputtering method using a DC power source by switching, or an MF sputtering method using a medium wave power source, It is preferable because it is easy to operate and advantageous in terms of film thickness control.
  • the transparent conductive film mainly composed of tin oxide may be formed by using another sputtering method such as an RF sputtering method using a high frequency power source, or a sputtering method such as a CVD method, a sol-gel method, or a PLD method. You may form using the film-forming method other than the method.
  • another sputtering method such as an RF sputtering method using a high frequency power source, or a sputtering method such as a CVD method, a sol-gel method, or a PLD method.
  • the oxidizing atmosphere is an atmosphere containing an oxidizing gas, and is usually a mixed gas atmosphere of an oxidizing gas and an inert gas.
  • the oxidizing gas, O 2, H 2 O, CO, CO 2 , etc. means an oxygen atom-containing gas.
  • a mixed gas atmosphere of O 2 or CO 2 and argon (Ar) is preferable because the gas composition is easy to control and it is convenient for obtaining a transparent and low resistance film, and CO 2 and Ar A mixed gas atmosphere is particularly preferable.
  • the O 2 concentration in the mixed gas atmosphere of O 2 and Ar is preferably 1 to 10% by volume because a transparent and low resistance film can be obtained.
  • the CO 2 concentration in the mixed gas atmosphere of CO 2 and Ar is preferably 10 to 50% by volume because a transparent and low resistance film can be obtained.
  • Sputtering conditions vary depending on the sputtering method used, but in the case of magnetron DC sputtering, it is preferable to carry out under the following conditions.
  • Power density during sputtering 1 to 15 W / cm 2
  • Sputtering pressure 10 ⁇ 2 to 10 Pa
  • barrier layer an oxide of at least one metal selected from the group consisting of indium (In), tin (Sn), gallium (Ga), zinc (Zn), titanium (Ti), and niobium (Nb) is used. Use what is included.
  • a barrier layer on a transparent conductive film mainly composed of tin oxide, an increase in contact resistance between the bus electrode and the transparent conductive film during the formation of the bus electrode, specifically, a bismuth-based glass frit is formed.
  • the silver paste contained is applied on the barrier layer and then baked at 500 to 600 ° C., the contact resistance between the bus electrode and the transparent conductive film is prevented from increasing.
  • barrier layer having the above composition examples include a TiO 2 film, an Nb 2 O 5 film, an ITO (tin doped indium oxide) film, a TZO (tin zinc oxide) film, and a GZO (gallium doped zinc oxide) film.
  • the increase in contact resistance between the bus electrode and the transparent conductive film during the formation of the bus electrode is caused by bismuth oxide (Bi 2 O 3 ), which is the main component of the bismuth-based glass frit, and the main component of the transparent conductive film.
  • bismuth oxide Ba 2 O 3
  • certain tin oxide SnO 2
  • the action of preventing an increase in contact resistance between the bus electrode and the transparent conductive film when forming the bus electrode varies depending on the material constituting the barrier layer as described below.
  • the barrier layer is a TiO 2 film or an Nb 2 O 5 film
  • Bi 2 O 3 in which the crystalline TiO 2 film or Nb 2 O 5 film is the main component of the bismuth-based glass frit and the main component of the transparent conductive film
  • the reaction with tin oxide (SnO 2 ) is suppressed.
  • formation of Bi 2 Sn 2 O 7 is suppressed, and an increase in contact resistance between the bus electrode and the transparent conductive film is prevented.
  • the TiO 2 film or the Nb 2 O 5 film is an insulator, but since the thickness of the barrier layer is small as will be described later, the presence of the barrier layer between the bus electrode and the transparent conductive film The contact resistance between the bus electrode and the transparent conductive film does not increase.
  • the barrier layer is an ITO film, a TZO film or a GZO film
  • the effect of suppressing the reaction between Bi 2 O 3 and SnO 2 is less than that of the TiO 2 film or the Nb 2 O 5 film. Since the film itself is excellent in conductivity, the resistance of the entire film configuration of the barrier layer and the transparent conductive film is lowered (hereinafter, this action is referred to as “bypass effect by the barrier layer”). As a result, an increase in contact resistance between the bus electrode and the transparent conductive film is prevented.
  • an ITO film is preferable because of excellent conductivity of the film itself and good film patternability.
  • the conductivity of the film itself is inferior to that of the ITO film, but the influence of the film thickness on the resistance value is relatively small, the film formation cost is lower than that of the ITO film, and it is chemically stable.
  • a TZO film is also preferable because it does not dissolve even in alkaline cleaning where the GZO film dissolves.
  • the thickness of the barrier layer is preferably 1 to 50 nm.
  • the thickness of the barrier layer is in the above range, the effect of preventing an increase in contact resistance between the bus electrode and the transparent conductive film when forming the bus electrode is excellent.
  • the thickness of the barrier layer is less than 1 nm, it is impossible to prevent an increase in contact resistance between the bus electrode and the transparent conductive film when the bus electrode is formed. More specifically, when the barrier layer is a TiO 2 film or an Nb 2 O 5 film, if the thickness of the barrier layer is less than 1 nm, the effect of suppressing the reaction between Bi 2 O 3 and SnO 2 is ineffective. This is sufficient, and an increase in contact resistance between the bus electrode and the transparent conductive film during the formation of the bus electrode cannot be prevented.
  • the barrier layer is an ITO film, a TZO film, or a GZO film
  • the thickness of the barrier layer is less than 1 nm, the increase in contact resistance due to the formation of Bi 2 Sn 2 O 7 cannot be offset by the bypass effect. An increase in contact resistance between the bus electrode and the transparent conductive film during electrode formation cannot be prevented.
  • the thickness of the barrier layer exceeds 50 nm, the effect of preventing the increase in contact resistance between the bus electrode and the transparent conductive film during the formation of the bus electrode is not increased, increasing the tact time, increasing the material cost, This is not preferable because problems due to an increase in the thickness of the barrier layer such as an influence on patternability of a subsequent process occur.
  • the barrier layer is a TiO 2 film or an Nb 2 O 5 film
  • the thickness of the barrier layer exceeds 50 nm, an increase in resistance due to the barrier layer itself becomes a problem.
  • the thickness of the barrier layer is more preferably 1 to 30 nm.
  • the total thickness of the laminate of the transparent conductive film and the barrier layer is preferably 50 to 1000 nm, considering the balance of conductivity, barrier properties, film transparency and productivity, and preferably 50 to 500 nm. It is more preferable that the thickness is 50 to 200 nm.
  • the barrier layer formed on the transparent conductive film is required to have the same optical characteristics as the transparent conductive film. That is, the barrier layer is required to have excellent transparency, and the visible light transmittance is preferably 80% or more.
  • sputtering may be performed using a sputtering target having a desired composition.
  • the sputtering method to be used is not particularly limited, but a DC sputtering method using a DC power source, a DC pulse sputtering method, an AC sputtering method using a DC power source by switching, or an MF sputtering method using a medium wave power source, It is preferable because it is easy to operate and advantageous in terms of film thickness control.
  • the barrier layer may be formed by using another sputtering method such as an RF sputtering method using a high-frequency power source, or by using a film forming method other than the sputtering method such as a CVD method, a sol-gel method, or a PLD method. May be formed.
  • another sputtering method such as an RF sputtering method using a high-frequency power source
  • a film forming method other than the sputtering method such as a CVD method, a sol-gel method, or a PLD method. May be formed.
  • the oxidizing atmosphere is an atmosphere containing an oxidizing gas, and is usually a mixed gas atmosphere of an oxidizing gas and an inert gas.
  • the oxidizing gas, O 2, H 2 O, CO, CO 2 , etc. means an oxygen atom-containing gas.
  • a mixed gas atmosphere of O 2 or CO 2 and argon (Ar) is preferable because the gas composition is easy to control and it is convenient for obtaining a transparent and low resistance film, and CO 2 and Ar A mixed gas atmosphere is particularly preferable.
  • the O 2 concentration in the mixed gas atmosphere of O 2 and Ar is preferably 1 to 10% by volume because a transparent film can be obtained.
  • the CO 2 concentration in the mixed gas atmosphere of CO 2 and Ar is preferably 10 to 50% by volume because a transparent film can be obtained.
  • the sputtering conditions vary depending on the sputtering method used, but in the case of the magnetron DC sputtering method, the sputtering can be performed under the same conditions as the sputtering conditions for forming the transparent conductive film.
  • the substrate for PDP of the present invention is such that a bus electrode is formed on the barrier layer of the substrate with a transparent conductive film of the present invention as described below.
  • a silver paste containing bismuth-based glass frit is applied to a portion where a bus electrode is formed on a transparent conductive film.
  • the silver paste used for this purpose is usually prepared by mixing 60% by mass or more of silver powder, 1 to 20% by mass of a bismuth glass frit, and 10 to 30% by mass of an organic binder. A typical composition of the bismuth glass frit used for this purpose is shown below.
  • the coating method of the silver paste is not particularly limited, and for example, a coating method such as screen printing, a spray method, a blade coater method, or a die coating method can be used.
  • the thickness to which the silver paste is applied is not particularly limited, and can be appropriately selected according to the thickness of the silver electrode to be formed.
  • the thickness of the formed silver electrode is usually in the range of several ⁇ m to several tens of ⁇ m.
  • a bus electrode is formed by baking at a temperature of 500 to 600 ° C. for a predetermined time (for example, 5 minutes to 1 hour), and the PDP substrate of the present invention is obtained.
  • the barrier layer is formed on the transparent conductive film mainly composed of tin oxide, the contact between the bus electrode and the transparent conductive film when forming the bus electrode. Resistance rise is prevented.
  • the PDP substrate of the present invention has a low contact resistance between the transparent conductive film and the bus electrode, and a PDP produced using the substrate as a front panel of the PDP is expected to have excellent luminous efficiency.
  • Example 1 to 5 a Ta-doped SnO 2 film was formed as a transparent conductive film on a glass transparent substrate by the following procedure, and a TiO 2 film and Nb 2 were formed as a barrier layer on the Ta-doped SnO 2 film.
  • a bus electrode is formed on the barrier layer, and a contact resistance between the bus electrode and the barrier layer using a TLM (Transmission Line Model) method, And sheet resistance was calculated
  • the sheet resistance referred to here is the sheet resistance of the laminate including the transparent conductive film and the barrier layer.
  • Glass transparent substrate As the glass transparent substrate, a high strain point glass substrate for PDP (PD200 manufactured by Asahi Glass Co., Ltd.) was used.
  • Transparent conductive film On the top surface of the substrate, a film (Ta-doped SnO 2 film) containing tin oxide as a main component and tantalum as a dopant as a transparent conductive film was formed under the following conditions.
  • the composition of the Ta-doped SnO 2 film is 2.1 atomic% in terms of tantalum atomic weight, and the film thickness is 100 nm.
  • Sputtering method magnetron DC sputtering sputtering target: Ta-doped SnO 2 target (Ta 2 O 3 doping amount 6 mass%)
  • Sputtering gas Mixed gas of Ar and O 2 (O 2 1% by volume)
  • Power density during sputtering 5 W / cm 2
  • Sputtering pressure 0.5 Pa
  • TiO 2 film, Nb 2 O 5 film, ITO film (SnO 2 doping amount 10 mass%), TZO film (Sn 2 ZnO 3 ) or GZO film (Ga 2 O 3 doping amount 5) .7 mass%) was formed under the following conditions.
  • [Bus electrode] A mixture of vehicle, terpineol, bismuth glass frit and silver powder mixed so as to be 10% by mass of bismuth glass frit and 90% by mass of silver powder was screen-printed on the barrier layer.
  • the composition of the bismuth glass frit is as follows. SiO 2 1-5% by mass B 2 O 3 5-15% by mass Al 2 O 3 3-8 mass% Bi 2 O 3 70-90 mass% Then, it baked at 600 degreeC for 1 hour, and formed the bus electrode. As shown in FIG. 2, a plurality of bus electrodes 4 and 5 were formed on the barrier layer 3 at intervals.
  • [TLM method] Contact resistance and sheet resistance were determined according to the following formula.
  • R T 2 ⁇ R C + (R SH ⁇ l) / W
  • RT is a resistance between bus electrodes
  • RC is a contact resistance between the barrier layer and the bus electrode
  • R SH is a sheet resistance
  • l is a distance between the bus electrodes
  • W is a width of the bus electrode.
  • Examples 1 to 5 in which a TiO 2 film, Nb 2 O 5 film, ITO film, TZO film or GZO film was formed as a barrier layer on a transparent conductive film containing tin oxide as a main component are as follows: It was confirmed that the contact resistance was lower than that of Comparative Example 1 in which no barrier layer was formed, and an increase in the contact resistance between the bus electrode and the transparent conductive film during the formation of the bus electrode was prevented.
  • Example 1 carrier layer: TiO 2 film
  • Example 4 carrier layer: TZO film
  • Comparative Example 1 no barrier layer
  • Example 4 in Example 4 in which the TZO film was formed as the barrier layer on the transparent conductive film, the formation of crystals was observed, but the TZO film itself has high conductivity, so the barrier layer By virtue of the bypass effect, the increase in contact resistance between the bus electrode and the transparent conductive film is prevented.
  • a barrier layer is formed on a transparent conductive film containing tin oxide as a main component. Therefore, when forming a bus electrode using a silver paste containing a bismuth-based glass frit, The contact resistance between the transparent conductive film and the bus electrode is prevented from increasing. Moreover, the board
  • Transparent glass substrate 2 Transparent conductive film 3: Barrier layer 4, 5: Bus electrode

