WO2011019039A1 - Substrate having transparent conductive film attached thereto, and substrate for plasma display panel - Google Patents

Substrate having transparent conductive film attached thereto, and substrate for plasma display panel Download PDF

Info

Publication number
WO2011019039A1
WO2011019039A1 PCT/JP2010/063575 JP2010063575W WO2011019039A1 WO 2011019039 A1 WO2011019039 A1 WO 2011019039A1 JP 2010063575 W JP2010063575 W JP 2010063575W WO 2011019039 A1 WO2011019039 A1 WO 2011019039A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
conductive film
transparent conductive
transparent
glass
Prior art date
Application number
PCT/JP2010/063575
Other languages
French (fr)
Japanese (ja)
Inventor
健 岡東
秀文 小高
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN2010800361048A priority Critical patent/CN102471145A/en
Priority to JP2011526769A priority patent/JPWO2011019039A1/en
Publication of WO2011019039A1 publication Critical patent/WO2011019039A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • C03C17/2453Coating containing SnO2
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/241Manufacture or joining of vessels, leading-in conductors or bases the vessel being for a flat panel display
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/24Doped oxides

Definitions

  • the present invention relates to a substrate with a transparent conductive film and a substrate for a plasma display panel (PDP) using the substrate with a transparent conductive film.
  • PDP plasma display panel
  • a transparent conductive film and a bus electrode are formed in this order on a glass transparent substrate.
  • the transparent conductive film indium oxide, zinc oxide, and tin oxide are known.
  • ITO tin-doped indium oxide
  • Tin oxide (SnO 2) film has a material which is expected as an alternative material.
  • antimony as a dopant, which may have environmental concerns in the future.
  • tin oxide is the main component, and at least one element selected from the A dopant group consisting of niobium, tungsten, tantalum, bismuth and molybdenum, and copper element are used as dopants.
  • Including transparent conductive films have been proposed.
  • copper element is a component contained as a sintering aid for the sputtering target, and it is the element of the A dopant group that imparts conductivity to tin oxide.
  • Patent Document 2 in order to solve the above problem, at least one element selected from an A dopant group composed mainly of tin oxide and made of zinc, niobium, titanium, magnesium, aluminum, and zirconium, tungsten, There has been proposed a transparent conductive film containing, as a dopant, at least one element selected from a B dopant group made of tantalum and molybdenum.
  • a bus electrode is formed by applying a silver paste containing glass frit on the transparent conductive film and then baking at 500 to 600 ° C.
  • the silver paste containing glass frit may be simply referred to as “silver paste”.
  • the glass transparent substrate develops yellow color (yellowing), and there is a problem that the quality of color display is deteriorated in a PDP manufactured using the glass transparent substrate. there were.
  • the screen displaying white has a yellowish color around the silver electrode, and the brightness of the screen displaying blue is reduced.
  • This yellowing occurs when the silver electrode is used to form a bus electrode (silver electrode), Ag ions in the silver paste diffuse from the surface of the glass transparent substrate to the inside (surface layer) and exist in the surface layer. It is considered that this is due to the color formation of the colloid produced by agglomeration by being reduced to Fe 0 by Fe 2+ , Sn 2+ , etc.
  • Patent Document 4 discloses a reducing property formed on a surface of a glass substrate formed into a plate shape by a float method by polishing the surface on which the metal electrode is formed. It has been proposed to remove foreign layers.
  • Patent Document 5 proposes that a protective layer is formed by continuously spraying SO 2 on the surface of a glass plate formed into a plate shape by a float process at the inlet of the slow cooling furnace or upstream of the slow cooling furnace.
  • Patent Documents 6 and 7 propose forming a metal oxide layer on the surface of a glass substrate.
  • Patent Document 8 proposes to use a silver paste or silver film containing Ag particles and a glass frit to which a transition metal oxide is added as a silver paste or silver film used for forming a silver electrode. .
  • Patent Documents 4 to 7 require specific treatment on the glass transparent substrate, the operation is complicated, leading to a decrease in yield and an increase in cost.
  • the method of patent document 8 may use what contains the glass frit which added the oxide of the transition metal as a silver paste, a glass substrate and the silver particle contained in a silver paste are physically made. Since it is not completely isolated, there is a problem that it is difficult to completely suppress yellowing of the glass substrate.
  • the present invention eliminates yellowing of a glass transparent substrate when forming a bus electrode using a silver paste without performing a specific treatment on the glass transparent substrate.
  • An object of the present invention is to provide a substrate with a transparent conductive film that can be prevented, and a substrate for PDP using the substrate with a transparent conductive film.
  • the present invention is a substrate with a transparent conductive film in which a transparent conductive film mainly composed of tin oxide (SnO 2 ) is formed on a glass transparent substrate,
  • a transparent conductive film mainly composed of tin oxide (SnO 2 ) is formed on a glass transparent substrate,
  • the crystal peak of the SnO 2 (100) plane in the XRD peak of the transparent conductive film is Y and the background peak due to the glass transparent substrate is X
  • the peak intensity ratio Y / X is 1.5 or more and 1.8 or less.
  • the transparent conductive film containing tin oxide as a main component preferably contains tantalum (Ta) as a dopant in an amount of 2.5 atomic% or less in terms of element.
  • the thickness of the transparent conductive film is preferably 50 nm or more and 1 ⁇ m or less.
  • the present invention is a method for producing a substrate with a transparent conductive film of the present invention, and when forming a transparent conductive film containing tin oxide (SnO 2 ) as a main component on a glass transparent substrate by a sputtering method, Production of a substrate with a transparent conductive film, characterized by using a sputtering target containing tin oxide as a main component and containing 2.5 atomic% or less of tantalum (Ta) as a dopant, and performing sputtering at a substrate temperature of 250 ° C. or higher. Provide a method.
  • a bus electrode is formed by applying a silver paste containing bismuth glass frit on the transparent conductive film of the substrate with a transparent conductive film of the present invention and baking at a temperature of 500 to 600 ° C.
  • a plasma display panel (PDP) substrate is provided.
  • the peak intensity ratio Z / X is preferably 2 or more.
  • the substrate with a transparent conductive film of the present invention it is possible to prevent yellowing of the glass transparent substrate when a bus electrode is formed using a silver paste without performing a specific treatment on the glass transparent substrate. .
  • yellowing of the glass transparent substrate is prevented, so that the PDP produced using the substrate is excellent in the quality of color display.
  • FIG. 1 is a schematic view showing a basic configuration of a substrate with a transparent conductive film of the present invention.
  • FIG. 2 is an example of an XRD peak of the transparent conductive film in the substrate with the transparent conductive film on which the transparent conductive film containing tin oxide as a main component is formed.
  • FIG. 3 is an example of an XRD peak of a bus electrode formed by applying a silver paste containing bismuth-based glass frit on a transparent conductive film of a substrate with a transparent conductive film and baking it.
  • FIG. 4 is a SEM photograph of the surface of the substrate with a transparent conductive film of Example 1 after removing the bus electrode.
  • FIG. 1 is a schematic view showing a basic configuration of a substrate with a transparent conductive film of the present invention.
  • FIG. 2 is an example of an XRD peak of the transparent conductive film in the substrate with the transparent conductive film on which the transparent conductive film containing tin oxide as a main component is formed.
  • FIG. 5 is an SEM photograph of the surface of the substrate with a transparent conductive film of Comparative Example 1 after removing the bus electrode.
  • FIG. 6 is a cross-sectional SEM photograph of the substrate with a transparent conductive film of Example 1 after removing the bus electrode.
  • FIG. 1 is a schematic view showing a basic configuration of a substrate with a transparent conductive film of the present invention.
  • a transparent conductive film 2 is formed on a glass transparent substrate 1.
  • substrate with a transparent conductive film is demonstrated.
  • the constituent material of the glass transparent substrate can be widely selected from those used as a glass substrate for PDP, and various glass materials such as soda lime glass, high strain point glass and non-alkali glass can be used. Among these, the glass substrate composition described in Japanese Patent No. 2738036 and Japanese Patent No. 3669022 is particularly preferable.
  • the glass transparent substrate preferably has a spectral transmittance of 80% or more in the range of 425 to 475 nm, 510 to 560 nm, and 600 to 650 nm.
  • the size and thickness of the glass transparent substrate are not particularly limited, for example, those having a length and width of about 400 to 3000 mm can be preferably used.
  • the thickness is preferably 0.7 to 3.0 mm, more preferably 1.5 to 3.0 mm.
  • a transparent conductive film containing tin oxide (SnO 2 ) as a main component is used.
  • the transparent conductive film containing tin oxide as a main component means that the content of tin oxide is more than 80 atomic% in terms of tin element.
  • the transparent conductive film may be a film formed only of tin oxide, but it is usually preferable to add a dopant for the purpose of imparting conductivity to the tin oxide. Examples of dopants added for this purpose include tantalum (Ta), tungsten (W), niobium (Nb), bismuth (Bi), and molybdenum (Mo).
  • tantalum is particularly preferable because of its high effect of imparting conductivity to tin oxide.
  • dopants added for the purpose of imparting conductivity to tin oxide indium and antimony have also been used in the past, but the former is an expensive element, and the latter has environmental concerns in the future.
  • the transparent conductive film in the present invention is preferably not used. For this reason, it is preferable that the transparent conductive film in this invention does not contain indium and antimony substantially, and these content is 0.1 atomic% or less in element conversion.
  • the cause of yellowing of the glass transparent substrate is that Ag ions in the silver paste diffuse from the glass transparent substrate surface to the inside (surface layer), and the surface It is considered that it is reduced to Ag 0 by Fe 2+ , Sn 2+ , etc. present in the layer, and this aggregates to form a colloid.
  • “yellowing of a transparent glass substrate” refers to yellowing of a transparent glass substrate that occurs when a bus electrode is formed using a silver paste.
  • the transparent conductive film formed on the glass transparent substrate is also required to have a function as a barrier layer for preventing Ag ions in the silver paste from reaching the glass transparent substrate surface.
  • the term “barrier layer” refers to a barrier layer for preventing Ag ions in the silver paste from reaching the glass transparent substrate surface.
  • the transparent conductive film containing tin oxide as a main component In order for the transparent conductive film containing tin oxide as a main component to exhibit the function as the barrier layer, the transparent conductive film is a film having a high degree of crystallinity and the orientation of crystals constituting the film. The inventors of the present application have found that it is important from the viewpoint of chemical robustness of the film that the film is low, that is, that crystals having various orientations are mixed in the film.
  • the bus electrode is formed using silver paste because the film is not chemically robust.
  • a hole is formed in a part of the film, and Ag ions in the silver paste reach the glass transparent substrate through the hole, so that the function as a barrier layer is low and yellowing of the glass transparent substrate can be prevented. Can not.
  • the transparent conductive film containing tin oxide as a main component is a film having a high degree of crystallinity, if the orientation of the crystals constituting the film increases, the chemical fastness of the film decreases, so a silver paste is used.
  • the bus electrode is formed, holes are formed in a part of the film, and Ag ions in the silver paste reach the glass transparent substrate through the holes, so that the function as a barrier layer is low, and the yellowing of the glass transparent substrate is caused. Can not be prevented.
  • the degree of crystallinity of the transparent conductive film mainly composed of tin oxide and the degree of orientation of the crystals constituting the film can be confirmed by the XRD peak of the transparent conductive film, as will be described later.
  • An example of the XRD peak of the transparent conductive film in the substrate with the transparent conductive film on which the transparent conductive film mainly composed of tin oxide is formed is shown in FIG. In FIG. 2, Y is a crystal peak of the SnO 2 (100) plane, and X is a background peak due to the glass transparent substrate.
  • the peak intensity ratio (Y / X) between Y and X in the XRD peak of the transparent conductive film is 1.5 or more and 1.8 or less.
  • Y / X indicates a peak intensity ratio between Y and X in the XRD peak of the transparent conductive film.
  • the transparent conductive film is an amorphous film or a film having a low degree of crystallinity.
  • the function as a layer cannot be exhibited, and yellowing of the glass transparent substrate cannot be prevented.
  • Y / X is more than 1.8, although the film has a high degree of crystallinity, the orientation of the crystals constituting the film increases, so that the chemical robustness of the film decreases as described above. The function as a barrier layer cannot be exhibited, and yellowing of the glass transparent substrate cannot be prevented.
  • tantalum is preferable as a dopant added for the purpose of imparting conductivity to tin oxide.
  • the tantalum content in the transparent conductive film is 2.5 atomic% or less in terms of element. From the viewpoint of imparting conductivity to tin oxide, it is preferable to increase the tantalum content of the transparent conductive film.
