JPH01308802A - Production of filmy superconductor and device therefor - Google Patents

Production of filmy superconductor and device therefor

Info

Publication number
JPH01308802A
JPH01308802A JP13975188A JP13975188A JPH01308802A JP H01308802 A JPH01308802 A JP H01308802A JP 13975188 A JP13975188 A JP 13975188A JP 13975188 A JP13975188 A JP 13975188A JP H01308802 A JPH01308802 A JP H01308802A
Authority
JP
Japan
Prior art keywords
raw material
superconductor
gas
ligand
metal complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13975188A
Other languages
Japanese (ja)
Inventor
Sadaaki Hagino
萩野 貞明
Hiroto Uchida
寛人 内田
Takeshi Sakurai
健 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP13975188A priority Critical patent/JPH01308802A/en
Publication of JPH01308802A publication Critical patent/JPH01308802A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve film-forming speed by vaporizing one raw material of superconductor among plural kind of raw materials in the presence of ligand to obtain a gas of metal complex and thus increasing vapor pressure of gas of raw material of superconductor, in production of filmy superconductor by CVD method. CONSTITUTION:Gaseous ligand (e.g., hexafluoroacetylacetone) is contained in ligand vessels 11, 12 and 13 and plural kind of raw materials of superconductor (e.g., Ba-compound, Y-compound and Cu-compound) are contained in raw material vessels 1, 2 and 3. Next, ligands in the ligand vessels 11, 12 and 13 are respectively transferred to the raw material vessels 1, 2 and 3 by carrier gas (e.g., Ar), heated by heater 8 and the raw materials of superconductor in the raw material vessel 1, 2 and 3 are vaporized to gas of metal complex in the presence of ligand, then introduced into a reaction chamber 5 and oxygen 10 is simultaneously introduced into the reaction chamber 5, heated by the heater 8 and chemical reaction is risen to form a filmy superconductor on a base plate 9.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はCVD法による膜状超電導体の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a film-like superconductor by a CVD method.

[従来の技術] 膜状超電導体を製造する方法としてはスクリーン印刷に
よる方法やスパッタリングによる方法が知られている。
[Prior Art] Screen printing methods and sputtering methods are known as methods for manufacturing film-like superconductors.

しかしながら、粉状原料を用いるスクリーン印刷による
方法にあっては、超電導体が低密度で無配向な多結晶体
となって高い臨”界電流密度が期待できず、また、焼結
のための高温処理が必要なためにIC化に適さないとい
う欠点があった。一方、スパッタリングによる方法にあ
っては、超電導体の成膜速度が遅く且つ組成が不安定と
なり易く、また、真空中で成膜することから装置を大型
化することが困難であるという欠点があった。
However, in the screen printing method using powdered raw materials, the superconductor becomes a low-density, non-oriented polycrystalline body, and a high critical current density cannot be expected. The disadvantage is that it is not suitable for IC fabrication because it requires processing.On the other hand, sputtering methods have a slow deposition rate and tend to have an unstable composition, and they also require deposition in vacuum. Therefore, there was a drawback that it was difficult to increase the size of the device.

ここで、薄膜の製造方法の一つとして組成結晶の配向性
、母材との付着強度、成膜の制御等に優れたCVD法が
あり、膜状超電導体の製造にこのCVD法を用いること
が考えられている。
Here, as one of the methods for manufacturing thin films, there is a CVD method which is excellent in the orientation of compositional crystals, adhesion strength with the base material, control of film formation, etc., and this CVD method can be used to manufacture film-like superconductors. is considered.

[発明が解決しようとする課題] 膜状超電導体の製造にCVD法を用いる場合には、超電
導体の原料を気化させて反応容器内に導き、気相反応を
生じさせて超電導膜を製造することとなる。
[Problem to be solved by the invention] When using the CVD method to produce a film-like superconductor, the superconductor raw material is vaporized and introduced into a reaction vessel to cause a gas phase reaction to produce a superconducting film. That will happen.