Abstract

A substrate having a transparent conductive film attached thereto, comprising a transparent glass substrate, a transparent conductive film mainly composed of tin oxide (SnO2), and a barrier layer comprising an oxide of at least one metal selected from the group consisting of indium (In), tin (Sn), gallium (Ga), zinc (Zn), titanium (Ti) and niobium (Nb), wherein the transparent conductive film and the barrier layer are laminated in this order on the glass transparent substrate.

Description

透明導電膜付基板およびプラズマディスプレイパネル用基板Substrate with transparent conductive film and substrate for plasma display panel
 本発明は、透明導電膜付基板、および該透明導電膜付基板を用いたプラズマディスプレイパネル(PDP)用基板に関する。 The present invention relates to a substrate with a transparent conductive film and a substrate for a plasma display panel (PDP) using the substrate with a transparent conductive film.
 PDPの前面パネルを作製する場合、ガラス基板上に透明導電膜およびバス電極がこの順に形成される。透明導電膜としては、酸化インジウム系、酸化亜鉛系、酸化スズ系が知られている。酸化インジウム系としては、ITO(スズドープ酸化インジウム)が特に有名で広く用いられている。ITOが広く用いられている理由として、その低抵抗性と良パターニング性があげられる。しかし、インジウムは埋蔵資源が少ないことが知られており、代替となる材料の開発が望まれている。
 酸化スズ(SnO)膜は、その代替材料として期待される材料であるが、酸化スズに導電性を付与するためには、環境的に将来的な懸念がありうるアンチモンをドーパントとして利用する必要があった。特許文献1では、この問題を解決するため、酸化スズを主成分とし、ニオブ、タングステン、タンタル、ビスマスおよびモリブデンからなるAドーパンド群から選択される少なくとも一つの元素と、銅元素と、をドーパントとして含む透明導電膜が提案されている。特許文献1に記載の透明導電膜の場合、銅元素はスパッタリングターゲットの焼結助剤として含有させる成分であり、酸化スズに導電性を付与するのはAドーパント群の元素である。
 また、特許文献2では、上記の問題を解決するため、酸化スズを主成分とし、亜鉛、ニオブ、チタン、マグネシウム、アルミニウムおよびジルコニウムからなるAドーパンド群から選択される少なくとも一つの元素と、タングステン、タンタルおよびモリブデンからなるBドーパンド群から選択される少なくとも一つの元素と、をドーパントとして含む透明導電膜が提案されている。
When producing a front panel of a PDP, a transparent conductive film and a bus electrode are formed in this order on a glass substrate. As the transparent conductive film, indium oxide, zinc oxide, and tin oxide are known. As the indium oxide system, ITO (tin-doped indium oxide) is particularly famous and widely used. The reason why ITO is widely used is its low resistance and good patterning property. However, it is known that indium has few reserve resources, and the development of alternative materials is desired.
A tin oxide (SnO 2 ) film is a material that is expected as an alternative material, but in order to impart conductivity to tin oxide, it is necessary to use antimony as a dopant, which may cause environmental concerns in the future. was there. In Patent Document 1, in order to solve this problem, tin oxide is the main component, and at least one element selected from the A dopant group consisting of niobium, tungsten, tantalum, bismuth and molybdenum, and copper element are used as dopants. Including transparent conductive films have been proposed. In the case of the transparent conductive film described in Patent Document 1, copper element is a component contained as a sintering aid for the sputtering target, and it is the element of the A dopant group that imparts conductivity to tin oxide.
Further, in Patent Document 2, in order to solve the above problem, at least one element selected from an A dopant group composed mainly of tin oxide and made of zinc, niobium, titanium, magnesium, aluminum, and zirconium, tungsten, There has been proposed a transparent conductive film containing, as a dopant, at least one element selected from a B dopant group made of tantalum and molybdenum.
 透明導電膜上にバス電極を形成する場合、該透明導電膜上にガラスフリットを含有する銀ペーストを塗布した後、500~600℃で焼成する(特許文献3参照)。銀ペーストに含有させるガラスフリットとしては、鉛系のガラスフリットが従来主流であったが、鉛フリーの要請から将来的には、主成分として酸化ビスマス(Bi)を含有するビスマス系のガラスフリットに移行すると考えられている。 When a bus electrode is formed on a transparent conductive film, a silver paste containing glass frit is applied on the transparent conductive film and then fired at 500 to 600 ° C. (see Patent Document 3). As a glass frit to be contained in the silver paste, a lead glass frit has been mainly used in the past. However, in the future, a bismuth oxide containing bismuth oxide (Bi 2 O 3 ) as a main component is required in view of the requirement for lead-free. It is thought to move to glass frit.
国際公開第2008-111324号パンフレットInternational Publication No. 2008-111324 Pamphlet 国際公開第2007-142330号パンフレットInternational Publication No. 2007-142330 Pamphlet 日本国特開2003-162962号公報Japanese Unexamined Patent Publication No. 2003-162962
 しかしながら、本願発明者らは、酸化スズを主成分とする透明導電膜上にビスマス系ガラスフリットを含む銀ペーストを用いてバス電極を形成すると、形成されるバス電極と透明導電膜との接触抵抗が上昇することを見出した。バス電極と透明導電膜との接触抵抗が上昇すると、これを用いて製造されるPDPの表示品位が低下するので問題となる。
 本発明は、上記した従来技術の問題点を解決するため、酸化スズを主成分とする透明導電膜上にビスマス系ガラスフリットを含有する銀ペーストを用いてバス電極を形成する際の接触抵抗の上昇が防止された透明導電膜付基板、および、該透明導電膜付基板を用いたPDP用基板を提供することを目的とする。
However, when the present inventors form a bus electrode using a silver paste containing bismuth glass frit on a transparent conductive film containing tin oxide as a main component, the contact resistance between the formed bus electrode and the transparent conductive film Found to rise. When the contact resistance between the bus electrode and the transparent conductive film is increased, the display quality of a PDP manufactured using the bus electrode is deteriorated.
In order to solve the above-mentioned problems of the prior art, the present invention has a contact resistance when forming a bus electrode using a silver paste containing bismuth glass frit on a transparent conductive film mainly composed of tin oxide. It is an object of the present invention to provide a substrate with a transparent conductive film in which the rise is prevented, and a substrate for PDP using the substrate with a transparent conductive film.
 本願発明者らは、上記の目的を達成するため鋭意検討した結果、ビスマス系ガラスフリットの主成分である酸化ビスマス(Bi)と、透明導電膜の主成分である酸化スズ(SnO)と、が銀ペーストの焼成時に反応して、BiSnを形成することがバス電極形成時におけるバス電極と透明導電膜との接触抵抗の上昇の原因であることを見出した。
 本発明は、上記の知見に基づいてなされたものであり、ガラス透明基板上に、酸化スズ(SnO)を主成分とする透明導電膜と、インジウム(In)、スズ(Sn)、ガリウム(Ga)、亜鉛(Zn)、チタン(Ti)およびニオブ(Nb)からなる群から選択される少なくとも1種の金属の酸化物を含むバリア層が、この順に積層して形成された透明導電膜付基板を提供する。
As a result of intensive studies to achieve the above object, the present inventors have found that bismuth oxide (Bi 2 O 3 ), which is a main component of a bismuth glass frit, and tin oxide (SnO 2 ), which is a main component of a transparent conductive film. It was found that the formation of Bi 2 Sn 2 O 7 reacts during firing of the silver paste to cause an increase in contact resistance between the bus electrode and the transparent conductive film during the formation of the bus electrode.
The present invention has been made on the basis of the above-described knowledge. On a glass transparent substrate, a transparent conductive film mainly composed of tin oxide (SnO 2 ), indium (In), tin (Sn), gallium ( With a transparent conductive film formed by laminating a barrier layer containing an oxide of at least one metal selected from the group consisting of Ga), zinc (Zn), titanium (Ti) and niobium (Nb) in this order Providing a substrate.
 本発明の透明導電膜付基板において、前記バリア層が、TiO、Nb、ITO(スズドープ酸化インジウム)、TZO(スズ亜鉛酸化物)およびGZO(ガリウムドープ酸化亜鉛)からなる群から選択されるいずれかの金属酸化物からなることが好ましい。 In the substrate with a transparent conductive film of the present invention, the barrier layer is selected from the group consisting of TiO 2 , Nb 2 O 5 , ITO (tin-doped indium oxide), TZO (tin-zinc oxide), and GZO (gallium-doped zinc oxide). It is preferable to consist of any of the above metal oxides.
 本発明の透明導電膜付基板において、前記バリア層の厚さが、1~50nmであることが好ましい。 In the substrate with a transparent conductive film of the present invention, the barrier layer preferably has a thickness of 1 to 50 nm.
 本発明の透明導電膜付基板において、前記酸化スズ(SnO)を主成分とする透明導電膜が、ドーパントとしてタンタル(Ta)を元素換算で0.1~10原子%含有することが好ましい。 In the substrate with a transparent conductive film of the present invention, the transparent conductive film containing tin oxide (SnO 2 ) as a main component preferably contains 0.1 to 10 atomic percent of tantalum (Ta) as a dopant in terms of element.
 本発明の透明導電膜付基板において、前記透明導電膜の厚さが、50nm以上1μm以下であることが好ましい。 In the substrate with a transparent conductive film of the present invention, the thickness of the transparent conductive film is preferably 50 nm or more and 1 μm or less.
 また、本発明は、本発明の透明導電膜付基板のバリア層上に、ビスマス系ガラスフリットを含有する銀ペーストを塗布し、500~600℃の温度で焼成することによりバス電極が形成されたプラズマディスプレイパネル(PDP)用基板を提供する。 Further, in the present invention, a bus electrode is formed by applying a silver paste containing bismuth-based glass frit on the barrier layer of the substrate with a transparent conductive film of the present invention and baking at a temperature of 500 to 600 ° C. A substrate for a plasma display panel (PDP) is provided.
 本発明の透明導電膜付基板は、酸化スズを主成分とする透明導電膜上にバリア層が形成されているため、ビスマス系ガラスフリットを含有する銀ペーストを用いてバス電極を形成する際に、透明導電膜とバス電極との接触抵抗が上昇することが防止される。
 本発明の透明導電膜付基板は、透明導電膜上にバリア層を形成することにより、透明導電膜の導電性、透明性等の特性が損なわれることがない。
 本発明のPDP用基板は、透明導電膜とバス電極との接触抵抗が低いため、該基板をPDPの前面パネルとして用いて作製されるPDPは表示品位に優れることが期待される。
In the substrate with a transparent conductive film of the present invention, a barrier layer is formed on a transparent conductive film containing tin oxide as a main component. Therefore, when forming a bus electrode using a silver paste containing a bismuth-based glass frit, The contact resistance between the transparent conductive film and the bus electrode is prevented from increasing.