  • the Ta content in the transparent conductive film is more than 2.5 atomic% in terms of element, the film Since the orientation of the crystals constituting the film becomes high and the above Y / X exceeds 1.8, the function as a barrier layer is lowered and yellowing of the glass transparent substrate cannot be prevented.
  • the lower limit of the tantalum content in the transparent conductive film is not particularly limited as long as conductivity can be imparted to tin oxide, but it is preferably 0.1 atomic% or more in terms of Ta element, and 0.5 atomic% or more. It is more preferable that
  • the sputtering target used for forming a transparent conductive film mainly composed of tin oxide includes a sintering aid. Agents are usually added. Therefore, the transparent conductive film containing tin oxide as a main component usually contains a component of such a sintering aid.
  • the sintering aid added to the sputtering target include copper (Cu), zinc (Zn), niobium (Nb), titanium (Ti), magnesium (Mg), aluminum (Al), and zirconium (Zr). It is done.
  • the content of the sintering aid component in the transparent conductive film containing tin oxide as a main component is preferably less than 10 atomic% in terms of element.
  • the transparent conductive film mainly composed of tin oxide is composed of tin oxide, a dopant added for the purpose of imparting conductivity to the above-described tin oxide, and components other than the components of the sintering aid (hereinafter referred to as “others”
  • the content of the other components is preferably less than 10 atomic% in terms of elements.
  • the transparent conductive film containing tin oxide as a main component preferably has a specific resistance of 5 ⁇ 10 ⁇ 2 ⁇ cm or less, more preferably 1 ⁇ 10 ⁇ 2 ⁇ cm or less, and more preferably 0.5 ⁇ 10 ⁇ 2 ⁇ cm. Or less, more preferably 9 ⁇ 10 ⁇ 3 ⁇ cm or less.
  • the transparent conductive film mainly composed of tin oxide preferably has a thickness of 1 ⁇ m or less. If a film thickness is 1 micrometer or less, there is no possibility that a transparent conductive film may have optical defects, such as a haze.
  • the film thickness of the transparent conductive film is more preferably 0.4 ⁇ m or less, and further preferably 0.25 ⁇ m or less. Moreover, it is preferable that the film thickness of a transparent conductive film is 50 nm or more.
  • the transparent conductive film mainly composed of tin oxide is preferably excellent in transparency, and specifically, the visible light transmittance is preferably 80% or more.
  • sputtering is performed using a sputtering target having a desired composition, specifically, a sputtering target having the same composition as the transparent conductive film to be formed. Just do it.
  • Y / X of the formed transparent conductive film is required to be 1.5 or more and 1.8 or less.
  • the conditions for forming a transparent conductive film having a Y / X of 1.5 or more and 1.8 or less vary depending on the composition of the transparent conductive film containing tin oxide as a main component. In the case of a transparent conductive film to which tantalum is added as a dopant, sputtering may be performed under the following conditions.
  • the tantalum content in the transparent conductive film is required to be 2.5 atomic% or less in terms of element. Accordingly, a sputtering target containing tin oxide as a main component and containing tantalum of 2.5 atomic% or less in terms of element is used.
  • a sputtering target containing tin oxide as a main component and containing tantalum of 2.5 atomic% or less in terms of element is used.
  • sputtering may be performed with the substrate temperature heated to 250 ° C. or higher.
  • the substrate temperature at the time of sputtering is less than 250 ° C.
  • crystallization of the formed transparent conductive film becomes insufficient, and there is a possibility that Y / X of the transparent conductive film cannot be made 1.5 or more.
  • the substrate temperature is preferably 280 ° C. or lower. Therefore, it is preferable to perform sputtering at a substrate temperature of 250 to 280 ° C.
  • the sputtering method to be used is not particularly limited, but the DC sputtering method using a DC power source, the DC pulse sputtering method, the AC sputtering method using a DC power source by switching, or the MF sputtering method using a medium wave power source is easy to operate. From the viewpoint of film thickness control, it is preferable. However, the transparent conductive film containing tin oxide as a main component may be formed by using another sputtering method such as an RF sputtering method using a high frequency power source.
  • the oxidizing atmosphere is an atmosphere containing an oxidizing gas, and is usually a mixed gas atmosphere of an oxidizing gas and an inert gas.
  • the oxidizing gas, O 2, H 2 O, CO, CO 2 , etc. means an oxygen atom-containing gas.
  • a mixed gas atmosphere of O 2 or CO 2 and argon (Ar) is preferable because the gas composition is easy to control and it is convenient for obtaining a transparent and low resistance film, and CO 2 and Ar A mixed gas atmosphere is particularly preferable.
  • the O 2 concentration in the mixed gas atmosphere of O 2 and Ar is preferably 1 to 5% by volume because a transparent and low resistance film can be obtained.
  • the CO 2 concentration in the mixed gas atmosphere of CO 2 and Ar is preferably 10 to 50% by volume because a transparent and low resistance film can be obtained.
  • Sputtering conditions vary depending on the sputtering method used, but in the case of magnetron DC sputtering, it is preferable to carry out under the following conditions. Power density during sputtering: 1 to 10 W / cm 2 Sputtering pressure: 10 ⁇ 2 to 10 Pa Substrate temperature: 250-280 ° C
  • the transparent conductive film having tin oxide as a main component and Y / X of 1.5 to 1.8 is formed because a function as a barrier layer is required. is there. Therefore, as long as the function as a barrier layer is sufficiently exhibited and yellowing of the glass transparent substrate can be prevented, the entire transparent conductive film is composed of a transparent conductive film mainly composed of tin oxide having a function as the barrier layer. It does not have to be. That is, a transparent conductive film having a conventional composition may be formed as a second transparent conductive film on a transparent conductive film having tin oxide as a main component and functioning as the barrier layer.
  • the metal oxide containing at least 1 sort (s) chosen from the group which consists of Ga, Zn, Ti, Al, Sn, In, and Nb is mentioned.
  • the substrate with a transparent conductive film of the present invention may have a configuration other than a glass transparent substrate, a transparent conductive film containing tin oxide as a main component, and a second transparent conductive film.
  • a base film formed between a glass transparent substrate and a transparent conductive film containing tin oxide as a main component for the purpose of improving the flatness.
  • the constituent material of the base film formed for such a purpose include silica, zirconia, titania and the like.
  • the substrate for PDP of the present invention is a transparent conductive film mainly composed of tin oxide of the substrate with a transparent conductive film of the present invention described above (when the second transparent conductive film is formed on the transparent conductive film, A bus electrode is formed on the second transparent conductive film by the following procedure.
  • a silver paste containing bismuth-based glass frit is applied to a portion where a bus electrode is formed on a transparent conductive film.
  • the silver paste used for this purpose is usually prepared by mixing 60% by mass or more of silver powder, 1 to 20% by mass of a bismuth glass frit, and 10 to 30% by mass of an organic binder.
  • a typical composition of the bismuth glass frit used for this purpose is shown below. SiO 2 1-5% by mass B 2 O 3 5-15% by mass Al 2 O 3 3-8 mass% Bi 2 O 3 70-90 mass%
  • the coating method of the silver paste is not particularly limited, and for example, a coating method such as screen printing, a spray method, a blade coater method, or a die coating method can be used.
  • the thickness to which the silver paste is applied is not particularly limited, but is preferably such that a silver electrode having a thickness of several ⁇ m to several tens of ⁇ m is formed.
  • a bus electrode is formed by baking at a temperature of 500 to 600 ° C. for a predetermined time (for example, 1 to 5 hours), and the PDP substrate of the present invention is obtained.
  • the transparent conductive film containing tin oxide as a main component functions as a barrier layer. Therefore, when the bus electrode is formed using silver paste, the yellow glass transparent substrate is formed. Changes are prevented. As a result, a PDP manufactured using the substrate is excellent in color display quality.
  • the function of the transparent conductive film mainly composed of tin oxide as a barrier layer and the superiority or inferiority of the yellowing prevention effect of the glass substrate thereby confirmed from the XRD peak of the bus electrode formed by the above procedure. can do.
  • An example of the XRD peak of the bus electrode formed by the above procedure is shown in FIG. In FIG. 3, Z is a crystal peak of the Bi 2 Sn 2 O 7 (222) plane, and X is a background peak due to the glass transparent substrate.
  • Bi 2 Sn 2 O 7 is composed of bismuth oxide (Bi 2 O 3 ) that is a main component of a bismuth glass frit and tin oxide (SnO 2 ) that is a main component of a transparent conductive film.
  • Z / X is preferably 2 or more. If Z / X is 2 or more, Bi 2 Sn 2 O 7 is present in a state of high crystallinity, the function as a barrier layer is sufficiently exhibited, and the effect of preventing yellowing of the glass transparent substrate is achieved. Are better.
  • the color difference b * value (JIS-Z8729) of the L * a * b * system color coordinate is suppressed to ⁇ 5 or less. preferable.
  • Example 1 to 4 and Comparative Examples 1 and 2 a film containing tin oxide as a main component as a transparent conductive film and tantalum as a dopant (Ta-doped SnO 2 film) is formed on a glass transparent substrate by the following procedure.
  • a bus electrode (silver electrode) was formed on the Ta-doped SnO 2 film.
  • Glass transparent substrate As the glass transparent substrate, a high strain point glass substrate for PDP (PD200 manufactured by Asahi Glass Co., Ltd.) was used.
  • a Ta-doped tin oxide film with a thickness of 100 nm was formed as a transparent conductive film on the top surface of the substrate.
  • the Ta content in the Ta-doped tin oxide film is as shown in Tables 1 and 2 below.
  • the composition of the used sputtering target and the substrate temperature at the time of performing the sputtering are as shown in Tables 1 and 2 below, and the other sputtering conditions are as follows.
  • Sputtering gas Mixed gas of Ar and O 2 (O 2 1% by volume)
  • Power density during sputtering 5 W / cm 2
  • Sputtering pressure 0.5 Pa
  • a silver paste obtained by mixing vehicle, terpineol, bismuth glass frit (ASF 1094) and silver powder so as to be 10 wt% bismuth glass frit and 90 wt% silver powder was screen-printed on the barrier layer. Then, it fired at 615 degreeC for 10 minute (s), and formed the bus electrode.
  • an ITO film (SnO 2 doping amount 10 mass%, film thickness 100 nm) was formed as a transparent conductive film under the following conditions.
  • Sputtering method magnetron DC sputtering sputtering target: ITO target (SnO 2 doping amount 10 mass%)
  • Sputtering gas Mixed gas of Ar and O 2 (O 2 1% by volume)
  • Power density during sputtering 5 W / cm 2
  • Sputtering pressure 0.5 Pa
  • Substrate temperature 250 ° C
  • the formation conditions of the bus electrode are the same as those in Examples 1 to 4 and Comparative Examples 1 and 2 described above, except that baking after screen printing of the silver paste was performed at 590 ° C. for 1 hour.
  • the Ta-doped SnO 2 film had a slightly lower specific resistance than the ITO film, but had sufficient conductive properties as a transparent conductive film.
  • Comparative Example 2 although the specific resistance of the transparent conductive film was not measured, it is considered that the specific resistance is comparable to the other examples (Examples 1 to 4 and Comparative Example 1).
  • Examples 1 to 4 where a Ta-doped SnO 2 film having a tantalum content of 2.5 atomic% or less was formed at a substrate temperature of 250 to 280 ° C., the Y / value obtained from the XRD peak of the transparent conductive film (Ta-doped SnO 2 film) was obtained.
  • X was in the range of 1.5 to 1.8, and it was confirmed to be a transparent conductive film having a function as a barrier layer.
  • Z / X obtained from the XRD peak of the bus electrode was 2 or more, and it was confirmed that the function as a barrier layer was excellent.
  • the b * value indicates that yellowing is not a problem.
  • Comparative Example 1 in which a Ta-doped SnO 2 film having a tantalum content of 3.5 atomic% was formed as a transparent conductive film, Y / X obtained from the XRD peak of the transparent conductive film exceeded 1.8 (1.85 ), The orientation of the crystals constituting the film is high, the function as a barrier layer cannot be exhibited, and yellowing of the glass transparent substrate cannot be prevented.
  • Z / X obtained from the XRD peak of the bus electrode is also less than 2 (1.32), indicating that the function as a barrier layer is inferior.
  • the b * value indicates that yellowing is a problem level.
  • Example 1 and Comparative Example 1 the surface state after removing the bus electrode by nitric acid etching was photographed with a scanning electron microscope (SEM). The results are shown in FIGS. In any surface, a crystalline product which is a reaction product of bismuth oxide (Bi 2 O 3 ) which is a main component of a bismuth-based glass frit and tin oxide (SnO 2 ) which is a main component of a transparent conductive film. The compound (Bi 2 Sn 2 O 7 ) was generated, and it was confirmed that the Ta-doped SnO 2 film was eroded.
  • SEM scanning electron microscope
  • Comparative Example 1 Ta-doped SnO 2 film is lost more than half, whereas the portion transparent glass substrate is exposed has occurred, Example 1, Ta-doped SnO 2 film is transparent glass substrate surface The entire coating was maintained. 6 is a cross-sectional SEM photograph of the substrate with the transparent conductive film after removing the bus electrode by nitric acid etching in Example 1. FIG. Also from FIG. 6, it can be confirmed that the Ta-doped SnO 2 film maintains the state of covering the entire glass transparent substrate surface. From these results, in the case of Comparative Example 1, the Ta-doped SnO 2 film is lost, and Ag ions in the silver paste are diffused into the glass transparent substrate from the portion where the glass transparent substrate is exposed, and yellowing occurs. It is thought that occurred.
  • the substrate with a transparent conductive film of the present invention it is possible to prevent yellowing of the glass transparent substrate when a bus electrode is formed using a silver paste without performing a specific treatment on the glass transparent substrate. .
  • the PDP substrate of the present invention prevents yellowing of the glass transparent substrate, the PDP manufactured using the substrate is excellent in color display quality.