このようなCVD法による膜状超電導体の製造を実現す
るためには次のような課題を解決する必要がある。
In order to realize the production of a film-like superconductor by such a CVD method, it is necessary to solve the following problems.

すなわち、成膜速度を速くするために超電導原料の蒸気
圧を高くするとともに、超電導体の組成に対応させて各
原料(原料ガス)の蒸気圧を制御する必要がある。また
、生成した超電導体の組成を安定化させるために、気化
させた原料(原料ガス)の蒸気圧を安定して反応容器に
導入する必要がある。
That is, in order to increase the film formation rate, it is necessary to increase the vapor pressure of the superconducting raw material and to control the vapor pressure of each raw material (raw material gas) in accordance with the composition of the superconductor. Furthermore, in order to stabilize the composition of the produced superconductor, it is necessary to introduce the vaporized raw material (raw material gas) into the reaction vessel at a stable vapor pressure.

本発明は上記従来の事情に鑑みなされたもので、CVD
法による膜状超電導体の製造を実現する製造方法及びそ
の装置を提供することを目的とする。
The present invention was made in view of the above-mentioned conventional circumstances, and
An object of the present invention is to provide a manufacturing method and an apparatus for realizing the manufacturing of a film-like superconductor by a method.

[課題を解決するための手段及び作用]上記課題を解決
してCVD法による膜状超電導体の製造を実現する本発
明の製造方法は、複数種類の超電導原料のいずれかを配
位子の存在下で気化させて金属錯体ガスとする工程と、
前記複数種類の超電導原料ガスを反応室に導入して化学
反応を発生させて膜状超電導体を形成する工程とを備え
たことを特徴とする。また更に、酸化性ガスを反応室に
直接導入することを特徴とする。
[Means and effects for solving the problems] The manufacturing method of the present invention, which solves the above problems and realizes the production of a film-like superconductor by the CVD method, uses any of multiple types of superconducting raw materials in the presence of a ligand A step of vaporizing the metal complex gas below,
The method is characterized by comprising a step of introducing the plurality of types of superconducting raw material gases into a reaction chamber to generate a chemical reaction to form a film-like superconductor. Furthermore, the method is characterized in that the oxidizing gas is directly introduced into the reaction chamber.

また、本発明に係る製造装置は、超電導原料となる金属
錯体を気化させる原料容器と、原料容器から供給された
超電導原料ガスを酸化性ガス雰囲気中で反応させて膜状
超電導体を形成する反応容器とを備えた膜状超電導体の
製造装置において、前記原料容器の上流に当該原料容器
に配位子を供給する配位子容器を設けたことを特徴とす
る。
Further, the manufacturing apparatus according to the present invention includes a raw material container for vaporizing a metal complex serving as a superconducting raw material, and a reaction for forming a film-like superconductor by reacting a superconducting raw material gas supplied from the raw material container in an oxidizing gas atmosphere. The apparatus for producing a film-like superconductor is characterized in that a ligand container for supplying a ligand to the raw material container is provided upstream of the raw material container.

すなわち、超電導原料の金属元素を錯体化することによ
り当該超電導原料を気相化したときの蒸気圧を高め、超
電導体の生成速度を速める。そして、この錯体の配位子
を適宜選択することにより、その金属錯体ガスの蒸気圧
を適宜変更して最終生成物たる超電導物質の各構成元素
の組成比に応じた蒸気圧で反応させることができる。
That is, by complexing the metal elements of the superconducting raw material, the vapor pressure when the superconducting raw material is turned into a vapor phase is increased, and the production rate of the superconductor is accelerated. By appropriately selecting the ligands of this complex, it is possible to change the vapor pressure of the metal complex gas appropriately and cause the reaction to occur at a vapor pressure that corresponds to the composition ratio of each constituent element of the superconducting material that is the final product. can.