The board | substrate with a transparent conductive film of this invention does not impair the characteristics, such as the electroconductivity of a transparent conductive film, transparency, by forming a barrier layer on a transparent conductive film.
Since the substrate for PDP of the present invention has a low contact resistance between the transparent conductive film and the bus electrode, a PDP manufactured using the substrate as a front panel of the PDP is expected to have excellent display quality.
図1は、本発明の透明導電膜付基板の基本構成を示した模式図である。FIG. 1 is a schematic view showing a basic configuration of a substrate with a transparent conductive film of the present invention. 図2は、実施例において、透明導電膜付基板のバリア層上にバス電極を形成した状態を示した模式図である。FIG. 2 is a schematic view showing a state in which bus electrodes are formed on a barrier layer of a substrate with a transparent conductive film in Examples. 図3は、実施例1におけるバス電極を溶解除去した後の表面の状態のSEM写真である。FIG. 3 is a SEM photograph of the state of the surface after dissolving and removing the bus electrode in Example 1. 図4は、実施例4におけるバス電極を溶解除去した後の表面の状態のSEM写真である。FIG. 4 is a SEM photograph of the surface state after dissolving and removing the bus electrode in Example 4. 図5は、比較例1におけるバス電極を溶解除去した後の表面の状態のSEM写真である。FIG. 5 is an SEM photograph of the surface state after dissolving and removing the bus electrode in Comparative Example 1.
 以下、図面を参照して本発明について説明する。
 図1は、本発明の透明導電膜付基板の基本構成を示した模式図である。図1に示すように、本発明の透明導電膜付基板では、ガラス透明基板1上に、透明導電膜2と、バリア層3が、この順に積層されている。
 以下、透明導電膜付基板の個々の構成について説明する。
The present invention will be described below with reference to the drawings.
FIG. 1 is a schematic view showing a basic configuration of a substrate with a transparent conductive film of the present invention. As shown in FIG. 1, in the substrate with a transparent conductive film of the present invention, a transparent conductive film 2 and a barrier layer 3 are laminated on a glass transparent substrate 1 in this order.
Hereinafter, each structure of a board | substrate with a transparent conductive film is demonstrated.
[ガラス透明基板]
 ガラス透明基板の構成材料は、PDP用のガラス基板として使用されるものから広く選択することができ、ソーダライムガラス、高歪み点ガラスおよび無アルカリガラス等、各種ガラス材料を使用することができる。これらの中でも、日本国特許第2738036号、および、日本国特許第3669022号に記載されているガラス基板用組成物が特に好ましい。
 ガラス透明基板は、分光透過率が425~475nm、510~560nm、600~650nmの範囲でそれぞれ80%以上であることがこのましい。
[Glass transparent substrate]
The constituent material of the glass transparent substrate can be widely selected from those used as a glass substrate for PDP, and various glass materials such as soda lime glass, high strain point glass and non-alkali glass can be used. Among these, the glass substrate composition described in Japanese Patent No. 2738036 and Japanese Patent No. 3669022 is particularly preferable.
The glass transparent substrate preferably has a spectral transmittance of 80% or more in the range of 425 to 475 nm, 510 to 560 nm, and 600 to 650 nm.
 ガラス透明基板の大きさや厚さは特に限定されないが、例えば、縦横の長さが各々400~3000mm程度のものを好ましく用いることができる。また、その厚さは0.7~3.0mmが好ましく、1.5~3.0mmがより好ましい。 Although the size and thickness of the glass transparent substrate are not particularly limited, for example, those having a length and width of about 400 to 3000 mm can be preferably used. The thickness is preferably 0.7 to 3.0 mm, more preferably 1.5 to 3.0 mm.
[透明導電膜]
 本発明では、酸化スズ(SnO)を主成分とする透明導電膜を用いる。ここで、酸化スズを主成分とする透明導電膜とは、酸化スズの含有量がスズ元素換算で80原子%以上であることを意味する。ここで、透明導電膜は、酸化スズのみで形成される膜であってもよいが、酸化スズに導電性を付与する目的で通常はドーパントが添加されていることが好ましい。このような目的で添加されるドーパントとしては、タンタル(Ta)、タングステン(W)、ビスマス(Bi)およびモリブデン(Mo)等が挙げられる。
 なお、酸化スズに導電性を付与する目的で添加するドーパントとしては、インジウムやアンチモンも従来使用されていたが、前者は高価な元素であることから、後者は環境的に将来的に懸念があることから、本発明における透明導電膜には使用しないことが好ましい。このため、本発明における透明導電膜は、インジウムおよびアンチモンを実質的に含有せず、これらの含有量が元素換算で0.1原子%以下であることが好ましい。
[Transparent conductive film]
In the present invention, a transparent conductive film containing tin oxide (SnO 2 ) as a main component is used. Here, the transparent conductive film containing tin oxide as a main component means that the content of tin oxide is 80 atomic% or more in terms of tin element. Here, the transparent conductive film may be a film formed only of tin oxide, but it is usually preferable to add a dopant for the purpose of imparting conductivity to the tin oxide. Examples of the dopant added for this purpose include tantalum (Ta), tungsten (W), bismuth (Bi), and molybdenum (Mo).
Indium and antimony have been conventionally used as dopants added for the purpose of imparting conductivity to tin oxide, but the former is an expensive element, and the latter is environmentally concerned in the future. Therefore, it is preferably not used for the transparent conductive film in the present invention. For this reason, it is preferable that the transparent conductive film in this invention does not contain indium and antimony substantially, and these content is 0.1 atomic% or less in element conversion.
 酸化スズに導電性を付与する目的で、酸化スズを主成分とする透明導電膜に上記のドーパントを含有させる場合、該透明導電膜におけるドーパント含有量は、元素換算で0.1~10原子%であることが好ましく、0.5~5原子%であることがより好ましい。 For the purpose of imparting conductivity to tin oxide, when the above dopant is contained in a transparent conductive film mainly composed of tin oxide, the dopant content in the transparent conductive film is 0.1 to 10 atomic% in terms of element. It is preferable that it is 0.5 to 5 atomic%.
 酸化スズを主成分とする透明導電膜の成膜に使用されるスパッタリングターゲットには、酸化スズ、および、上記した酸化スズに導電性を付与する目的で添加されるドーパントに加えて、焼結助剤が通常添加される。したがって、酸化スズを主成分とする透明導電膜はこのような焼結助剤の成分も通常含有する。スパッタリングターゲットに添加される焼結助剤としては、銅(Cu)、亜鉛(Zn)、ニオブ(Nb)、チタン(Ti)、マグネシウム(Mg)、アルミニウム(Al)およびジルコニウム(Zr)等が挙げられる。
 酸化スズを主成分とする透明導電膜における焼結助剤の成分の含有量は、元素換算で10原子%以下であることが好ましい。なお、酸化スズを主成分とする透明導電膜が、酸化スズ、上記した酸化スズに導電性を付与する目的で添加されるドーパント、および、焼結助剤の成分以外の成分(以下、「他の成分」という。)を含有する場合、他の成分の含有量は、元素換算で10原子%以下であることが好ましい。
In addition to tin oxide and the dopant added for the purpose of imparting conductivity to the above-mentioned tin oxide, the sputtering target used for forming a transparent conductive film mainly composed of tin oxide includes a sintering aid. Agents are usually added. Therefore, the transparent conductive film containing tin oxide as a main component usually contains a component of such a sintering aid. Examples of the sintering aid added to the sputtering target include copper (Cu), zinc (Zn), niobium (Nb), titanium (Ti), magnesium (Mg), aluminum (Al), and zirconium (Zr). It is done.
The content of the sintering aid component in the transparent conductive film containing tin oxide as a main component is preferably 10 atomic% or less in terms of element. In addition, the transparent conductive film mainly composed of tin oxide is composed of tin oxide, a dopant added for the purpose of imparting conductivity to the above-described tin oxide, and components other than the components of the sintering aid (hereinafter referred to as “others” In other words, the content of the other component is preferably 10 atomic% or less in terms of element.
 酸化スズを主成分とする透明導電膜は、比抵抗が5×10-2Ωcm以下であることが好ましく、1×10-2Ωcm以下であることがより好ましく、0.5×10-2Ωcm以下であることがより好ましく、9×10-3Ωcm以下であることがさらに好ましい。 The transparent conductive film containing tin oxide as a main component preferably has a specific resistance of 5 × 10 −2 Ωcm or less, more preferably 1 × 10 −2 Ωcm or less, and more preferably 0.5 × 10 −2 Ωcm. Or less, more preferably 9 × 10 −3 Ωcm or less.
 酸化スズを主成分とする透明導電膜は、膜厚が1μm以下であることが好ましい。膜厚が1μm以下であれば、透明導電膜がヘイズなどの光学的欠陥を有するおそれがない。透明性導電膜の膜厚は0.4μm以下であることがより好ましく、0.25μm以下であることがさらに好ましい。また、透明導電膜の膜厚は50nm以上であることが好ましい。 The transparent conductive film mainly composed of tin oxide preferably has a thickness of 1 μm or less. If a film thickness is 1 micrometer or less, there is no possibility that a transparent conductive film may have optical defects, such as a haze. The film thickness of the transparent conductive film is more preferably 0.4 μm or less, and further preferably 0.25 μm or less. Moreover, it is preferable that the film thickness of a transparent conductive film is 50 nm or more.
 酸化スズを主成分とする透明導電膜は、透明性に優れることが好ましく、具体的には、可視光透過率が80%以上であることが好ましい。 The transparent conductive film mainly composed of tin oxide is preferably excellent in transparency, and specifically, the visible light transmittance is preferably 80% or more.
 ガラス透明基板上に酸化スズを主成分とする透明導電膜を形成するには、所望の組成のスパッタリングターゲット、具体的には、形成する透明導電膜と同一の組成のスパッタリングターゲットを用いてスパッタリングを実施すればよい。この際、使用するスパッタリング法は特に限定されないが、直流電源を使用するDCスパッタリング法、DCパルススパッタリング法、直流電源を切り替えて使用するACスパッタリング法、または中波電源を使用するMFスパッタリング法が、操作しやすく、膜厚制御の点で有利であることから好ましい。
 但し、酸化スズを主成分とする透明導電膜は、高周波電源を使用するRFスパッタリング法のような他のスパッタリング法を用いて形成してもよく、CVD法、ゾルゲル法、PLD法のようなスパッタリング法以外の成膜方法を用いて形成してもよい。
In order to form a transparent conductive film mainly composed of tin oxide on a glass transparent substrate, sputtering is performed using a sputtering target having a desired composition, specifically, a sputtering target having the same composition as the transparent conductive film to be formed. Just do it. At this time, the sputtering method to be used is not particularly limited, but a DC sputtering method using a DC power source, a DC pulse sputtering method, an AC sputtering method using a DC power source by switching, or an MF sputtering method using a medium wave power source, It is preferable because it is easy to operate and advantageous in terms of film thickness control.