Abstract

A substrate having a transparent conductive film attached thereto, comprising a transparent glass substrate and a transparent conductive film mainly composed of tin oxide (SnO2) and formed on the transparent glass substrate, wherein the peak intensity ratio (Y/X) is 1.5 to 1.8 inclusive (wherein Y represents the crystalline peak of SnO2 face(100) contained in the XRD peaks of the transparent conductive film; and X represents the background peak caused by the glass transparent substrate).

Description

透明導電膜付基板およびプラズマディスプレイパネル用基板Substrate with transparent conductive film and substrate for plasma display panel
 本発明は、透明導電膜付基板、および該透明導電膜付基板を用いたプラズマディスプレイパネル(PDP)用基板に関する。 The present invention relates to a substrate with a transparent conductive film and a substrate for a plasma display panel (PDP) using the substrate with a transparent conductive film.
 PDPの前面パネルを作製する場合、ガラス透明基板上に透明導電膜およびバス電極がこの順に形成される。透明導電膜としては、酸化インジウム系、酸化亜鉛系、酸化スズ系が知られている。酸化インジウム系としては、ITO(スズドープ酸化インジウム)が特に有名で広く用いられている。ITOが広く用いられている理由として、その低抵抗性と良パターニング性があげられる。しかし、インジウムは埋蔵資源が少ないことが知られており、代替となる材料の開発が望まれている。
 酸化スズ(SnO)膜は、その代替材料として期待される材料であり。しかしながら、酸化スズに導電性を付与するためには、環境的に将来的な懸念がありうるアンチモンをドーパントとして利用する必要があった。特許文献1では、この問題を解決するため、酸化スズを主成分とし、ニオブ、タングステン、タンタル、ビスマスおよびモリブデンからなるAドーパンド群から選択される少なくとも一つの元素と、銅元素と、をドーパントとして含む透明導電膜が提案されている。特許文献1に記載の透明導電膜の場合、銅元素はスパッタリングターゲットの焼結助剤として含有させる成分であり、酸化スズに導電性を付与するのはAドーパント群の元素である。
 また、特許文献2では、上記の問題を解決するため、酸化スズを主成分とし、亜鉛、ニオブ、チタン、マグネシウム、アルミニウムおよびジルコニウムからなるAドーパンド群から選択される少なくとも一つの元素と、タングステン、タンタルおよびモリブデンからなるBドーパンド群から選択される少なくとも一つの元素と、をドーパントとして含む透明導電膜が提案されている。
When producing a front panel of a PDP, a transparent conductive film and a bus electrode are formed in this order on a glass transparent substrate. As the transparent conductive film, indium oxide, zinc oxide, and tin oxide are known. As the indium oxide system, ITO (tin-doped indium oxide) is particularly famous and widely used. The reason why ITO is widely used is its low resistance and good patterning property. However, it is known that indium has few reserve resources, and the development of alternative materials is desired.
Tin oxide (SnO 2) film has a material which is expected as an alternative material. However, in order to impart conductivity to tin oxide, it was necessary to use antimony as a dopant, which may have environmental concerns in the future. In Patent Document 1, in order to solve this problem, tin oxide is the main component, and at least one element selected from the A dopant group consisting of niobium, tungsten, tantalum, bismuth and molybdenum, and copper element are used as dopants. Including transparent conductive films have been proposed. In the case of the transparent conductive film described in Patent Document 1, copper element is a component contained as a sintering aid for the sputtering target, and it is the element of the A dopant group that imparts conductivity to tin oxide.
Further, in Patent Document 2, in order to solve the above problem, at least one element selected from an A dopant group composed mainly of tin oxide and made of zinc, niobium, titanium, magnesium, aluminum, and zirconium, tungsten, There has been proposed a transparent conductive film containing, as a dopant, at least one element selected from a B dopant group made of tantalum and molybdenum.
 透明導電膜上にバス電極を形成する場合、該透明導電膜上にガラスフリットを含有する銀ペーストを塗布した後、500~600℃で焼成することによりバス電極(銀電極)が形成される(特許文献3参照)。以下、本明細書において、ガラスフリットを含有する銀ペーストのことを単に「銀ペースト」という場合がある。
 しかしながら、銀ペーストを用いてバス電極(銀電極)を形成する際に、ガラス透明基板が黄色発色(黄変)し、これを用いて製造されるPDPにおいて、カラー表示の品位が低下する問題があった。すなわち、白色を表示させた画面が銀電極周辺に黄色味を帯びたり、また青色を表示させた画面の輝度が低下したりする問題があった。
 この黄変は、銀ペーストを用いてバス電極(銀電極)を形成する際に、銀ペースト中のAgイオンが、ガラス透明基板表面から内部(表面層)に拡散し、該表面層に存在するFe2+、Sn2+、等によって還元されてAgとなり、これが凝集して生成したコロイドの発色によるものと考えられる。
When a bus electrode is formed on a transparent conductive film, a bus electrode (silver electrode) is formed by applying a silver paste containing glass frit on the transparent conductive film and then baking at 500 to 600 ° C. ( (See Patent Document 3). Hereinafter, in this specification, the silver paste containing glass frit may be simply referred to as “silver paste”.
However, when a bus electrode (silver electrode) is formed using a silver paste, the glass transparent substrate develops yellow color (yellowing), and there is a problem that the quality of color display is deteriorated in a PDP manufactured using the glass transparent substrate. there were. That is, there is a problem that the screen displaying white has a yellowish color around the silver electrode, and the brightness of the screen displaying blue is reduced.
This yellowing occurs when the silver electrode is used to form a bus electrode (silver electrode), Ag ions in the silver paste diffuse from the surface of the glass transparent substrate to the inside (surface layer) and exist in the surface layer. It is considered that this is due to the color formation of the colloid produced by agglomeration by being reduced to Fe 0 by Fe 2+ , Sn 2+ , etc.
 このような黄変を防止する方法として、特許文献4にはフロート法によって板状に成形されたガラス基板の金属電極が形成される面を研磨することにより、該面に形成された還元性の異質層を除去することが提案されている。特許文献5には、フロート法により板状に成形したガラス板の表面に対して、徐冷炉入口または徐冷炉上流側において、SOを連続的にスプレーして保護層を形成することが提案されている。特許文献6および7には、ガラス基板の表面に金属酸化物層を形成することが提案されている。特許文献8には、銀電極を形成する際に使用する銀ペーストあるいは銀フィルムとしては、Ag粒子と、遷移金属の酸化物を添加したガラスフリットと、を含むものを用いることが提案されている。 As a method of preventing such yellowing, Patent Document 4 discloses a reducing property formed on a surface of a glass substrate formed into a plate shape by a float method by polishing the surface on which the metal electrode is formed. It has been proposed to remove foreign layers. Patent Document 5 proposes that a protective layer is formed by continuously spraying SO 2 on the surface of a glass plate formed into a plate shape by a float process at the inlet of the slow cooling furnace or upstream of the slow cooling furnace. . Patent Documents 6 and 7 propose forming a metal oxide layer on the surface of a glass substrate. Patent Document 8 proposes to use a silver paste or silver film containing Ag particles and a glass frit to which a transition metal oxide is added as a silver paste or silver film used for forming a silver electrode. .
 しかしながら、特許文献4~7に記載の方法は、ガラス透明基板に対して特定の処理を行うことが必要となるため、操作が煩雑であり、歩留りの低下やコスト増につながる。また、特許文献8に記載の方法は、銀ペーストとして、遷移金属の酸化物を添加したガラスフリットを含むものを用いる場合もあるが、ガラス基板と銀ペーストに含まれる銀粒子とを物理的に完全に隔離するわけではないので、ガラス基板の黄変を完全に抑制するのは難しいという問題がある。 However, since the methods described in Patent Documents 4 to 7 require specific treatment on the glass transparent substrate, the operation is complicated, leading to a decrease in yield and an increase in cost. Moreover, although the method of patent document 8 may use what contains the glass frit which added the oxide of the transition metal as a silver paste, a glass substrate and the silver particle contained in a silver paste are physically made. Since it is not completely isolated, there is a problem that it is difficult to completely suppress yellowing of the glass substrate.
国際公開第2008-111324号パンフレットInternational Publication No. 2008-111324 Pamphlet 国際公開第2007-142330号パンフレットInternational Publication No. 2007-142330 Pamphlet 日本国特開2003-162962号公報Japanese Unexamined Patent Publication No. 2003-162962 日本国特開平10-255669号公報Japanese Patent Laid-Open No. 10-255669 日本国特開2007-204295号公報Japanese Unexamined Patent Publication No. 2007-204295 日本国特開平10-302648号公報Japanese Laid-Open Patent Publication No. 10-302648 日本国特開2003-16949号公報Japanese Unexamined Patent Publication No. 2003-16949 日本国特開2003-162962号公報Japanese Unexamined Patent Publication No. 2003-162962
 本発明は、上記した従来技術の問題点を解決するため、ガラス透明基板に対して特定の処理を行うことなしに、銀ペーストを用いてバス電極を形成する際のガラス透明基板の黄変を防止することができる透明導電膜付基板、および、該透明導電膜付基板を用いたPDP用基板を提供することを目的とする。 In order to solve the above-mentioned problems of the prior art, the present invention eliminates yellowing of a glass transparent substrate when forming a bus electrode using a silver paste without performing a specific treatment on the glass transparent substrate. An object of the present invention is to provide a substrate with a transparent conductive film that can be prevented, and a substrate for PDP using the substrate with a transparent conductive film.
 本発明は、上記の目的を達成するため、ガラス透明基板上に、酸化スズ(SnO)を主成分とする透明導電膜が形成された透明導電膜付基板であって、
 前記透明導電膜のXRDピークにおけるSnO(100)面の結晶ピークをYとし、ガラス透明基板によるバックグラウンドピークをXとするとき、ピーク強度比Y/Xが1.5以上1.8以下となることを特徴とする透明導電膜付基板を提供する。
In order to achieve the above object, the present invention is a substrate with a transparent conductive film in which a transparent conductive film mainly composed of tin oxide (SnO 2 ) is formed on a glass transparent substrate,
When the crystal peak of the SnO 2 (100) plane in the XRD peak of the transparent conductive film is Y and the background peak due to the glass transparent substrate is X, the peak intensity ratio Y / X is 1.5 or more and 1.8 or less. A substrate with a transparent conductive film is provided.
 本発明の透明導電膜付基板において、前記酸化スズを主成分とする透明導電膜が、ドーパントとしてタンタル(Ta)を元素換算で2.5原子%以下含有することが好ましい。 In the substrate with a transparent conductive film of the present invention, the transparent conductive film containing tin oxide as a main component preferably contains tantalum (Ta) as a dopant in an amount of 2.5 atomic% or less in terms of element.
 本発明の透明導電膜付基板において、前記透明導電膜の厚さが、50nm以上1μm以下であることが好ましい。 In the substrate with a transparent conductive film of the present invention, the thickness of the transparent conductive film is preferably 50 nm or more and 1 μm or less.
 また、本発明は、本発明の透明導電膜付基板の製造方法であって、スパッタリング法により、ガラス透明基板上に酸化スズ(SnO)を主成分とする透明導電膜を形成する際に、酸化スズを主成分とし、ドーパントとしてタンタル(Ta)を2.5原子%以下含有するスパッタリングターゲットを使用し、基板温度250℃以上でスパッタリングを実施することを特徴とする透明導電膜付基板の製造方法を提供する。 Further, the present invention is a method for producing a substrate with a transparent conductive film of the present invention, and when forming a transparent conductive film containing tin oxide (SnO 2 ) as a main component on a glass transparent substrate by a sputtering method, Production of a substrate with a transparent conductive film, characterized by using a sputtering target containing tin oxide as a main component and containing 2.5 atomic% or less of tantalum (Ta) as a dopant, and performing sputtering at a substrate temperature of 250 ° C. or higher. Provide a method.
 また、本発明は、本発明の透明導電膜付基板の透明導電膜上に、ビスマス系ガラスフリットを含有する銀ペーストを塗布し、500~600℃の温度で焼成することによりバス電極が形成されたプラズマディスプレイパネル(PDP)用基板を提供する。 Further, in the present invention, a bus electrode is formed by applying a silver paste containing bismuth glass frit on the transparent conductive film of the substrate with a transparent conductive film of the present invention and baking at a temperature of 500 to 600 ° C. A plasma display panel (PDP) substrate is provided.
 本発明のPDP用基板において、前記バス電極のXRDピークにおけるBiSn(222)面の結晶ピークをZとし、ガラス透明基板によるバックグラウンドピークをXとするとき、ピーク強度比Z/Xが2以上となることが好ましい。 In the PDP substrate of the present invention, when the crystal peak of the Bi 2 Sn 2 O 7 (222) plane in the XRD peak of the bus electrode is Z and the background peak due to the glass transparent substrate is X, the peak intensity ratio Z / X is preferably 2 or more.
 本発明の透明導電膜付基板によれば、ガラス透明基板に対する特定の処理等を行うことなしに、銀ペーストを用いてバス電極を形成する際のガラス透明基板の黄変を防止することができる。
 本発明のPDP用基板は、ガラス透明基板の黄変が防止されているため、該基板を用いて製造されるPDPはカラー表示の品位に優れている。
According to the substrate with a transparent conductive film of the present invention, it is possible to prevent yellowing of the glass transparent substrate when a bus electrode is formed using a silver paste without performing a specific treatment on the glass transparent substrate. .
In the PDP substrate of the present invention, yellowing of the glass transparent substrate is prevented, so that the PDP produced using the substrate is excellent in the quality of color display.
図1は、本発明の透明導電膜付基板の基本構成を示した模式図である。FIG. 1 is a schematic view showing a basic configuration of a substrate with a transparent conductive film of the present invention. 図2は、酸化スズを主成分とする透明導電膜が形成された透明導電膜付基板における該透明導電膜のXRDピークの一例である。FIG. 2 is an example of an XRD peak of the transparent conductive film in the substrate with the transparent conductive film on which the transparent conductive film containing tin oxide as a main component is formed. 図3は、透明導電膜付基板の透明導電膜上に、ビスマス系ガラスフリットを含有する銀ペーストを塗布し、焼成することにより形成されたバス電極のXRDピークの一例である。FIG. 3 is an example of an XRD peak of a bus electrode formed by applying a silver paste containing bismuth-based glass frit on a transparent conductive film of a substrate with a transparent conductive film and baking it. 図4は、実施例1の透明導電膜付基板のバス電極除去後の表面のSEM写真である。FIG. 4 is a SEM photograph of the surface of the substrate with a transparent conductive film of Example 1 after removing the bus electrode. 図5は、比較例1の透明導電膜付基板のバス電極除去後の表面のSEM写真である。FIG. 5 is an SEM photograph of the surface of the substrate with a transparent conductive film of Comparative Example 1 after removing the bus electrode. 図6は、実施例1の透明導電膜付基板のバス電極除去後の断面SEM写真である。FIG. 6 is a cross-sectional SEM photograph of the substrate with a transparent conductive film of Example 1 after removing the bus electrode.