ここに、配位子(Ligand)としては金属錯体の種
類に応じてHFA (Hexaf 1uoroacet
ylacetone)、DPM (Dipivaloy
methane)、THF (Tetrahydrof
uran)、DMF(Dimethylformarn
ide)、 ジオキサン−ジエチルエーテル、ジメチル
アセトアミド等を用いる。
Here, as a ligand, HFA (Hexaf 1uoroacetate) is selected depending on the type of metal complex.
ylacetone), DPM (Dipivaloy)
methane), THF (Tetrahydrof
uran), DMF (dimethylforman)
ide), dioxane-diethyl ether, dimethylacetamide, etc.

そして、原料室で超電導原料ガス(金属元素のメタルも
しくは錯体)の気化を、配位子容器から供給された配位
子の存在下で行うことにより、超電導原料錯体からの配
位子の解離を防止して反応室へ安定した蒸気圧の金属錯
体ガスを供給し、膜状超電導体を安定して生成する。す
なわち、金属錯体を付加反応によりアダクツとしたり、
或は、過剰な配位子と共存させることにより、当該金属
錯体の分解を防止し、配位子の解離による原料錯体の消
失を防止する。
Then, by vaporizing the superconducting raw material gas (metals or complexes of metal elements) in the raw material chamber in the presence of the ligands supplied from the ligand container, the dissociation of the ligands from the superconducting raw material complexes is achieved. A metal complex gas with a stable vapor pressure is supplied to the reaction chamber to produce a film-like superconductor in a stable manner. In other words, metal complexes are made into adducts through addition reactions,
Alternatively, by coexisting with an excess of ligand, decomposition of the metal complex is prevented and disappearance of the raw material complex due to dissociation of the ligand is prevented.

また、超電導体の生成に不可欠な酸化性ガスを配位子と
は別途直接に反応容器に供給することにより、反応容器
への金属錯体の搬送途中において酸化性ガスの影響によ
る配位子の解離を防止することができる。更に、金属錯
体と酸化性ガスとの搬送路を別にすることにより、酸素
に対して爆発や燃焼等を生じてしまう敏感な金属錯体を
超電導体の原料として用いることが可能となる。
In addition, by directly supplying the oxidizing gas, which is essential for the production of superconductors, to the reaction vessel separately from the ligands, it is possible to dissociate the ligands due to the influence of the oxidizing gas while the metal complex is being transported to the reaction vessel. can be prevented. Furthermore, by separating the transport paths for the metal complex and the oxidizing gas, it becomes possible to use sensitive metal complexes that explode or burn when exposed to oxygen as raw materials for superconductors.

[発明の効果コ 本発明の製造方法によれば、超電導原料を金属錯体ガス
とすることにより、比較的低温の条件下において超電導
原料ガスの蒸気圧を高めることを実現し、膜状超電導体
の生産性を向上することができる。更に、超電導原料の
気化は配位子の存在下で行うため、錯体化した超電導原
料から配位子が解離するのを防止して、反応室に導入さ
nる原料の蒸気圧を一定化することができ、原料の使用
効率の向上及び超電導体の組成の安定を図ることができ
る。
[Effects of the Invention] According to the production method of the present invention, by using a metal complex gas as the superconducting raw material, it is possible to increase the vapor pressure of the superconducting raw material gas under relatively low temperature conditions, and to improve the production of film-like superconductors. Productivity can be improved. Furthermore, since the superconducting raw material is vaporized in the presence of the ligand, dissociation of the ligand from the complexed superconducting raw material is prevented, and the vapor pressure of the raw material introduced into the reaction chamber is kept constant. This makes it possible to improve the efficiency of raw material usage and stabilize the composition of the superconductor.

[実施例コ まず、本発明を実施するための装置の一例を第1図に基
づいて説明する。
[Embodiment] First, an example of an apparatus for carrying out the present invention will be described based on FIG. 1.