However, the transparent conductive film mainly composed of tin oxide may be formed by using another sputtering method such as an RF sputtering method using a high frequency power source, or a sputtering method such as a CVD method, a sol-gel method, or a PLD method. You may form using the film-forming method other than the method.
 スパッタリング法により酸化スズを主成分とする透明導電膜を形成する場合、酸化性雰囲気下でスパッタリングを実施することが好ましい。ここで、酸化性雰囲気とは、酸化性ガスを含む雰囲気であり、通常は、酸化性ガスと不活性ガスとの混合ガス雰囲気である。
また、酸化性ガスとは、O、HO、CO、CO等、酸素原子含有ガスを意味する。
 中でも、OまたはCOと、アルゴン(Ar)と、の混合ガス雰囲気が、ガス組成が制御しやすく、透明で低抵抗の膜を得るうえで好都合であることから好ましく、COと、Arと、の混合ガス雰囲気が特に好ましい。
 Oと、Arと、の混合ガス雰囲気におけるO濃度は、1~10体積%であることが、透明で低抵抗の膜を得られることから好ましい。
 COと、Arと、の混合ガス雰囲気におけるCO濃度は、10~50体積%であることが、透明で低抵抗の膜を得られることから好ましい。
When forming the transparent conductive film which has tin oxide as a main component by sputtering method, it is preferable to perform sputtering in an oxidizing atmosphere. Here, the oxidizing atmosphere is an atmosphere containing an oxidizing gas, and is usually a mixed gas atmosphere of an oxidizing gas and an inert gas.
Further, the oxidizing gas, O 2, H 2 O, CO, CO 2 , etc., means an oxygen atom-containing gas.
Among them, a mixed gas atmosphere of O 2 or CO 2 and argon (Ar) is preferable because the gas composition is easy to control and it is convenient for obtaining a transparent and low resistance film, and CO 2 and Ar A mixed gas atmosphere is particularly preferable.
The O 2 concentration in the mixed gas atmosphere of O 2 and Ar is preferably 1 to 10% by volume because a transparent and low resistance film can be obtained.
The CO 2 concentration in the mixed gas atmosphere of CO 2 and Ar is preferably 10 to 50% by volume because a transparent and low resistance film can be obtained.
 スパッタリング条件は、使用するスパッタリング法によって異なるが、マグネトロンDCスパッタリング法の場合、下記条件で実施することが好ましい。
スパッタリング時の電力密度:1~15W/cm
スパッタリング圧力:10-2~10Pa
成膜温度(基板温度):室温~300℃
Sputtering conditions vary depending on the sputtering method used, but in the case of magnetron DC sputtering, it is preferable to carry out under the following conditions.
Power density during sputtering: 1 to 15 W / cm 2
Sputtering pressure: 10 −2 to 10 Pa
Deposition temperature (substrate temperature): Room temperature to 300 ° C
[バリア層]
 バリア層としては、インジウム(In)、スズ(Sn)、ガリウム(Ga)、亜鉛(Zn)、チタン(Ti)およびニオブ(Nb)からなる群から選択される少なくとも1種の金属の酸化物を含むものを用いる。このようなバリア層を酸化スズを主成分とする透明導電膜上に設けることで、バス電極形成時におけるバス電極と透明導電膜との接触抵抗の上昇、具体的には、ビスマス系ガラスフリットを含有する銀ペーストをバリア層上に塗布した後、500~600℃で焼成した際に、バス電極と透明導電膜との接触抵抗が上昇することが防止される。
[Barrier layer]
As the barrier layer, an oxide of at least one metal selected from the group consisting of indium (In), tin (Sn), gallium (Ga), zinc (Zn), titanium (Ti), and niobium (Nb) is used. Use what is included. By providing such a barrier layer on a transparent conductive film mainly composed of tin oxide, an increase in contact resistance between the bus electrode and the transparent conductive film during the formation of the bus electrode, specifically, a bismuth-based glass frit is formed. When the silver paste contained is applied on the barrier layer and then baked at 500 to 600 ° C., the contact resistance between the bus electrode and the transparent conductive film is prevented from increasing.
 上記組成のバリア層としては、具体的にはTiO膜、Nb膜、ITO(スズドープ酸化インジウム)膜、TZO(スズ亜鉛酸化物)膜およびGZO(ガリウムドープ酸化亜鉛)膜が挙げられる。 Specific examples of the barrier layer having the above composition include a TiO 2 film, an Nb 2 O 5 film, an ITO (tin doped indium oxide) film, a TZO (tin zinc oxide) film, and a GZO (gallium doped zinc oxide) film. .
 上述したように、バス電極形成時におけるバス電極と透明導電膜との接触抵抗の上昇は、ビスマス系ガラスフリットの主成分である酸化ビスマス(Bi)と、透明導電膜の主成分である酸化スズ(SnO)と、が銀ペーストの焼成時に反応して、BiSnを形成することが原因である。バス電極形成時のバス電極と透明導電膜との接触抵抗の上昇を防止する作用は、以下に述べるようにバリア層を構成する材料によって異なる。 As described above, the increase in contact resistance between the bus electrode and the transparent conductive film during the formation of the bus electrode is caused by bismuth oxide (Bi 2 O 3 ), which is the main component of the bismuth-based glass frit, and the main component of the transparent conductive film. This is because certain tin oxide (SnO 2 ) reacts during the baking of the silver paste to form Bi 2 Sn 2 O 7 . The action of preventing an increase in contact resistance between the bus electrode and the transparent conductive film when forming the bus electrode varies depending on the material constituting the barrier layer as described below.
 バリア層が、TiO膜またはNb膜の場合、結晶質のTiO膜またはNb膜がビスマス系ガラスフリットの主成分であるBiと、透明導電膜の主成分である酸化スズ(SnO)と、の反応を抑制する。この結果、BiSnの形成が抑制され、バス電極と透明導電膜との接触抵抗の上昇が防止される。なお、TiO膜またはNb膜は絶縁体であるが、バリア層の膜厚が後述するように小さいことから、バス電極と透明導電膜との間にバリア層が存在することによって、バス電極と透明導電膜との接触抵抗が上昇することがない。 When the barrier layer is a TiO 2 film or an Nb 2 O 5 film, Bi 2 O 3 in which the crystalline TiO 2 film or Nb 2 O 5 film is the main component of the bismuth-based glass frit and the main component of the transparent conductive film The reaction with tin oxide (SnO 2 ) is suppressed. As a result, formation of Bi 2 Sn 2 O 7 is suppressed, and an increase in contact resistance between the bus electrode and the transparent conductive film is prevented. Note that the TiO 2 film or the Nb 2 O 5 film is an insulator, but since the thickness of the barrier layer is small as will be described later, the presence of the barrier layer between the bus electrode and the transparent conductive film The contact resistance between the bus electrode and the transparent conductive film does not increase.
 一方、バリア層が、ITO膜、TZO膜またはGZO膜の場合、TiO膜やNb膜に比べると、Biと、SnOと、の反応を抑制する効果は少ないが、膜自体が導電性に優れるため、バリア層と透明導電膜との膜構成全体としての抵抗が低くなる(以下、この作用のことを「バリア層によるバイパス効果」という。)。この結果、バス電極と透明導電膜との接触抵抗の上昇が防止される。 On the other hand, when the barrier layer is an ITO film, a TZO film or a GZO film, the effect of suppressing the reaction between Bi 2 O 3 and SnO 2 is less than that of the TiO 2 film or the Nb 2 O 5 film. Since the film itself is excellent in conductivity, the resistance of the entire film configuration of the barrier layer and the transparent conductive film is lowered (hereinafter, this action is referred to as “bypass effect by the barrier layer”). As a result, an increase in contact resistance between the bus electrode and the transparent conductive film is prevented.
 上記のバリア層の中でも、膜自体の導電性に優れること、および、膜のパターニング性が良好であることからITO膜が好ましい。また、膜自体の導電性はITO膜に比べると劣るが、膜厚による抵抗値への影響が比較的少なく、ITO膜に比べて成膜コストが低く、かつ、化学的に安定であることからGZO膜が溶解してしまうようなアルカリ洗浄でも溶解しない等の理由からTZO膜も好ましい。 Among the barrier layers described above, an ITO film is preferable because of excellent conductivity of the film itself and good film patternability. In addition, the conductivity of the film itself is inferior to that of the ITO film, but the influence of the film thickness on the resistance value is relatively small, the film formation cost is lower than that of the ITO film, and it is chemically stable. A TZO film is also preferable because it does not dissolve even in alkaline cleaning where the GZO film dissolves.
 バリア層の厚さは、1~50nmであることが好ましい。バリア層の厚さが上記の範囲であれば、バス電極形成時におけるバス電極と透明導電膜との接触抵抗の上昇を防止する効果に優れている。バリア層の厚さが1nm未満だと、バス電極形成時におけるバス電極と透明導電膜との接触抵抗の上昇を防止することができない。より具体的には、バリア層がTiO膜またはNb膜の場合、バリア層の厚さが1nm未満だと、Biと、SnOと、の反応を抑制する効果が不十分となり、バス電極形成時におけるバス電極と透明導電膜との接触抵抗の上昇を防止することができない。バリア層がITO膜、TZO膜またはGZO膜の場合、バリア層の厚さが1nm未満だと、BiSnの形成による接触抵抗の増加をバイパス効果によって相殺することができず、バス電極形成時におけるバス電極と透明導電膜との接触抵抗の上昇を防止することができない。
 一方、バリア層の厚さを50nm超としても、バス電極形成時におけるバス電極と透明導電膜との接触抵抗の上昇を防止への効果は大きくならず、タクトタイムの増加、材料コストの増加、後工程のパターニング性への影響といったバリア層の厚さの増加による問題が生じることから好ましくない。また、バリア層がTiO膜またはNb膜の場合、バリア層の厚さを50nm超とすると、バリア層自体による抵抗の増加も問題となる。
 バリア層の厚さは、1~30nmであることがより好ましい。
The thickness of the barrier layer is preferably 1 to 50 nm. When the thickness of the barrier layer is in the above range, the effect of preventing an increase in contact resistance between the bus electrode and the transparent conductive film when forming the bus electrode is excellent. When the thickness of the barrier layer is less than 1 nm, it is impossible to prevent an increase in contact resistance between the bus electrode and the transparent conductive film when the bus electrode is formed. More specifically, when the barrier layer is a TiO 2 film or an Nb 2 O 5 film, if the thickness of the barrier layer is less than 1 nm, the effect of suppressing the reaction between Bi 2 O 3 and SnO 2 is ineffective. This is sufficient, and an increase in contact resistance between the bus electrode and the transparent conductive film during the formation of the bus electrode cannot be prevented. When the barrier layer is an ITO film, a TZO film, or a GZO film, if the thickness of the barrier layer is less than 1 nm, the increase in contact resistance due to the formation of Bi 2 Sn 2 O 7 cannot be offset by the bypass effect. An increase in contact resistance between the bus electrode and the transparent conductive film during electrode formation cannot be prevented.