 以下、図面を参照して本発明について説明する。
 図1は、本発明の透明導電膜付基板の基本構成を示した模式図である。図1に示すように、本発明の透明導電膜付基板では、ガラス透明基板1上に透明導電膜2が形成されている。
 以下、透明導電膜付基板の個々の構成について説明する。
The present invention will be described below with reference to the drawings.
FIG. 1 is a schematic view showing a basic configuration of a substrate with a transparent conductive film of the present invention. As shown in FIG. 1, in the substrate with a transparent conductive film of the present invention, a transparent conductive film 2 is formed on a glass transparent substrate 1.
Hereinafter, each structure of a board | substrate with a transparent conductive film is demonstrated.
[ガラス透明基板]
 ガラス透明基板の構成材料は、PDP用のガラス基板として使用されるものから広く選択することができ、ソーダライムガラス、高歪み点ガラスおよび無アルカリガラス等、各種ガラス材料を使用することができる。これらの中でも、日本国特許第2738036号、および、日本国特許第3669022号に記載されているガラス基板用組成物が特に好ましい。
 ガラス透明基板は、分光透過率が425~475nm、510~560nm、600~650nmの範囲でそれぞれ80%以上であることがこのましい。
[Glass transparent substrate]
The constituent material of the glass transparent substrate can be widely selected from those used as a glass substrate for PDP, and various glass materials such as soda lime glass, high strain point glass and non-alkali glass can be used. Among these, the glass substrate composition described in Japanese Patent No. 2738036 and Japanese Patent No. 3669022 is particularly preferable.
The glass transparent substrate preferably has a spectral transmittance of 80% or more in the range of 425 to 475 nm, 510 to 560 nm, and 600 to 650 nm.
 ガラス透明基板の大きさや厚さは特に限定されないが、例えば、縦横の長さが各々400~3000mm程度のものを好ましく用いることができる。また、その厚さは0.7~3.0mmが好ましく、1.5~3.0mmがより好ましい。 Although the size and thickness of the glass transparent substrate are not particularly limited, for example, those having a length and width of about 400 to 3000 mm can be preferably used. The thickness is preferably 0.7 to 3.0 mm, more preferably 1.5 to 3.0 mm.
[透明導電膜]
 本発明の透明導電膜付基板では、酸化スズ(SnO)を主成分とする透明導電膜を用いる。ここで、酸化スズを主成分とする透明導電膜とは、酸化スズの含有量がスズ元素換算で80原子%超であることを意味する。
 ここで、透明導電膜は、酸化スズのみで形成される膜であってもよいが、酸化スズに導電性を付与する目的で通常はドーパントが添加されていることが好ましい。このような目的で添加されるドーパントとしては、タンタル(Ta)、タングステン(W)、ニオブ(Nb)、ビスマス(Bi)およびモリブデン(Mo)等が挙げられる。
 上記のドーパントの中でも、タンタルが酸化スズに導電性を付与する効果が高い等の理由から特に好ましい。
 酸化スズに導電性を付与する目的で添加するドーパントとしては、インジウムやアンチモンも従来使用されていたが、前者は高価な元素であることから、後者は環境的に将来的に懸念があることから、本発明における透明導電膜には使用しないことが好ましい。このため、本発明における透明導電膜は、インジウムおよびアンチモンを実質的に含有せず、これらの含有量が元素換算で0.1原子%以下であることが好ましい。
[Transparent conductive film]
In the substrate with a transparent conductive film of the present invention, a transparent conductive film containing tin oxide (SnO 2 ) as a main component is used. Here, the transparent conductive film containing tin oxide as a main component means that the content of tin oxide is more than 80 atomic% in terms of tin element.
Here, the transparent conductive film may be a film formed only of tin oxide, but it is usually preferable to add a dopant for the purpose of imparting conductivity to the tin oxide. Examples of dopants added for this purpose include tantalum (Ta), tungsten (W), niobium (Nb), bismuth (Bi), and molybdenum (Mo).
Among the above dopants, tantalum is particularly preferable because of its high effect of imparting conductivity to tin oxide.
As dopants added for the purpose of imparting conductivity to tin oxide, indium and antimony have also been used in the past, but the former is an expensive element, and the latter has environmental concerns in the future. The transparent conductive film in the present invention is preferably not used. For this reason, it is preferable that the transparent conductive film in this invention does not contain indium and antimony substantially, and these content is 0.1 atomic% or less in element conversion.
 但し、酸化スズに導電性を付与する目的でドーパントを添加する場合、後述するバリア層としての透明導電膜の機能に悪影響を及ぼさない量で添加する必要がある。好適なドーパントであるタンタルについては、透明導電膜における好適な含有量を後述する。 However, when a dopant is added for the purpose of imparting conductivity to tin oxide, it is necessary to add it in an amount that does not adversely affect the function of the transparent conductive film as a barrier layer described later. About the tantalum which is a suitable dopant, suitable content in a transparent conductive film is mentioned later.
 上述したように、銀ペーストを用いてバス電極形成する際にガラス透明基板の黄変が生じる原因は、銀ペースト中のAgイオンがガラス透明基板表面から内部(表面層)に拡散し、該表面層に存在するFe2+、Sn2+、等によって還元されてAgとなり、これが凝集してコロイドを生成するであると考えられる。以下、本明細書において、「ガラス透明基板の黄変」といった場合、銀ペーストを用いてバス電極形成する際に生じるガラス透明基板の黄変を指す。
 このため、ガラス透明基板上に形成される透明導電膜には、銀ペースト中のAgイオンがガラス透明基板表面に到達するのを防止するためのバリア層としての機能も求められる。以下、本明細書において、「バリア層」と言った場合、銀ペースト中のAgイオンがガラス透明基板表面に到達するのを防止するためのバリア層を指す。
 酸化スズを主成分とする透明導電膜が上記のバリア層としての機能を発揮するためには、該透明導電膜が結晶化度の高い膜であり、かつ、該膜を構成する結晶の配向性が低いこと、すなわち、該膜中に様々な方向を配向する結晶が混在していることが、該膜の化学的堅牢性の観点から重要であることを本願発明者らは見出した。
As described above, when forming a bus electrode using a silver paste, the cause of yellowing of the glass transparent substrate is that Ag ions in the silver paste diffuse from the glass transparent substrate surface to the inside (surface layer), and the surface It is considered that it is reduced to Ag 0 by Fe 2+ , Sn 2+ , etc. present in the layer, and this aggregates to form a colloid. Hereinafter, in this specification, “yellowing of a transparent glass substrate” refers to yellowing of a transparent glass substrate that occurs when a bus electrode is formed using a silver paste.
For this reason, the transparent conductive film formed on the glass transparent substrate is also required to have a function as a barrier layer for preventing Ag ions in the silver paste from reaching the glass transparent substrate surface. Hereinafter, in the present specification, the term “barrier layer” refers to a barrier layer for preventing Ag ions in the silver paste from reaching the glass transparent substrate surface.
In order for the transparent conductive film containing tin oxide as a main component to exhibit the function as the barrier layer, the transparent conductive film is a film having a high degree of crystallinity and the orientation of crystals constituting the film. The inventors of the present application have found that it is important from the viewpoint of chemical robustness of the film that the film is low, that is, that crystals having various orientations are mixed in the film.
 酸化スズを主成分とする透明導電膜が非晶質の膜である場合、若しくは結晶化度が低い膜である場合、膜が化学的に堅牢ではないため、銀ペーストを用いてバス電極を形成する際に、膜の一部に孔が生じ、該孔を通じて銀ペースト中のAgイオンがガラス透明基板に到達するため、バリア層としての機能が低く、ガラス透明基板の黄変を防止することができない。 When the transparent conductive film mainly composed of tin oxide is an amorphous film or a film with low crystallinity, the bus electrode is formed using silver paste because the film is not chemically robust. In this case, a hole is formed in a part of the film, and Ag ions in the silver paste reach the glass transparent substrate through the hole, so that the function as a barrier layer is low and yellowing of the glass transparent substrate can be prevented. Can not.
 酸化スズを主成分とする透明導電膜が結晶化度の高い膜であっても、該膜を構成する結晶の配向性が高くなると、膜の化学的堅牢性が低下するため、銀ペーストを用いてバス電極を形成する際に、膜の一部に孔が生じ、該孔を通じて銀ペースト中のAgイオンがガラス透明基板に到達するため、バリア層としての機能が低く、ガラス透明基板の黄変を防止することができない。 Even if the transparent conductive film containing tin oxide as a main component is a film having a high degree of crystallinity, if the orientation of the crystals constituting the film increases, the chemical fastness of the film decreases, so a silver paste is used. When the bus electrode is formed, holes are formed in a part of the film, and Ag ions in the silver paste reach the glass transparent substrate through the holes, so that the function as a barrier layer is low, and the yellowing of the glass transparent substrate is caused. Can not be prevented.
 酸化スズを主成分とする透明導電膜の結晶化度の高低、および、該膜を構成する結晶の配向性の高低は、後述するように、該透明導電膜のXRDピークにより確認することができる。
 酸化スズを主成分とする透明導電膜が形成された透明導電膜付基板における該透明導電膜のXRDピークの一例を図2に示す。図2において、YはSnO(100)面の結晶ピークであり、Xはガラス透明基板によるバックグラウンドピークである。
 本発明の透明導電膜付基板では、透明導電膜のXRDピークにおけるYとXとのピーク強度比(Y/X)が1.5以上1.8以下となる。以下、本明細書において、「Y/X」と記載した場合、透明導電膜のXRDピークにおけるYとXとのピーク強度比を指す。
 Y/Xが上記の範囲であれば、透明導電膜が結晶化度が高い膜であり、かつ、該膜を構成する結晶の配向性が低く、該膜中に様々な方向を配向する結晶が混在していることから、バリア層としての機能が十分発揮され、ガラス透明基板の黄変が防止される。
The degree of crystallinity of the transparent conductive film mainly composed of tin oxide and the degree of orientation of the crystals constituting the film can be confirmed by the XRD peak of the transparent conductive film, as will be described later. .
An example of the XRD peak of the transparent conductive film in the substrate with the transparent conductive film on which the transparent conductive film mainly composed of tin oxide is formed is shown in FIG. In FIG. 2, Y is a crystal peak of the SnO 2 (100) plane, and X is a background peak due to the glass transparent substrate.
In the substrate with a transparent conductive film of the present invention, the peak intensity ratio (Y / X) between Y and X in the XRD peak of the transparent conductive film is 1.5 or more and 1.8 or less. Hereinafter, in this specification, when “Y / X” is described, it indicates a peak intensity ratio between Y and X in the XRD peak of the transparent conductive film.
If Y / X is in the above range, the transparent conductive film is a film having a high degree of crystallinity, and the orientation of the crystals constituting the film is low, and crystals that are oriented in various directions are formed in the film. Since they are mixed, the function as a barrier layer is sufficiently exhibited, and yellowing of the glass transparent substrate is prevented.
 Y/Xが1.5未満だと、透明導電膜が非晶質の膜であるか、若しくは結晶化度の低い膜であることから、上述したように膜が化学的に堅牢ではなく、バリア層としての機能を発揮することができず、ガラス透明基板の黄変を防止することができない。
 一方、Y/Xが1.8超だと、結晶化度の高い膜ではあるが、該膜を構成する結晶の配向性が高くなるため、上述したように膜の化学的堅牢性が低下し、バリア層としての機能を発揮することができず、ガラス透明基板の黄変を防止することができない。
If Y / X is less than 1.5, the transparent conductive film is an amorphous film or a film having a low degree of crystallinity. The function as a layer cannot be exhibited, and yellowing of the glass transparent substrate cannot be prevented.
On the other hand, if Y / X is more than 1.8, although the film has a high degree of crystallinity, the orientation of the crystals constituting the film increases, so that the chemical robustness of the film decreases as described above. The function as a barrier layer cannot be exhibited, and yellowing of the glass transparent substrate cannot be prevented.
 上述したように、酸化スズに導電性を付与する目的で添加するドーパントしてはタンタルが好ましい。ドーパントとしてタンタルを添加する場合、透明導電膜におけるタンタル含有量は、元素換算で2.5原子%以下である。
 酸化スズへの導電性の付与という観点では、透明導電膜のタンタル含有量を高くすることが好ましいが、透明導電膜におけるTa含有量が元素換算で2.5原子%超であると、該膜を構成する結晶の配向性が高くなり、上記Y/Xが1.8超となるため、バリア層としての機能が低下し、ガラス透明基板の黄変を防止することができない。
As described above, tantalum is preferable as a dopant added for the purpose of imparting conductivity to tin oxide. When adding tantalum as a dopant, the tantalum content in the transparent conductive film is 2.5 atomic% or less in terms of element.
From the viewpoint of imparting conductivity to tin oxide, it is preferable to increase the tantalum content of the transparent conductive film. However, if the Ta content in the transparent conductive film is more than 2.5 atomic% in terms of element, the film Since the orientation of the crystals constituting the film becomes high and the above Y / X exceeds 1.8, the function as a barrier layer is lowered and yellowing of the glass transparent substrate cannot be prevented.
 透明導電膜におけるタンタル含有量の下限は、酸化スズに導電性を付与することができる限り特に限定されないが、Ta元素換算で0.1原子%以上であることが好ましく、0.5原子%以上であることがより好ましい。 The lower limit of the tantalum content in the transparent conductive film is not particularly limited as long as conductivity can be imparted to tin oxide, but it is preferably 0.1 atomic% or more in terms of Ta element, and 0.5 atomic% or more. It is more preferable that
 酸化スズを主成分とする透明導電膜の成膜に使用されるスパッタリングターゲットには、酸化スズ、および、上記した酸化スズに導電性を付与する目的で添加されるドーパントに加えて、焼結助剤が通常添加される。したがって、酸化スズを主成分とする透明導電膜はこのような焼結助剤の成分も通常含有する。スパッタリングターゲットに添加される焼結助剤としては、銅(Cu)、亜鉛(Zn)、ニオブ(Nb)、チタン(Ti)、マグネシウム(Mg)、アルミニウム(Al)およびジルコニウム(Zr)等が挙げられる。
 酸化スズを主成分とする透明導電膜における焼結助剤の成分の含有量は、元素換算で10原子%未満であることが好ましい。なお、酸化スズを主成分とする透明導電膜が、酸化スズ、上記した酸化スズに導電性を付与する目的で添加されるドーパント、および、焼結助剤の成分以外の成分(以下、「他の成分」という。)を含有する場合、他の成分の含有量は、元素換算で10原子%未満であることが好ましい。
In addition to tin oxide and the dopant added for the purpose of imparting conductivity to the above-mentioned tin oxide, the sputtering target used for forming a transparent conductive film mainly composed of tin oxide includes a sintering aid. Agents are usually added. Therefore, the transparent conductive film containing tin oxide as a main component usually contains a component of such a sintering aid. Examples of the sintering aid added to the sputtering target include copper (Cu), zinc (Zn), niobium (Nb), titanium (Ti), magnesium (Mg), aluminum (Al), and zirconium (Zr). It is done.