同図において、1.2.3はそれぞれ超電導体原料とな
る金属元素若しくは金属錯体を収容した原料容器であり
、これら原料容器1.2.3の上流には蒸気状の配位子
を収容した配位子容器11.12.13が設けられ、こ
れら配位子容器11.12.13は原料容器1.2.3
にそれぞれ接続されている。なお、通常、超電導元素の
化合物に配位子を付加して錯体ガスを作るが、例えば、
Baメタルを直接配位子で錯体化し、金属錯体ガスを得
ることもできる。
In the figure, 1.2.3 are raw material containers containing metal elements or metal complexes, which are the raw materials for superconductors, and vaporized ligands are stored upstream of these raw material containers 1.2.3. Ligand containers 11.12.13 are provided, these ligand containers 11.12.13 being source containers 1.2.3.
are connected to each. Usually, a complex gas is created by adding a ligand to a compound of a superconducting element, for example,
A metal complex gas can also be obtained by directly complexing Ba metal with a ligand.

原料容器1.2.3の下流には反応容器5が設けられ、
原料容器1.2.3はそれぞれ反応容器5に接続されて
いる。そして、反応容器5には酸素供給源10が接続さ
れていると共に、トラップ6を介して真空ポンプ7が接
続されている。また、各原料容器1.2.3、反応容器
5及び原料容器1.2.3から反応容器5への管路には
ヒータ8が配設されている。ここで、酸化性ガスとして
02の他に、紫外線照射下で供給するN20.03等を
用いることができ、この場合には化学反応を促進させる
発生機酸素○が発生して後述する反応容器での超電導体
の生成温度を低くすることができる。
A reaction vessel 5 is provided downstream of the raw material vessel 1.2.3,
The raw material vessels 1.2.3 are each connected to a reaction vessel 5. An oxygen supply source 10 is connected to the reaction vessel 5, and a vacuum pump 7 is also connected via a trap 6. Further, a heater 8 is provided in each of the raw material containers 1.2.3, the reaction container 5, and the pipe line from the raw material container 1.2.3 to the reaction container 5. Here, in addition to 02 as the oxidizing gas, N20.03 or the like supplied under ultraviolet irradiation can be used. In this case, generator oxygen ○ is generated to promote the chemical reaction, and the reaction vessel described later is heated. The generation temperature of superconductors can be lowered.

上記構成のCVD装置において、反応容器5内に超電導
体を膜状に付着させる基板9を設置し、真空ポンプ7に
より反応容器5内を減圧すると共にヒータ8により加熱
して超電導体の生成を開始する。
In the CVD apparatus having the above configuration, a substrate 9 on which a superconductor is deposited in a film form is installed inside the reaction vessel 5, and the inside of the reaction vessel 5 is depressurized by the vacuum pump 7 and heated by the heater 8 to start producing the superconductor. do.

すなわち、配位子容器11.12.13の上流側からキ
ャリアガスとしてのアルゴンカスArを供給し、配位子
容器11.12.13内に収容されている配位子ガスを
Arガスに乗せて原料容器1.2.3へ供給する。そし
て、ヒータ8により加熱し、配位子ガス雰囲気中におい
て原料容器1.2.3内の超電導体原料を金属錯体ガス
(配位子の付加反応によるアダクツを含む)とし、この
金属錯体ガスを余剰の配位子ガスと共にArガスに乗せ
て反応容器5へ供給する。なお、原料容器1.2.3か
ら反応容器5への搬送途中において、ヒータ8による加
熱で金属錯体ガスの温度が保持される。また、配位子容
器から原料容器へ金属錯体の化学量論的組成を超えて配
位子ガスを供給して金属錯体ガスを余剰な配位子ガスと
共に反応容器へ搬送する他に、原料容器から反応容器へ
の搬送途中において更なる配位子ガスを金属錯体ガスに
混入させるようにして、搬送途中における金属錯体の分
解を防止して原料の消失を防止することもてきる。
That is, argon gas Ar is supplied as a carrier gas from the upstream side of the ligand container 11.12.13, and the ligand gas contained in the ligand container 11.12.13 is placed on the Ar gas. Supply to raw material container 1.2.3. Then, the superconductor raw material in the raw material container 1.2.3 is heated by the heater 8 and converted into a metal complex gas (including adducts due to the addition reaction of the ligand) in a ligand gas atmosphere. It is supplied to the reaction vessel 5 along with excess ligand gas on Ar gas. Note that during the transfer from the raw material container 1.2.3 to the reaction container 5, the temperature of the metal complex gas is maintained by heating by the heater 8. In addition, in addition to supplying the ligand gas from the ligand container to the raw material container in excess of the stoichiometric composition of the metal complex and transporting the metal complex gas together with the excess ligand gas to the reaction container, It is also possible to mix additional ligand gas into the metal complex gas during transportation from the raw material to the reaction vessel, thereby preventing decomposition of the metal complex during transportation and preventing disappearance of the raw material.