On the other hand, even if the thickness of the barrier layer exceeds 50 nm, the effect of preventing the increase in contact resistance between the bus electrode and the transparent conductive film during the formation of the bus electrode is not increased, increasing the tact time, increasing the material cost, This is not preferable because problems due to an increase in the thickness of the barrier layer such as an influence on patternability of a subsequent process occur. Further, when the barrier layer is a TiO 2 film or an Nb 2 O 5 film, if the thickness of the barrier layer exceeds 50 nm, an increase in resistance due to the barrier layer itself becomes a problem.
The thickness of the barrier layer is more preferably 1 to 30 nm.
 透明導電膜と、バリア層と、の積層体の厚さの合計は、50~1000nmであることが、導電性、バリア性、膜の透明性および生産性のバランスを考慮すると好ましく、50~500nmであることがより好ましく、50~200nmであることがさらに好ましい。 The total thickness of the laminate of the transparent conductive film and the barrier layer is preferably 50 to 1000 nm, considering the balance of conductivity, barrier properties, film transparency and productivity, and preferably 50 to 500 nm. It is more preferable that the thickness is 50 to 200 nm.
 透明導電膜上に形成されるバリア層は、透明導電膜と同様の光学特性を有することが求められる。すなわち、バリア層は透明性に優れることが要求され、可視光透過率が80%以上であることが好ましい。 The barrier layer formed on the transparent conductive film is required to have the same optical characteristics as the transparent conductive film. That is, the barrier layer is required to have excellent transparency, and the visible light transmittance is preferably 80% or more.
 透明導電膜上にバリア層を形成するには、所望の組成のスパッタリングターゲットを用いてスパッタリングを実施すればよい。この際、使用するスパッタリング法は特に限定されないが、直流電源を使用するDCスパッタリング法、DCパルススパッタリング法、直流電源を切り替えて使用するACスパッタリング法、または中波電源を使用するMFスパッタリング法が、操作しやすく、膜厚制御の点で有利であることから好ましい。
 但し、バリア層は、高周波電源を使用するRFスパッタリング法のような他のスパッタリング法を用いて形成してもよく、CVD法、ゾルゲル法、PLD法のようなスパッタリング法以外の成膜方法を用いて形成してもよい。
In order to form the barrier layer on the transparent conductive film, sputtering may be performed using a sputtering target having a desired composition. At this time, the sputtering method to be used is not particularly limited, but a DC sputtering method using a DC power source, a DC pulse sputtering method, an AC sputtering method using a DC power source by switching, or an MF sputtering method using a medium wave power source, It is preferable because it is easy to operate and advantageous in terms of film thickness control.
However, the barrier layer may be formed by using another sputtering method such as an RF sputtering method using a high-frequency power source, or by using a film forming method other than the sputtering method such as a CVD method, a sol-gel method, or a PLD method. May be formed.
 スパッタリング法によりバリア層を形成する場合、酸化性雰囲気下でスパッタリングを実施することが好ましい。ここで、酸化性雰囲気とは、酸化性ガスを含む雰囲気であり、通常は、酸化性ガスと不活性ガスとの混合ガス雰囲気である。また、酸化性ガスとは、O、HO、CO、CO等、酸素原子含有ガスを意味する。
 中でも、OまたはCOと、アルゴン(Ar)と、の混合ガス雰囲気が、ガス組成が制御しやすく、透明で低抵抗の膜を得るうえで好都合であることから好ましく、COと、Arと、の混合ガス雰囲気が特に好ましい。
 Oと、Arと、の混合ガス雰囲気におけるO濃度は、1~10体積%であることが、透明な膜を得られることから好ましい。
 COと、Arと、の混合ガス雰囲気におけるCO濃度は、10~50体積%であることが、透明な膜を得られることから好ましい。
When the barrier layer is formed by a sputtering method, it is preferable to perform sputtering in an oxidizing atmosphere. Here, the oxidizing atmosphere is an atmosphere containing an oxidizing gas, and is usually a mixed gas atmosphere of an oxidizing gas and an inert gas. Further, the oxidizing gas, O 2, H 2 O, CO, CO 2 , etc., means an oxygen atom-containing gas.
Among them, a mixed gas atmosphere of O 2 or CO 2 and argon (Ar) is preferable because the gas composition is easy to control and it is convenient for obtaining a transparent and low resistance film, and CO 2 and Ar A mixed gas atmosphere is particularly preferable.
The O 2 concentration in the mixed gas atmosphere of O 2 and Ar is preferably 1 to 10% by volume because a transparent film can be obtained.
The CO 2 concentration in the mixed gas atmosphere of CO 2 and Ar is preferably 10 to 50% by volume because a transparent film can be obtained.
 スパッタリング条件は、使用するスパッタリング法によって異なるが、マグネトロンDCスパッタリング法の場合、前記の透明導電膜形成時のスパッタリング条件と同様の条件で実施することができる。 The sputtering conditions vary depending on the sputtering method used, but in the case of the magnetron DC sputtering method, the sputtering can be performed under the same conditions as the sputtering conditions for forming the transparent conductive film.
 本発明のPDP用基板は、上記した本発明の透明導電膜付基板のバリア層上に、以下に示す手順でバス電極を形成したものである。
 まず初めに、透明導電膜上のバス電極を形成する部位にビスマス系ガラスフリットを含有する銀ペーストを塗布する。この目的で使用する銀ペーストは、通常60質量%以上の銀粉と、1~20質量%のビスマス系ガラスフリットと、10~30質量%の有機物のバインダーと、を混ぜて作製される。また、この目的で使用するビスマス系ガラスフリットの代表的な組成を以下に示す。
SiO 1~5質量%
  5~15質量%
Al3 3~8質量%
Bi 70~90質量%
 銀ペーストの塗布方法は特に限定されず、例えば、スクリーン印刷、スプレー法、ブレードコータ法、ダイコート法等の塗布方法を用いることができる。銀ペーストを塗布する厚さは特に限定されず、形成する銀電極の厚さに応じて適宜選択することができる。なお、形成される銀電極の厚さは、通常数μm~数十μmの範囲である。
 次に、500~600℃の温度で所定時間(例えば、5分~1時間)焼成することによりバス電極が形成され、本発明のPDP用基板が得られる。
 上述したように、本発明の透明導電膜付基板では、酸化スズを主成分とする透明導電膜上にバリア層が形成されているため、バス電極形成時におけるバス電極と透明導電膜との接触抵抗の上昇を防止されている。このため、本発明のPDP用基板は、透明導電膜とバス電極との接触抵抗が低く、該基板をPDPの前面パネルとして用いて作製されるPDPは発光効率に優れることが期待される。
The substrate for PDP of the present invention is such that a bus electrode is formed on the barrier layer of the substrate with a transparent conductive film of the present invention as described below.
First, a silver paste containing bismuth-based glass frit is applied to a portion where a bus electrode is formed on a transparent conductive film. The silver paste used for this purpose is usually prepared by mixing 60% by mass or more of silver powder, 1 to 20% by mass of a bismuth glass frit, and 10 to 30% by mass of an organic binder. A typical composition of the bismuth glass frit used for this purpose is shown below.
SiO 2 1-5% by mass
B 2 O 3 5-15% by mass
Al 2 O 3 3-8 mass%
Bi 2 O 3 70-90 mass%
The coating method of the silver paste is not particularly limited, and for example, a coating method such as screen printing, a spray method, a blade coater method, or a die coating method can be used. The thickness to which the silver paste is applied is not particularly limited, and can be appropriately selected according to the thickness of the silver electrode to be formed. The thickness of the formed silver electrode is usually in the range of several μm to several tens of μm.
Next, a bus electrode is formed by baking at a temperature of 500 to 600 ° C. for a predetermined time (for example, 5 minutes to 1 hour), and the PDP substrate of the present invention is obtained.
As described above, in the substrate with a transparent conductive film of the present invention, since the barrier layer is formed on the transparent conductive film mainly composed of tin oxide, the contact between the bus electrode and the transparent conductive film when forming the bus electrode. Resistance rise is prevented. For this reason, the PDP substrate of the present invention has a low contact resistance between the transparent conductive film and the bus electrode, and a PDP produced using the substrate as a front panel of the PDP is expected to have excellent luminous efficiency.
 以下、実施例を用いて本発明をさらに説明する。
(実施例1~5)
 実施例1~5では、以下に示す手順でガラス透明基板上に、透明導電膜としてTaドープSnO膜を成膜し、該TaドープSnO膜上にバリア層として、TiO膜、Nb膜、ITO膜、TZO膜またはGZO膜を成膜した後、該バリア層上にバス電極を形成して、TLM(Transmission Line Model)法を用いてバス電極とバリア層との接触抵抗、および、シート抵抗を求めた。なお、ここで言うシート抵抗とは、透明導電膜とバリア層とを含めた積層体のシート抵抗である。
[ガラス透明基板]
 ガラス透明基板としては、PDP用高歪み点ガラス基板(旭硝子社製PD200)を使用した。
[透明導電膜]
 該基板のトップ面に、透明導電膜として酸化スズを主成分とし、ドーパントとしてタンタルを含む膜(TaドープSnO膜)を下記条件で成膜した。なお、TaドープSnO膜の組成は、タンタル原子量換算で2.1原子%であり、膜厚は100nmである。
スパッタリング法:マグネトロンDCスパッタリング
スパッタリングターゲット:TaドープSnOターゲット(Taドープ量6質量%)
スパッタガス:ArとOとの混合ガス(O 1体積%)
スパッタリング時の電力密度:5W/cm
スパッタリング圧力:0.5Pa
成膜温度(基板温度):250℃
The present invention will be further described below using examples.
(Examples 1 to 5)
In Examples 1 to 5, a Ta-doped SnO 2 film was formed as a transparent conductive film on a glass transparent substrate by the following procedure, and a TiO 2 film and Nb 2 were formed as a barrier layer on the Ta-doped SnO 2 film. After forming an O 5 film, an ITO film, a TZO film, or a GZO film, a bus electrode is formed on the barrier layer, and a contact resistance between the bus electrode and the barrier layer using a TLM (Transmission Line Model) method, And sheet resistance was calculated | required. The sheet resistance referred to here is the sheet resistance of the laminate including the transparent conductive film and the barrier layer.
[Glass transparent substrate]
As the glass transparent substrate, a high strain point glass substrate for PDP (PD200 manufactured by Asahi Glass Co., Ltd.) was used.
[Transparent conductive film]
On the top surface of the substrate, a film (Ta-doped SnO 2 film) containing tin oxide as a main component and tantalum as a dopant as a transparent conductive film was formed under the following conditions. The composition of the Ta-doped SnO 2 film is 2.1 atomic% in terms of tantalum atomic weight, and the film thickness is 100 nm.