The content of the sintering aid component in the transparent conductive film containing tin oxide as a main component is preferably less than 10 atomic% in terms of element. In addition, the transparent conductive film mainly composed of tin oxide is composed of tin oxide, a dopant added for the purpose of imparting conductivity to the above-described tin oxide, and components other than the components of the sintering aid (hereinafter referred to as “others” In other words, the content of the other components is preferably less than 10 atomic% in terms of elements.
 酸化スズを主成分とする透明導電膜は、比抵抗が5×10-2Ωcm以下であることが好ましく、1×10-2Ωcm以下であることがより好ましく、0.5×10-2Ωcm以下であることがより好ましく、9×10-3Ωcm以下であることがさらに好ましい。 The transparent conductive film containing tin oxide as a main component preferably has a specific resistance of 5 × 10 −2 Ωcm or less, more preferably 1 × 10 −2 Ωcm or less, and more preferably 0.5 × 10 −2 Ωcm. Or less, more preferably 9 × 10 −3 Ωcm or less.
 酸化スズを主成分とする透明導電膜は、膜厚が1μm以下であることが好ましい。膜厚が1μm以下であれば、透明導電膜がヘイズなどの光学的欠陥を有するおそれがない。透明性導電膜の膜厚は0.4μm以下であることがより好ましく、0.25μm以下であることがさらに好ましい。また、透明導電膜の膜厚は50nm以上であることが好ましい。 The transparent conductive film mainly composed of tin oxide preferably has a thickness of 1 μm or less. If a film thickness is 1 micrometer or less, there is no possibility that a transparent conductive film may have optical defects, such as a haze. The film thickness of the transparent conductive film is more preferably 0.4 μm or less, and further preferably 0.25 μm or less. Moreover, it is preferable that the film thickness of a transparent conductive film is 50 nm or more.
 酸化スズを主成分とする透明導電膜は、透明性に優れることが好ましく、具体的には、可視光透過率が80%以上であることが好ましい。 The transparent conductive film mainly composed of tin oxide is preferably excellent in transparency, and specifically, the visible light transmittance is preferably 80% or more.
 ガラス透明基板上に酸化スズを主成分とする透明導電膜を形成するには、所望の組成のスパッタリングターゲット、具体的には、形成する透明導電膜と同一の組成のスパッタリングターゲットを用いてスパッタリングを実施すればよい。但し、形成される透明導電膜のY/Xが1.5以上1.8以下となることが求められる。
 Y/Xが1.5以上1.8以下の透明導電膜を形成するための条件は、酸化スズを主成分とする透明導電膜の組成によっても異なるが、上記した好適組成の透明導電膜、ドーパントとしてタンタルが添加された透明導電膜の場合、以下の条件でスパッタリングを実施すればよい。
In order to form a transparent conductive film mainly composed of tin oxide on a glass transparent substrate, sputtering is performed using a sputtering target having a desired composition, specifically, a sputtering target having the same composition as the transparent conductive film to be formed. Just do it. However, Y / X of the formed transparent conductive film is required to be 1.5 or more and 1.8 or less.
The conditions for forming a transparent conductive film having a Y / X of 1.5 or more and 1.8 or less vary depending on the composition of the transparent conductive film containing tin oxide as a main component. In the case of a transparent conductive film to which tantalum is added as a dopant, sputtering may be performed under the following conditions.
 上述したように、透明導電膜のY/Xを1.8以下とするためには、透明導電膜におけるタンタル含有量は元素換算で2.5原子%以下であることが求められる。したがって、スパッタリングターゲットとしては、酸化スズを主成分とし、元素換算でタンタルを2.5原子%以下含有するものを使用する。
 一方、透明導電膜のY/Xを1.5以上とするためには、形成される透明導電膜を十分結晶化させることが必要となる。形成される透明導電膜を十分結晶化させるためには、基板を加熱した状態でスパッタリングを実施すればよく、酸化スズを主成分とし、元素換算でタンタルを2.5原子%以下含有する透明導電膜を形成する場合には、基板温度を250℃以上に加熱した状態でスパッタリングを実施すればよい。スパッタリング時の基板温度が250℃未満の場合、形成される透明導電膜の結晶化が不十分となり、透明導電膜のY/Xを1.5以上とすることができないおそれがある。
 但し、基板温度が高すぎる場合、形成される透明導電膜の結晶化にはもはや寄与せず、製造コストが増加することから好ましくない。製造コストの観点からは、基板温度は280℃以下であることが好ましい。
 したがって、基板温度250~280℃でスパッタリングを実施することが好ましい。
As described above, in order to make Y / X of the transparent conductive film 1.8 or less, the tantalum content in the transparent conductive film is required to be 2.5 atomic% or less in terms of element. Accordingly, a sputtering target containing tin oxide as a main component and containing tantalum of 2.5 atomic% or less in terms of element is used.
On the other hand, in order to make Y / X of a transparent conductive film 1.5 or more, it is necessary to crystallize the formed transparent conductive film sufficiently. In order to sufficiently crystallize the transparent conductive film to be formed, sputtering may be performed while the substrate is heated. The transparent conductive film containing tin oxide as a main component and containing tantalum of 2.5 atomic% or less in terms of element. In the case of forming a film, sputtering may be performed with the substrate temperature heated to 250 ° C. or higher. When the substrate temperature at the time of sputtering is less than 250 ° C., crystallization of the formed transparent conductive film becomes insufficient, and there is a possibility that Y / X of the transparent conductive film cannot be made 1.5 or more.
However, when the substrate temperature is too high, it no longer contributes to crystallization of the formed transparent conductive film, which is not preferable because the manufacturing cost increases. From the viewpoint of manufacturing cost, the substrate temperature is preferably 280 ° C. or lower.
Therefore, it is preferable to perform sputtering at a substrate temperature of 250 to 280 ° C.
 使用するスパッタリング法は特に限定されないが、直流電源を使用するDCスパッタリング法、DCパルススパッタリング法、直流電源を切り替えて使用するACスパッタリング法、または中波電源を使用するMFスパッタリング法が、操作しやすく、膜厚制御の点で有利であることから好ましい。
 但し、酸化スズを主成分とする透明導電膜は、高周波電源を使用するRFスパッタリング法のような他のスパッタリング法を用いて形成してもよい。
The sputtering method to be used is not particularly limited, but the DC sputtering method using a DC power source, the DC pulse sputtering method, the AC sputtering method using a DC power source by switching, or the MF sputtering method using a medium wave power source is easy to operate. From the viewpoint of film thickness control, it is preferable.
However, the transparent conductive film containing tin oxide as a main component may be formed by using another sputtering method such as an RF sputtering method using a high frequency power source.
 スパッタリング法により酸化スズを主成分とする透明導電膜を形成する際、酸化性雰囲気下でスパッタリングを実施することが好ましい。ここで、酸化性雰囲気とは、酸化性ガスを含む雰囲気であり、通常は、酸化性ガスと不活性ガスとの混合ガス雰囲気である。また、酸化性ガスとは、O、HO、CO、CO等、酸素原子含有ガスを意味する。
 中でも、OまたはCOと、アルゴン(Ar)と、の混合ガス雰囲気が、ガス組成が制御しやすく、透明で低抵抗の膜を得るうえで好都合であることから好ましく、COと、Arと、の混合ガス雰囲気が特に好ましい。
 Oと、Arと、の混合ガス雰囲気におけるO濃度は、1~5体積%であることが、透明で低抵抗の膜を得られることから好ましい。
 COと、Arと、の混合ガス雰囲気におけるCO濃度は、10~50体積%であることが、透明で低抵抗の膜を得られることから好ましい。
When forming the transparent conductive film which has tin oxide as a main component by sputtering method, it is preferable to perform sputtering in an oxidizing atmosphere. Here, the oxidizing atmosphere is an atmosphere containing an oxidizing gas, and is usually a mixed gas atmosphere of an oxidizing gas and an inert gas. Further, the oxidizing gas, O 2, H 2 O, CO, CO 2 , etc., means an oxygen atom-containing gas.
Among them, a mixed gas atmosphere of O 2 or CO 2 and argon (Ar) is preferable because the gas composition is easy to control and it is convenient for obtaining a transparent and low resistance film, and CO 2 and Ar A mixed gas atmosphere is particularly preferable.
The O 2 concentration in the mixed gas atmosphere of O 2 and Ar is preferably 1 to 5% by volume because a transparent and low resistance film can be obtained.
The CO 2 concentration in the mixed gas atmosphere of CO 2 and Ar is preferably 10 to 50% by volume because a transparent and low resistance film can be obtained.
 スパッタリング条件は、使用するスパッタリング法によって異なるが、マグネトロンDCスパッタリング法の場合、下記条件で実施することが好ましい。
スパッタリング時の電力密度:1~10W/cm
スパッタリング圧力:10-2~10Pa
基板温度:250~280℃
Sputtering conditions vary depending on the sputtering method used, but in the case of magnetron DC sputtering, it is preferable to carry out under the following conditions.
Power density during sputtering: 1 to 10 W / cm 2
Sputtering pressure: 10 −2 to 10 Pa
Substrate temperature: 250-280 ° C
 本発明の透明導電膜付基板において、酸化スズを主成分とし、Y/Xが1.5以上1.8以下の透明導電膜を形成するのは、バリア層としての機能が要求されるためである。したがって、バリア層としての機能が十分発揮され、ガラス透明基板の黄変が防止できる限り、透明導電膜全体を上記バリア層としての機能を有する、酸化スズを主成分とする透明導電膜で構成しなくてもよい。すなわち、上記バリア層としての機能を有する、酸化スズを主成分とする透明導電膜上に、従来の組成の透明導電膜を第2の透明導電膜として形成してもよい。このような第2の透明導電膜としては、Ga、Zn、Ti、Al、Sn、In、Nbからなる群から選ばれる少なくとも1種類を含む金属酸化物が挙げられる。
 なお、上記バリア層としての機能を有する透明導電膜上に第2の透明導電膜を形成する場合、両者の合計膜厚が上述した透明導電膜の膜厚を満たすようにする。
In the substrate with a transparent conductive film of the present invention, the transparent conductive film having tin oxide as a main component and Y / X of 1.5 to 1.8 is formed because a function as a barrier layer is required. is there. Therefore, as long as the function as a barrier layer is sufficiently exhibited and yellowing of the glass transparent substrate can be prevented, the entire transparent conductive film is composed of a transparent conductive film mainly composed of tin oxide having a function as the barrier layer. It does not have to be. That is, a transparent conductive film having a conventional composition may be formed as a second transparent conductive film on a transparent conductive film having tin oxide as a main component and functioning as the barrier layer. As such a 2nd transparent conductive film, the metal oxide containing at least 1 sort (s) chosen from the group which consists of Ga, Zn, Ti, Al, Sn, In, and Nb is mentioned.
In addition, when forming a 2nd transparent conductive film on the transparent conductive film which has a function as said barrier layer, it is made for the total film thickness of both to satisfy | fill the film thickness of the transparent conductive film mentioned above.
 本発明の透明導電膜付基板は、ガラス透明基板、酸化スズを主成分とする透明導電膜、および、第2の透明導電膜以外の構成を有してもよい。このような構成の具体例として、平坦度を良好にする等の目的で、ガラス透明基板と酸化スズを主成分とする透明導電膜との間に形成される下地膜が挙げられる。このような目的で形成される下地膜の構成材料としては、シリカ、ジルコニア、チタニア等が例示される。 The substrate with a transparent conductive film of the present invention may have a configuration other than a glass transparent substrate, a transparent conductive film containing tin oxide as a main component, and a second transparent conductive film. As a specific example of such a configuration, there is a base film formed between a glass transparent substrate and a transparent conductive film containing tin oxide as a main component for the purpose of improving the flatness. Examples of the constituent material of the base film formed for such a purpose include silica, zirconia, titania and the like.
 本発明のPDP用基板は、上記した本発明の透明導電膜付基板の酸化スズを主成分とする透明導電膜上(該透明導電膜上に第2の透明導電膜が形成されている場合、該第2の透明導電膜上)に、以下に示す手順でバス電極を形成したものである。
 まず初めに、透明導電膜上のバス電極を形成する部位にビスマス系ガラスフリットを含有する銀ペーストを塗布する。この目的で使用する銀ペーストは、通常60質量%以上の銀粉と、1~20質量%のビスマス系ガラスフリットと、10~30質量%の有機物のバインダーと、を混ぜて作製される。また、この目的で使用するビスマス系ガラスフリットの代表的な組成を以下に示す。
SiO 1~5質量%
  5~15質量%
Al3 3~8質量%
Bi3 70~90質量%
The substrate for PDP of the present invention is a transparent conductive film mainly composed of tin oxide of the substrate with a transparent conductive film of the present invention described above (when the second transparent conductive film is formed on the transparent conductive film, A bus electrode is formed on the second transparent conductive film by the following procedure.
First, a silver paste containing bismuth-based glass frit is applied to a portion where a bus electrode is formed on a transparent conductive film. The silver paste used for this purpose is usually prepared by mixing 60% by mass or more of silver powder, 1 to 20% by mass of a bismuth glass frit, and 10 to 30% by mass of an organic binder. A typical composition of the bismuth glass frit used for this purpose is shown below.
SiO 2 1-5% by mass
B 2 O 3 5-15% by mass
Al 2 O 3 3-8 mass%
Bi 2 O 3 70-90 mass%
 銀ペーストの塗布方法は特に限定されず、例えば、スクリーン印刷、スプレー法、ブレードコータ法、ダイコート法等の塗布方法を用いることができる。銀ペーストを塗布する厚さは特に限定されないが、厚さ数μm~数十μmの銀電極が形成されるような厚さであることが好ましい。
 次に、500~600℃の温度で所定時間(例えば、1~5時間)焼成することによりバス電極が形成され、本発明のPDP用基板が得られる。
The coating method of the silver paste is not particularly limited, and for example, a coating method such as screen printing, a spray method, a blade coater method, or a die coating method can be used. The thickness to which the silver paste is applied is not particularly limited, but is preferably such that a silver electrode having a thickness of several μm to several tens of μm is formed.
Next, a bus electrode is formed by baking at a temperature of 500 to 600 ° C. for a predetermined time (for example, 1 to 5 hours), and the PDP substrate of the present invention is obtained.
 上述したように、本発明の透明導電膜付基板では、酸化スズを主成分とする透明導電膜がバリア層として機能するため、銀ペーストを用いてバス電極を形成する際のガラス透明基板の黄変が防止されている。この結果、該基板を用いて製造されるPDPはカラー表示の品位に優れている。 As described above, in the substrate with a transparent conductive film of the present invention, the transparent conductive film containing tin oxide as a main component functions as a barrier layer. Therefore, when the bus electrode is formed using silver paste, the yellow glass transparent substrate is formed. Changes are prevented. As a result, a PDP manufactured using the substrate is excellent in color display quality.
 なお、酸化スズを主成分とする透明導電膜のバリア層としての機能、および、それによるガラス基板の黄変防止効果の優劣については、上記の手順で形成されたバス電極のXRDピークからも確認することができる。