Sputtering method: magnetron DC sputtering sputtering target: Ta-doped SnO 2 target (Ta 2 O 3 doping amount 6 mass%)
Sputtering gas: Mixed gas of Ar and O 2 (O 2 1% by volume)
Power density during sputtering: 5 W / cm 2
Sputtering pressure: 0.5 Pa
Deposition temperature (substrate temperature): 250 ° C
[バリア層]
 透明導電膜上にバリア層として、TiO膜、Nb膜、ITO膜(SnOドープ量10質量%)、TZO膜(SnZnO)またはGZO膜(Gaドープ量5.7質量%)をそれぞれ下記条件で成膜した。
<TiO膜>
スパッタリング法:マグネトロンDCスパッタリング
スパッタリングターゲット:Tiターゲット
スパッタガス:ArとOとの混合ガス(O 10体積%)
スパッタリング時の電力密度:12W/cm
スパッタリング圧力:0.5Pa
成膜温度(基板温度):室温
膜厚:30nm
<Nb膜>
スパッタリング法:マグネトロンDCスパッタリング
スパッタリングターゲット:Nbターゲット
スパッタガス:ArとOとの混合ガス(O 10体積%)
スパッタリング時の電力密度:12W/cm
スパッタリング圧力:0.5Pa
成膜温度(基板温度):室温
膜厚:30nm
<ITO膜>
スパッタリング法:マグネトロンDCスパッタリング
スパッタリングターゲット:ITOターゲット(SnOドープ量10質量%)
スパッタガス:Ar
スパッタリング時の電力密度:5W/cm
スパッタリング圧力:0.5Pa
成膜温度(基板温度):室温
膜厚:30nm
<TZO膜>
スパッタリング法:マグネトロンDCスパッタリング
スパッタリングターゲット:TZOターゲット(SnZnO
スパッタガス:Ar
スパッタリング時の電力密度:2.5W/cm
スパッタリング圧力:0.5Pa
成膜温度(基板温度):室温
膜厚:30nm
<GZO膜>
スパッタリング法:マグネトロンDCスパッタリング
スパッタリングターゲット:GZOターゲット(Gaドープ量5.7質量%)
スパッタガス:Ar
スパッタリング時の電力密度:5W/cm
スパッタリング圧力:0.5Pa
成膜温度(基板温度):室温
膜厚:30nm
[Barrier layer]
As a barrier layer on the transparent conductive film, TiO 2 film, Nb 2 O 5 film, ITO film (SnO 2 doping amount 10 mass%), TZO film (Sn 2 ZnO 3 ) or GZO film (Ga 2 O 3 doping amount 5) .7 mass%) was formed under the following conditions.
<TiO 2 film>
Sputtering method: magnetron DC sputtering sputtering target: Ti target sputtering gas: mixed gas of Ar and O 2 (O 2 10 volume%)
Power density during sputtering: 12 W / cm 2
Sputtering pressure: 0.5 Pa
Deposition temperature (substrate temperature): Room temperature Film thickness: 30 nm
<Nb 2 O 5 film>
Sputtering method: magnetron DC sputtering sputtering target: Nb target sputtering gas: mixed gas of Ar and O 2 (O 2 10 volume%)
Power density during sputtering: 12 W / cm 2
Sputtering pressure: 0.5 Pa
Deposition temperature (substrate temperature): Room temperature Film thickness: 30 nm
<ITO film>
Sputtering method: magnetron DC sputtering sputtering target: ITO target (SnO 2 doping amount 10 mass%)
Sputtering gas: Ar
Power density during sputtering: 5 W / cm 2
Sputtering pressure: 0.5 Pa
Deposition temperature (substrate temperature): Room temperature Film thickness: 30 nm
<TZO film>
Sputtering method: magnetron DC sputtering sputtering target: TZO target (Sn 2 ZnO 3 )
Sputtering gas: Ar
Power density during sputtering: 2.5 W / cm 2
Sputtering pressure: 0.5 Pa
Deposition temperature (substrate temperature): Room temperature Film thickness: 30 nm
<GZO film>
Sputtering method: magnetron DC sputtering sputtering target: GZO target (Ga 2 O 3 doping amount 5.7 mass%)
Sputtering gas: Ar
Power density during sputtering: 5 W / cm 2
Sputtering pressure: 0.5 Pa
Deposition temperature (substrate temperature): Room temperature Film thickness: 30 nm
[バス電極]
 ビヒクル、テレピネオール、ビスマス系ガラスフリットおよび銀粉を、ビスマス系ガラスフリット10質量%、銀粉90質量%となるように混合したものを、バリア層上にスクリーン印刷した。ビスマス系ガラスフリットの組成は以下の通り。
SiO 1~5質量%
  5~15質量%
Al3~8質量%
Bi70~90質量%
 その後、600℃で1時間焼成してバス電極を形成した。なお、図2に示すように、バリア層3上には間隔を開けて複数のバス電極4,5を形成した。
[TLM法]
 下記式にしたがって接触抵抗およびシート抵抗を求めた。
 R=2×R+(RSH×l)/W
 式中、Rはバス電極間の抵抗、Rはバリア層とバス電極との間の接触抵抗、RSHはシート抵抗、lはバス電極間の距離、Wはバス電極の幅である。
 接触抵抗およびシート抵抗の測定結果を下記表に示す。
(比較例1)
 バリア層を形成することなしに、透明導電膜上にバス電極を直接形成した点を除いて実施例と同様の手順を実施した。接触抵抗およびシート抵抗の測定結果を下記表に示す。
[Bus electrode]
A mixture of vehicle, terpineol, bismuth glass frit and silver powder mixed so as to be 10% by mass of bismuth glass frit and 90% by mass of silver powder was screen-printed on the barrier layer. The composition of the bismuth glass frit is as follows.
SiO 2 1-5% by mass
B 2 O 3 5-15% by mass
Al 2 O 3 3-8 mass%
Bi 2 O 3 70-90 mass%
Then, it baked at 600 degreeC for 1 hour, and formed the bus electrode. As shown in FIG. 2, a plurality of bus electrodes 4 and 5 were formed on the barrier layer 3 at intervals.
[TLM method]
Contact resistance and sheet resistance were determined according to the following formula.
R T = 2 × R C + (R SH × l) / W
In the equation, RT is a resistance between bus electrodes, RC is a contact resistance between the barrier layer and the bus electrode, R SH is a sheet resistance, l is a distance between the bus electrodes, and W is a width of the bus electrode.
The measurement results of contact resistance and sheet resistance are shown in the following table.
(Comparative Example 1)
The same procedure as in the example was performed without forming the barrier layer, except that the bus electrode was directly formed on the transparent conductive film. The measurement results of contact resistance and sheet resistance are shown in the following table.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表から明らかなように、酸化スズを主成分とする透明導電膜上にバリア層としてTiO膜、Nb膜、ITO膜、TZO膜またはGZO膜を形成した実施例1~5はバリア層を形成しなかった比較例1に比べて接触抵抗が低く、バス電極形成時におけるバス電極と透明導電膜との接触抵抗の上昇を防止されていることが確認された。
 実施例1(バリア層:TiO膜)、実施例4(バリア層:TZO膜)、および、比較例1(バリア層なし)については、バス電極を溶解除去した後の表面の状態を走査電子顕微鏡(SEM)で撮影した。結果を図3~図5に示す。
 図5から明らかなように、透明導電膜上にバリア層を形成しなかった比較例1では、接触抵抗上昇の原因である結晶物(BiSn)の生成が確認された。
 一方、図3から明らかなように、透明導電膜上にバリア層としてTiO膜を形成した実施例1では、結晶物の生成は認められず、結晶質のTiO膜がビスマス系ガラスフリットの主成分であるBiと、酸化スズ膜を構成するSnOと、の反応を抑制したことを示している。この結果、バス電極と透明導電膜との接触抵抗の上昇が防止されている。
 また、図4から明らかなように、透明導電膜上にバリア層としてTZO膜を形成した実施例4では、結晶物の生成が観察されたが、TZO膜自体が導電性が高いため、バリア層によるバイパス効果によって、バス電極と透明導電膜との接触抵抗の上昇が防止されている。
As is apparent from the above table, Examples 1 to 5 in which a TiO 2 film, Nb 2 O 5 film, ITO film, TZO film or GZO film was formed as a barrier layer on a transparent conductive film containing tin oxide as a main component are as follows: It was confirmed that the contact resistance was lower than that of Comparative Example 1 in which no barrier layer was formed, and an increase in the contact resistance between the bus electrode and the transparent conductive film during the formation of the bus electrode was prevented.
For Example 1 (barrier layer: TiO 2 film), Example 4 (barrier layer: TZO film), and Comparative Example 1 (no barrier layer), the surface state after dissolving and removing the bus electrode was scanned with electrons. Photographed with a microscope (SEM). The results are shown in FIGS.
As is clear from FIG. 5, in Comparative Example 1 in which the barrier layer was not formed on the transparent conductive film, it was confirmed that crystals (Bi 2 Sn 2 O 7 ) were generated that caused the increase in contact resistance.
On the other hand, as is clear from FIG. 3, in Example 1 in which a TiO 2 film was formed as a barrier layer on a transparent conductive film, the formation of crystals was not observed, and the crystalline TiO 2 film was made of bismuth-based glass frit. It shows that the reaction between Bi 2 O 3 as the main component and SnO 2 constituting the tin oxide film was suppressed. As a result, an increase in contact resistance between the bus electrode and the transparent conductive film is prevented.
Further, as apparent from FIG. 4, in Example 4 in which the TZO film was formed as the barrier layer on the transparent conductive film, the formation of crystals was observed, but the TZO film itself has high conductivity, so the barrier layer By virtue of the bypass effect, the increase in contact resistance between the bus electrode and the transparent conductive film is prevented.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2009年8月14日出願の日本特許出願2009-187969に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2009-187969 filed on Aug. 14, 2009, the contents of which are incorporated herein by reference.
 本発明の透明導電膜付基板は、酸化スズを主成分とする透明導電膜上にバリア層が形成されているため、ビスマス系ガラスフリットを含有する銀ペーストを用いてバス電極を形成する際に、透明導電膜とバス電極との接触抵抗が上昇することが防止される。また、本発明の透明導電膜付基板は、透明導電膜上にバリア層を形成することにより、透明導電膜の導電性、透明性等の特性が損なわれることがない。さらに、本発明のPDP用基板は、透明導電膜とバス電極との接触抵抗が低いため、該基板をPDPの前面パネルとして用いて作製されるPDPは表示品位に優れることが期待される。 In the substrate with a transparent conductive film of the present invention, a barrier layer is formed on a transparent conductive film containing tin oxide as a main component. Therefore, when forming a bus electrode using a silver paste containing a bismuth-based glass frit, The contact resistance between the transparent conductive film and the bus electrode is prevented from increasing. Moreover, the board | substrate with a transparent conductive film of this invention does not impair characteristics, such as electroconductivity of a transparent conductive film, transparency, by forming a barrier layer on a transparent conductive film. Furthermore, since the PDP substrate of the present invention has a low contact resistance between the transparent conductive film and the bus electrode, a PDP manufactured using the substrate as a front panel of the PDP is expected to have excellent display quality.
 1:ガラス透明基板
 2:透明導電膜
 3:バリア層
 4、5:バス電極
1: Transparent glass substrate 2: Transparent conductive film 3: Barrier layer 4, 5: Bus electrode

Claims (6)

  1.  ガラス透明基板上に、酸化スズ(SnO)を主成分とする透明導電膜と、インジウム(In)、スズ(Sn)、ガリウム(Ga)、亜鉛(Zn)、チタン(Ti)およびニオブ(Nb)からなる群から選択される少なくとも1種の金属の酸化物を含むバリア層が、この順に積層して形成された透明導電膜付基板。 On a glass transparent substrate, a transparent conductive film mainly composed of tin oxide (SnO 2 ), indium (In), tin (Sn), gallium (Ga), zinc (Zn), titanium (Ti) and niobium (Nb) A substrate with a transparent conductive film in which a barrier layer containing an oxide of at least one metal selected from the group consisting of:
  2.  前記バリア層が、TiO、Nb、ITO(スズドープ酸化インジウム)、TZO(スズ亜鉛酸化物)およびGZO(ガリウムドープ酸化亜鉛)からなる群から選択されるいずれかの金属酸化物からなる請求項1に記載の透明導電膜付基板。 The barrier layer is made of any metal oxide selected from the group consisting of TiO 2 , Nb 2 O 5 , ITO (tin doped indium oxide), TZO (tin zinc oxide) and GZO (gallium doped zinc oxide). The substrate with a transparent conductive film according to claim 1.
  3.  前記バリア層の厚さが、1~50nmである請求項1または2に記載の透明導電膜付基板。 The substrate with a transparent conductive film according to claim 1 or 2, wherein the barrier layer has a thickness of 1 to 50 nm.
  4.  前記酸化スズ(SnO)を主成分とする透明導電膜が、ドーパントとしてタンタル(Ta)を元素換算で0.1~10原子%含有する請求項1~3のいずれか一項に記載の透明導電膜付基板。 The transparent conductive film mainly containing tin oxide (SnO 2) is transparent according to any one of claims 1 to 3 containing 0.1 to 10 atomic% tantalum (Ta) in terms of an element as a dopant Substrate with conductive film.
  5.  前記透明導電膜の厚さが、50nm以上1μm以下である請求項1~4のいずれか一項に記載の透明導電膜付基板。 The substrate with a transparent conductive film according to any one of claims 1 to 4, wherein the transparent conductive film has a thickness of 50 nm to 1 µm.
  6.  請求項1~5のいずれか一項に記載の透明導電膜付基板のバリア層上に、ビスマス系ガラスフリットを含有する銀ペーストを塗布し、500~600℃の温度で焼成することによりバス電極が形成されたプラズマディスプレイパネル(PDP)用基板。 A bus electrode is obtained by applying a silver paste containing a bismuth-based glass frit on the barrier layer of the substrate with a transparent conductive film according to any one of claims 1 to 5, and firing the paste at a temperature of 500 to 600 ° C. A substrate for a plasma display panel (PDP) on which is formed.
PCT/JP2010/063576 2009-08-14 2010-08-10 Substrate having transparent conductive film attached thereto, and substrate for plasma display panel WO2011019040A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011526770A JPWO2011019040A1 (en) 2009-08-14 2010-08-10 Substrate with transparent conductive film and substrate for plasma display panel
CN2010800361033A CN102471147A (en) 2009-08-14 2010-08-10 Substrate having transparent conductive film attached thereto, and substrate for plasma display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009187969 2009-08-14
JP2009-187969 2009-08-14