 上記の手順で形成されたバス電極のXRDピークの一例を図3に示す。図3において、ZはBiSn(222)面の結晶ピークであり、Xはガラス透明基板によるバックグラウンドピークである。ここで、BiSnはビスマス系ガラスフリットの主成分である酸化ビスマス(Bi)と、透明導電膜の主成分である酸化スズ(SnO)と、が銀ペーストの焼成時に反応することによって形成される結晶性の化合物であり、該化合物が結晶化度の高い状態で存在することによって、バリア層としての機能が十分発揮され、ガラス透明基板の黄変が防止されると考えられる。なお、BiSnの結晶化度の高低は、バス電極のXRDピークにおけるZとXとのピーク強度比(Z/X)により確認できる。以下、本明細書において、「Z/X」と記載した場合、バス電極のXRDピークにおけるZとXとのピーク強度比を指す。
 本発明のPDP用基板において、Z/Xが2以上であることが好ましい。Z/Xが2以上であれば、BiSnが結晶化度の高い状態で存在しており、バリア層としての機能が十分発揮され、ガラス透明基板の黄変を防止する効果に優れている。
The function of the transparent conductive film mainly composed of tin oxide as a barrier layer and the superiority or inferiority of the yellowing prevention effect of the glass substrate thereby confirmed from the XRD peak of the bus electrode formed by the above procedure. can do.
An example of the XRD peak of the bus electrode formed by the above procedure is shown in FIG. In FIG. 3, Z is a crystal peak of the Bi 2 Sn 2 O 7 (222) plane, and X is a background peak due to the glass transparent substrate. Here, Bi 2 Sn 2 O 7 is composed of bismuth oxide (Bi 2 O 3 ) that is a main component of a bismuth glass frit and tin oxide (SnO 2 ) that is a main component of a transparent conductive film. It is a crystalline compound formed by reaction at times, and when the compound exists in a high crystallinity state, the function as a barrier layer is sufficiently exhibited and yellowing of the glass transparent substrate is prevented. it is conceivable that. The degree of crystallinity of Bi 2 Sn 2 O 7 can be confirmed by the peak intensity ratio (Z / X) between Z and X in the XRD peak of the bus electrode. Hereinafter, in the present specification, when “Z / X” is described, it indicates the peak intensity ratio of Z and X in the XRD peak of the bus electrode.
In the PDP substrate of the present invention, Z / X is preferably 2 or more. If Z / X is 2 or more, Bi 2 Sn 2 O 7 is present in a state of high crystallinity, the function as a barrier layer is sufficiently exhibited, and the effect of preventing yellowing of the glass transparent substrate is achieved. Are better.
 本発明のPDP用基板は、ガラス透明基板の黄変が防止された結果、L*a*b*系色座標の色差b*値(JIS-Z8729)で±5以下に抑えられていることが好ましい。 In the PDP substrate of the present invention, as a result of preventing yellowing of the glass transparent substrate, the color difference b * value (JIS-Z8729) of the L * a * b * system color coordinate is suppressed to ± 5 or less. preferable.
 以下、実施例を用いて本発明をさらに説明する。
(実施例1~4、比較例1~2)
 実施例1~4、および比較例1~2では、以下に示す手順でガラス透明基板上に、透明導電膜として酸化スズを主成分とし、ドーパントとしてタンタルを含む膜(TaドープSnO膜)を成膜し、該TaドープSnO膜上にバス電極(銀電極)を形成した。
[ガラス透明基板]
 ガラス透明基板としては、PDP用高歪み点ガラス基板(旭硝子社製PD200)を使用した。
[透明導電膜]
 DCスパッタリング法を用いて、該基板のトップ面に透明導電膜として、膜厚100nmのTaドープ酸化スズ膜を成膜した。Taドープ酸化スズ膜におけるTa含有量は下記表1及び2に示す通りである。
 なお、使用したスパッタリングターゲットの組成、および、スパッタリング実施時の基板温度は下記表1及び2に示す通りであり、他のスパッタリング条件は以下の通りである。
スパッタガス:ArとOとの混合ガス(O 1体積%)
スパッタリング時の電力密度:5W/cm
スパッタリング圧力:0.5Pa
[バス電極]
 ビヒクル、テレピネオール、ビスマス系ガラスフリット(ASF1094)および銀粉を、ビスマス系ガラスフリット10wt%、銀粉90wt%となるように混合して得た銀ペーストを、バリア層上にスクリーン印刷した。その後、615℃で10分間焼成してバス電極を形成した。
[物性評価]
(XRDピークにおけるY/XおよびZ/X)
 透明導電膜を形成した段階、および、バス電極を形成した段階でXRDを実施し、それぞれのXRDピークからY/XおよびZ/Xを求めた。なお、XRD測定は、2θ/θスキャン(理学電気工業製、Rad-RB)で行った。
(透明導電膜の比抵抗)
 透明導電膜の比抵抗を4端子法(三菱油化製、LORESTA-FP)により測定した。
(ガラス透明基板の黄変)
 バス電極を硝酸エッチングにより除去した後、ガラス透明基板の黄変の度合いを、L*a*b*系色座標の色差b*値(JIS-Z8729)として評価した。
 結果を下記表1及び2に示す。
The present invention will be further described below using examples.
(Examples 1 to 4, Comparative Examples 1 and 2)
In Examples 1 to 4 and Comparative Examples 1 and 2, a film containing tin oxide as a main component as a transparent conductive film and tantalum as a dopant (Ta-doped SnO 2 film) is formed on a glass transparent substrate by the following procedure. A bus electrode (silver electrode) was formed on the Ta-doped SnO 2 film.
[Glass transparent substrate]
As the glass transparent substrate, a high strain point glass substrate for PDP (PD200 manufactured by Asahi Glass Co., Ltd.) was used.
[Transparent conductive film]
Using a DC sputtering method, a Ta-doped tin oxide film with a thickness of 100 nm was formed as a transparent conductive film on the top surface of the substrate. The Ta content in the Ta-doped tin oxide film is as shown in Tables 1 and 2 below.
In addition, the composition of the used sputtering target and the substrate temperature at the time of performing the sputtering are as shown in Tables 1 and 2 below, and the other sputtering conditions are as follows.
Sputtering gas: Mixed gas of Ar and O 2 (O 2 1% by volume)
Power density during sputtering: 5 W / cm 2
Sputtering pressure: 0.5 Pa
[Bus electrode]
A silver paste obtained by mixing vehicle, terpineol, bismuth glass frit (ASF 1094) and silver powder so as to be 10 wt% bismuth glass frit and 90 wt% silver powder was screen-printed on the barrier layer. Then, it fired at 615 degreeC for 10 minute (s), and formed the bus electrode.
[Evaluation of the physical properties]
(Y / X and Z / X at XRD peak)
XRD was performed when the transparent conductive film was formed and when the bus electrode was formed, and Y / X and Z / X were obtained from the respective XRD peaks. XRD measurement was performed by 2θ / θ scan (manufactured by Rigaku Corporation, Rad-RB).
(Specific resistance of transparent conductive film)
The specific resistance of the transparent conductive film was measured by a four-terminal method (Mitsubishi Yuka's LORESTA-FP).
(Yellowing of transparent glass substrate)
After removing the bus electrode by nitric acid etching, the degree of yellowing of the glass transparent substrate was evaluated as a color difference b * value (JIS-Z8729) of L * a * b * system color coordinates.
The results are shown in Tables 1 and 2 below.
(比較例3)
 透明導電膜としてTaドープSnO膜の代わりにITO膜(SnOドープ量10質量%、膜厚100nm)を下記条件で形成した。
スパッタリング法:マグネトロンDCスパッタリング
スパッタリングターゲット:ITOターゲット(SnOドープ量10質量%)
スパッタガス:ArとOとの混合ガス(O 1体積%)
スパッタリング時の電力密度:5W/cm
スパッタリング圧力:0.5Pa
基板温度:250℃
 バス電極の形成条件は、銀ペーストをスクリーン印刷後の焼成を590℃で1時間で実施した点を除いて、上記した実施例1~4、比較例1~2と同様である。
(Comparative Example 3)
Instead of the Ta-doped SnO 2 film, an ITO film (SnO 2 doping amount 10 mass%, film thickness 100 nm) was formed as a transparent conductive film under the following conditions.
Sputtering method: magnetron DC sputtering sputtering target: ITO target (SnO 2 doping amount 10 mass%)
Sputtering gas: Mixed gas of Ar and O 2 (O 2 1% by volume)
Power density during sputtering: 5 W / cm 2
Sputtering pressure: 0.5 Pa
Substrate temperature: 250 ° C
The formation conditions of the bus electrode are the same as those in Examples 1 to 4 and Comparative Examples 1 and 2 described above, except that baking after screen printing of the silver paste was performed at 590 ° C. for 1 hour.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び2から明らかなように、TaドープSnO膜はITO膜に比べると比抵抗が若干劣っているが、透明導電膜として十分な導電特性を有していた。なお、比較例2については、透明導電膜の比抵抗を測定していないが、他の例(実施例1~4、比較例1)と同程度の比抵抗であると考えられる。
 基板温度250~280℃でタンタル含有量2.5原子%以下のTaドープSnO膜を形成した実施例1~4では、透明導電膜(TaドープSnO膜)のXRDピークから求めたY/Xが1.5~1.8の範囲内であり、バリア層としての機能を有する透明導電膜であることが確認された。バス電極のXRDピークから求めたZ/Xも2以上であり、バリア層としての機能に優れることが確認された。なお、b*値は黄変が問題とならないレベルであることを示している。
 一方、タンタル含有量3.5原子%のTaドープSnO膜を透明導電膜として形成した比較例1では、該透明導電膜のXRDピークから求めたY/Xが1.8超(1.85)であることから、該膜を構成する結晶の配向性が高く、バリア層としての機能を発揮することができず、ガラス透明基板の黄変を防止することができない。バス電極のXRDピークから求めたZ/Xも2未満(1.32)であり、バリア層としての機能に劣ることを示している。なお、b*値は黄変が問題となるレベルであることを示している。
 基板温度190℃でTaドープSnO膜を形成した比較例2では、該透明導電膜のXRDピークから求めたY/Xが1.5未満(1.41)であることから、該膜の結晶化度が低く、バリア層としての機能を発揮することができず、ガラス透明基板の黄変を防止することができない。バス電極のXRDピークから求めたZ/Xも2未満(1.22)であり、バリア層としての機能に劣ることを示している。なお、b*値は黄変が問題となるレベルであることを示している。
 透明導電膜としてITO膜を形成した比較例3では、透明導電膜がバリア層としての機能を有していないため、ガラス透明基板の黄変を防止することができない。この点についてはb*値からも明らかである。
As is clear from Tables 1 and 2, the Ta-doped SnO 2 film had a slightly lower specific resistance than the ITO film, but had sufficient conductive properties as a transparent conductive film. In Comparative Example 2, although the specific resistance of the transparent conductive film was not measured, it is considered that the specific resistance is comparable to the other examples (Examples 1 to 4 and Comparative Example 1).
In Examples 1 to 4 where a Ta-doped SnO 2 film having a tantalum content of 2.5 atomic% or less was formed at a substrate temperature of 250 to 280 ° C., the Y / value obtained from the XRD peak of the transparent conductive film (Ta-doped SnO 2 film) was obtained. X was in the range of 1.5 to 1.8, and it was confirmed to be a transparent conductive film having a function as a barrier layer. Z / X obtained from the XRD peak of the bus electrode was 2 or more, and it was confirmed that the function as a barrier layer was excellent. The b * value indicates that yellowing is not a problem.
On the other hand, in Comparative Example 1 in which a Ta-doped SnO 2 film having a tantalum content of 3.5 atomic% was formed as a transparent conductive film, Y / X obtained from the XRD peak of the transparent conductive film exceeded 1.8 (1.85 ), The orientation of the crystals constituting the film is high, the function as a barrier layer cannot be exhibited, and yellowing of the glass transparent substrate cannot be prevented. Z / X obtained from the XRD peak of the bus electrode is also less than 2 (1.32), indicating that the function as a barrier layer is inferior. The b * value indicates that yellowing is a problem level.
In Comparative Example 2 in which the Ta-doped SnO 2 film was formed at a substrate temperature of 190 ° C., the Y / X obtained from the XRD peak of the transparent conductive film was less than 1.5 (1.41). The degree of conversion is low, the function as a barrier layer cannot be exhibited, and yellowing of the glass transparent substrate cannot be prevented. Z / X obtained from the XRD peak of the bus electrode is also less than 2 (1.22), indicating that the function as a barrier layer is inferior. The b * value indicates that yellowing is a problem level.
In Comparative Example 3 in which the ITO film is formed as the transparent conductive film, the transparent conductive film does not have a function as a barrier layer, and thus yellowing of the glass transparent substrate cannot be prevented. This point is also clear from the b * value.
 実施例1および比較例1については、バス電極を硝酸エッチングにより除去した後の表面の状態を走査電子顕微鏡(SEM)で撮影した。結果を図4、5に示す。いずれの表面においても、ビスマス系ガラスフリットの主成分である酸化ビスマス(Bi)と、透明導電膜の主成分である酸化スズ(SnO)と、の反応生成物である結晶性の化合物(BiSn)が生成しており、TaドープSnO膜が侵食されていることが確認された。但し、比較例1ではTaドープSnO膜が半分以上失われて、ガラス透明基板が露出している部分が生じているのに対して、実施例1ではTaドープSnO膜がガラス透明基板表面全体を被覆している状態を維持していた。図6は、実施例1について、バス電極を硝酸エッチングにより除去した後の透明導電膜付基板の断面SEM写真である。図6からも、TaドープSnO膜がガラス透明基板表面全体を被覆している状態を維持していることが確認できる。これらの結果から、比較例1の場合、TaドープSnO膜が失われて、ガラス透明基板が露出している部分から、銀ペースト中のAgイオンが、ガラス透明基板の内部に拡散し黄変が生じたと考えられる。 For Example 1 and Comparative Example 1, the surface state after removing the bus electrode by nitric acid etching was photographed with a scanning electron microscope (SEM). The results are shown in FIGS. In any surface, a crystalline product which is a reaction product of bismuth oxide (Bi 2 O 3 ) which is a main component of a bismuth-based glass frit and tin oxide (SnO 2 ) which is a main component of a transparent conductive film. The compound (Bi 2 Sn 2 O 7 ) was generated, and it was confirmed that the Ta-doped SnO 2 film was eroded. However, Comparative Example 1, Ta-doped SnO 2 film is lost more than half, whereas the portion transparent glass substrate is exposed has occurred, Example 1, Ta-doped SnO 2 film is transparent glass substrate surface The entire coating was maintained. 6 is a cross-sectional SEM photograph of the substrate with the transparent conductive film after removing the bus electrode by nitric acid etching in Example 1. FIG. Also from FIG. 6, it can be confirmed that the Ta-doped SnO 2 film maintains the state of covering the entire glass transparent substrate surface. From these results, in the case of Comparative Example 1, the Ta-doped SnO 2 film is lost, and Ag ions in the silver paste are diffused into the glass transparent substrate from the portion where the glass transparent substrate is exposed, and yellowing occurs. It is thought that occurred.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2009年8月14日出願の日本特許出願2009-187960に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2009-187960 filed on Aug. 14, 2009, the contents of which are incorporated herein by reference.
 本発明の透明導電膜付基板によれば、ガラス透明基板に対する特定の処理等を行うことなしに、銀ペーストを用いてバス電極を形成する際のガラス透明基板の黄変を防止することができる。また、本発明のPDP用基板は、ガラス透明基板の黄変が防止されているため、該基板を用いて製造されるPDPはカラー表示の品位に優れている。 According to the substrate with a transparent conductive film of the present invention, it is possible to prevent yellowing of the glass transparent substrate when a bus electrode is formed using a silver paste without performing a specific treatment on the glass transparent substrate. . In addition, since the PDP substrate of the present invention prevents yellowing of the glass transparent substrate, the PDP manufactured using the substrate is excellent in color display quality.
 1:ガラス透明基板
 2:透明導電膜
1: Glass transparent substrate 2: Transparent conductive film