Publications (1)

Publication Number Publication Date
WO2011019040A1 true WO2011019040A1 (en) 2011-02-17

Family

ID=43586215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063576 WO2011019040A1 (en) 2009-08-14 2010-08-10 Substrate having transparent conductive film attached thereto, and substrate for plasma display panel

Country Status (4)

Country Link
JP (1) JPWO2011019040A1 (en)
KR (1) KR20120055558A (en)
CN (1) CN102471147A (en)
WO (1) WO2011019040A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584034A (en) * 2012-03-19 2012-07-18 山东力诺新材料有限公司 Low emissivity film for solar high temperature collector tube and forming process for low emissivity film
JP2014150061A (en) * 2013-02-01 2014-08-21 Heraeus Precious Metals North America Conshohocken Llc Low burnt silver conductor
WO2014188822A1 (en) * 2013-05-23 2014-11-27 リンテック株式会社 Conductive film and electronic device having conductive film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104766546A (en) * 2015-04-15 2015-07-08 京东方科技集团股份有限公司 Display panel, manufacturing method thereof and display device
CN104822188A (en) * 2015-04-17 2015-08-05 扬州明晟新能源科技有限公司 Multifunctional glass and production method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294673A (en) * 1992-04-17 1993-11-09 Asahi Glass Co Ltd Production of glass coated with transparent electrically conductive film
JP2003162962A (en) * 1999-12-21 2003-06-06 Matsushita Electric Ind Co Ltd Plasma display panel and manufacturing method therefor
JP2005199275A (en) * 1995-09-15 2005-07-28 Saint-Gobain Glass France Base material having photocatalyst coating
WO2007142330A1 (en) * 2006-06-08 2007-12-13 Asahi Glass Company, Limited Transparent conductive film, process for production of the film, and sputtering target for use in the production of the film
WO2008111324A1 (en) * 2007-03-14 2008-09-18 Asahi Glass Co., Ltd. Transparent conductive film and method for manufacturing the transparent conductive film, and sputtering target used in the method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100807928B1 (en) * 1999-12-21 2008-02-28 마츠시타 덴끼 산교 가부시키가이샤 Plasma display panel and method for production there0f

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294673A (en) * 1992-04-17 1993-11-09 Asahi Glass Co Ltd Production of glass coated with transparent electrically conductive film
JP2005199275A (en) * 1995-09-15 2005-07-28 Saint-Gobain Glass France Base material having photocatalyst coating
JP2003162962A (en) * 1999-12-21 2003-06-06 Matsushita Electric Ind Co Ltd Plasma display panel and manufacturing method therefor
WO2007142330A1 (en) * 2006-06-08 2007-12-13 Asahi Glass Company, Limited Transparent conductive film, process for production of the film, and sputtering target for use in the production of the film
WO2008111324A1 (en) * 2007-03-14 2008-09-18 Asahi Glass Co., Ltd. Transparent conductive film and method for manufacturing the transparent conductive film, and sputtering target used in the method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584034A (en) * 2012-03-19 2012-07-18 山东力诺新材料有限公司 Low emissivity film for solar high temperature collector tube and forming process for low emissivity film
JP2014150061A (en) * 2013-02-01 2014-08-21 Heraeus Precious Metals North America Conshohocken Llc Low burnt silver conductor
WO2014188822A1 (en) * 2013-05-23 2014-11-27 リンテック株式会社 Conductive film and electronic device having conductive film
KR20160014577A (en) * 2013-05-23 2016-02-11 린텍 가부시키가이샤 Conductive film and electronic device having conductive film
JPWO2014188822A1 (en) * 2013-05-23 2017-02-23 リンテック株式会社 Conductive film and electronic device having conductive film
US9859033B2 (en) 2013-05-23 2018-01-02 Lintec Corporation Conductive film and electronic device having conductive film
KR102194500B1 (en) 2013-05-23 2020-12-23 린텍 가부시키가이샤 Conductive film and electronic device having conductive film

Also Published As

Publication number Publication date
JPWO2011019040A1 (en) 2013-01-17
CN102471147A (en) 2012-05-23
KR20120055558A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
JP4655939B2 (en) Manufacturing method of transparent electrode
JP6888318B2 (en) Method for manufacturing laminated transparent conductive film, laminated wiring film and laminated wiring film
TWI585783B (en) Transparent conductive film laminate, method for manufacturing the same, and thin film solar cell and manufacturing method thereof
WO2007142330A1 (en) Transparent conductive film, process for production of the film, and sputtering target for use in the production of the film
WO2011019040A1 (en) Substrate having transparent conductive film attached thereto, and substrate for plasma display panel
JP5146443B2 (en) Transparent conductive film, method for producing the same, and sputtering target used for the production thereof
WO2012144335A1 (en) Conductive paste
WO2016024615A1 (en) Laminated film, laminated wiring film, and method for manufacturing laminated wiring film
TW201345015A (en) Transparent anode for an OLED
WO2016043084A1 (en) Light emitting element and power generation element
JP4540311B2 (en) Transparent conductive film and method for producing the same
JP2007329109A (en) Transparent electrode substrate and photoelectric conversion device using the same
JP4168689B2 (en) Thin film laminate
US20080054229A1 (en) Electrically conductive material
JP6870332B2 (en) Method for manufacturing laminated transparent conductive film, laminated wiring film and laminated wiring film
JPH0987833A (en) Production of transparent electrically conductive film
JP2004207383A (en) Electromagnetic shielding film
JP2009205799A (en) Transparent conductive film, method of manufacturing the same, and sputtering target used for its manufacture
WO2011019039A1 (en) Substrate having transparent conductive film attached thereto, and substrate for plasma display panel
JP6597284B2 (en) Laminated transparent conductive film, laminated wiring film, and laminated wiring film manufacturing method
JP4803726B2 (en) Electronic circuit and manufacturing method thereof
JP6565666B2 (en) Laminated transparent conductive film, laminated wiring film, and laminated wiring film manufacturing method
WO2017164209A1 (en) Laminated transparent conductive film, laminated wiring film, and method for producing laminated wiring film
JP5414047B2 (en) Sb-added SnO2 heat-resistant transparent electrode thin film and inorganic electroluminescence device using the same
WO2013047245A1 (en) Substrate with electrode

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080036103.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808223

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011526770

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127003845

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10808223

Country of ref document: EP

Kind code of ref document: A1