Claims (6)

  1.  ガラス透明基板上に、酸化スズ(SnO)を主成分とする透明導電膜が形成された透明導電膜付基板であって、
     前記透明導電膜のXRDピークにおけるSnO(100)面の結晶ピークをYとし、ガラス透明基板によるバックグラウンドピークをXとするとき、ピーク強度比Y/Xが1.5以上1.8以下となることを特徴とする透明導電膜付基板。
    A transparent conductive film-coated substrate in which a transparent conductive film mainly composed of tin oxide (SnO 2 ) is formed on a glass transparent substrate,
    When the crystal peak of the SnO 2 (100) plane in the XRD peak of the transparent conductive film is Y and the background peak due to the glass transparent substrate is X, the peak intensity ratio Y / X is 1.5 or more and 1.8 or less. A substrate with a transparent conductive film.
  2.  前記酸化スズを主成分とする透明導電膜が、ドーパントとしてタンタル(Ta)を元素換算で2.5原子%以下含有する請求項1に記載の透明導電膜付基板。 2. The substrate with a transparent conductive film according to claim 1, wherein the transparent conductive film containing tin oxide as a main component contains 2.5 atomic% or less of tantalum (Ta) as a dopant in terms of element.
  3.  前記透明導電膜の厚さが、50nm以上1μm以下である請求項1または2に記載の透明導電膜付基板。 The substrate with a transparent conductive film according to claim 1 or 2, wherein the thickness of the transparent conductive film is 50 nm or more and 1 µm or less.
  4.  請求項2に記載の透明導電膜付基板の製造方法であって、スパッタリング法により、ガラス透明基板上に酸化スズ(SnO)を主成分とする透明導電膜を形成する際に、酸化スズを主成分とし、ドーパントとしてタンタル(Ta)を元素換算で2.5原子%以下含有するスパッタリングターゲットを使用し、基板温度250℃以上でスパッタリングを実施することを特徴とする透明導電膜付基板の製造方法。 A transparent substrate with a conductive film manufacturing method according to claim 2, by a sputtering method, when forming the transparent conductive film mainly composed of tin oxide on a glass transparent substrate (SnO 2), tin oxide Production of a substrate with a transparent conductive film, characterized in that sputtering is carried out at a substrate temperature of 250 ° C. or more using a sputtering target containing 2.5 atomic% or less of tantalum (Ta) in terms of element as a main component. Method.
  5.  請求項1~3のいずれか一項に記載の透明導電膜付基板の透明導電膜上に、ビスマス系ガラスフリットを含有する銀ペーストを塗布し、500~600℃の温度で焼成することによりバス電極が形成されたプラズマディスプレイパネル(PDP)用基板。 A silver paste containing bismuth-based glass frit is applied on the transparent conductive film of the substrate with a transparent conductive film according to any one of claims 1 to 3 and fired at a temperature of 500 to 600 ° C to thereby obtain a bath. A substrate for a plasma display panel (PDP) on which electrodes are formed.
  6.  前記バス電極のXRDピークにおけるBiSn(222)面の結晶ピークをZとし、ガラス透明基板によるバックグラウンドピークをXとするとき、ピーク強度比Z/Xが2以上となることを特徴とする請求項5に記載のPDP用基板。 When the crystal peak of the Bi 2 Sn 2 O 7 (222) plane in the XRD peak of the bus electrode is Z and the background peak due to the glass transparent substrate is X, the peak intensity ratio Z / X is 2 or more. The PDP substrate according to claim 5, wherein the substrate is a PDP substrate.
PCT/JP2010/063575 2009-08-14 2010-08-10 Substrate having transparent conductive film attached thereto, and substrate for plasma display panel WO2011019039A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800361048A CN102471145A (en) 2009-08-14 2010-08-10 Substrate having transparent conductive film attached thereto, and substrate for plasma display panel
JP2011526769A JPWO2011019039A1 (en) 2009-08-14 2010-08-10 Substrate with transparent conductive film and substrate for plasma display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-187960 2009-08-14
JP2009187960 2009-08-14

Publications (1)

Publication Number Publication Date
WO2011019039A1 true WO2011019039A1 (en) 2011-02-17

Family

ID=43586214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063575 WO2011019039A1 (en) 2009-08-14 2010-08-10 Substrate having transparent conductive film attached thereto, and substrate for plasma display panel

Country Status (4)

Country Link
JP (1) JPWO2011019039A1 (en)
KR (1) KR20120069661A (en)
CN (1) CN102471145A (en)
WO (1) WO2011019039A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003162962A (en) * 1999-12-21 2003-06-06 Matsushita Electric Ind Co Ltd Plasma display panel and manufacturing method therefor
WO2007142330A1 (en) * 2006-06-08 2007-12-13 Asahi Glass Company, Limited Transparent conductive film, process for production of the film, and sputtering target for use in the production of the film
WO2008111324A1 (en) * 2007-03-14 2008-09-18 Asahi Glass Co., Ltd. Transparent conductive film and method for manufacturing the transparent conductive film, and sputtering target used in the method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6777872B2 (en) * 1999-12-21 2004-08-17 Matsushita Electric Industrial Co., Ltd. Plasma display panel and method for production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003162962A (en) * 1999-12-21 2003-06-06 Matsushita Electric Ind Co Ltd Plasma display panel and manufacturing method therefor
WO2007142330A1 (en) * 2006-06-08 2007-12-13 Asahi Glass Company, Limited Transparent conductive film, process for production of the film, and sputtering target for use in the production of the film
WO2008111324A1 (en) * 2007-03-14 2008-09-18 Asahi Glass Co., Ltd. Transparent conductive film and method for manufacturing the transparent conductive film, and sputtering target used in the method

Also Published As

Publication number Publication date
JPWO2011019039A1 (en) 2013-01-17
CN102471145A (en) 2012-05-23
KR20120069661A (en) 2012-06-28

Similar Documents

Publication Publication Date Title
TWI402862B (en) Oxide sintered body, manufacturing method therefor, manufacturing method for transparent conductive film using the same, and resultant transparent conductive film
JP5558420B2 (en) Sputtering target, transparent conductive oxide, and method for producing sputtering target
JP4655939B2 (en) Manufacturing method of transparent electrode
JP5561358B2 (en) Transparent conductive film
JP6888318B2 (en) Method for manufacturing laminated transparent conductive film, laminated wiring film and laminated wiring film
WO2007142330A1 (en) Transparent conductive film, process for production of the film, and sputtering target for use in the production of the film
KR102546803B1 (en) Etching solution composition for silver-containing layer and an display substrate using the same
WO2016024615A1 (en) Laminated film, laminated wiring film, and method for manufacturing laminated wiring film
US20100003495A1 (en) Transparent conductive film and method for manufacturing the transparent conductive film, and sputtering target used in the method
KR102225493B1 (en) Oxide thin film and oxide sintered body for sputtering target for producing the thin film
WO2011019040A1 (en) Substrate having transparent conductive film attached thereto, and substrate for plasma display panel
JP2007101622A (en) Display electrode film and manufacturing method of display electrode pattern
JP4779798B2 (en) Oxide sintered body, target, and transparent conductive film obtained using the same
JP4168689B2 (en) Thin film laminate
KR102599939B1 (en) Etchant composition for silver thin layer and ehting method and mehtod for fabrication metal pattern using the same
WO2011019039A1 (en) Substrate having transparent conductive film attached thereto, and substrate for plasma display panel
TW200807449A (en) Transparent conductive film, process for producing the same, and sputtering target for use in the production
JP2011040270A (en) Conductive oxide, and method of manufacturing the same and transparent conductive film using the same
JPWO2011093274A1 (en) Substrate with transparent conductive laminate and method for producing the same
JP6850981B2 (en) Oxide sputtering target
JP2016146321A (en) Laminate transparent conductive film, laminate wiring film and method for producing laminate wiring film
WO2021025040A1 (en) Laminated film
JP2005053746A (en) Glass powder composition for electrode coating, glass paste, green sheet and method for producing plasma display panel
WO2013047245A1 (en) Substrate with electrode
KR20100030299A (en) Plasma display panel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080036104.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808222

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011526769

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127003844

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10808222

Country of ref document: EP

Kind code of ref document: A1