このように、各原料容器1.2.3から金属錯体ガス(
例えは、原料容器1からBa錯体ガス、原料容器2から
Y錯体ガス、原料容器3からCu錯体ガス)を供給する
と共に酸素源から直接酸素02を供給して、反応容器5
内で化学反応を生じさせ、所定の超電導物質を基板9上
に降り積もらせて膜状の超電導体を生成する。
In this way, the metal complex gas (
For example, Ba complex gas is supplied from raw material container 1, Y complex gas is supplied from raw material container 2, Cu complex gas is supplied from raw material container 3), and oxygen 02 is directly supplied from an oxygen source, and oxygen 02 is supplied directly from the oxygen source.
A chemical reaction is caused within the substrate 9, and a predetermined superconducting substance is deposited on the substrate 9 to form a film-like superconductor.

上記した装置はBa−Y−Cu−0系の超電導体を生成
する例であるが、B 1−5r−Ca−Cu−0系の超
電導体を生成する場合には上記した装置に原料容器更に
は配位子容器を備えた系を更に1系列増加させれば良い
The above-mentioned apparatus is an example of producing a Ba-Y-Cu-0-based superconductor, but when producing a B1-5r-Ca-Cu-0-based superconductor, the above-mentioned apparatus is equipped with a raw material container. It is sufficient to add one more system equipped with a ligand container.

次いで、上記した装置により膜状超電導体を生成した実
施例を以下に説明する。
Next, an example in which a film-like superconductor was produced using the above-described apparatus will be described below.

〈実施例1〉 本実施例は、Ba−Y−Cu−0系の超電導体を生成す
る例である。
<Example 1> This example is an example of producing a Ba-Y-Cu-0 based superconductor.

超電導原料となる金属錯体ガスとして、Ba(HFA)
2ガス、Y(DPM)3ガス、Cu  (DPM)2ガ
スを用い、配位子ガスとして、Ba(HFA)2に対し
てTHF、  Y(DPM)3に対してDPMを用いた
。これら金属錯体ガスは、原料容器においてその金属錯
体を配位子雰囲気中で蒸発させることにより得た。なお
、Cu(DPM)2は安定であるので配位子容器から原
料容器へ供給する配位子は用いなかった。
Ba (HFA) is used as a metal complex gas as a superconducting raw material.
As the ligand gases, THF was used for Ba(HFA)2, and DPM was used for Y(DPM)3. These metal complex gases were obtained by evaporating the metal complex in a ligand atmosphere in a raw material container. Note that, since Cu(DPM)2 is stable, the ligand supplied from the ligand container to the raw material container was not used.

また、キャリアガスとしてArガスを用いた。Furthermore, Ar gas was used as a carrier gas.

また、それぞれの原料容器において、200°Cて蒸気
圧4mmHgのBa(HFA)2ガス、180℃で蒸気
圧2mmHgのY(DPM)3ガス、100℃て蒸気圧
6mmHgのCu(DPM)2ガスを得た。そして、こ
れら金属錯体ガスを余剰な配位子と共に反応容器に導入
し、酸化性ガスとしての02ガスも反応容器に直接導入
して、反応圧力10〜100Torr、反応温度350
℃で化学反応させた。そして、反応後の試料を600℃
の酸素雰囲気中で10時間熱処理した結果、反応容器へ
の搬送途中で金属錯体からの配位子の解離を生ずること
なく、臨界温度Tc=90に級、臨界電流密度JC=2
×105A/c1T12の超電導体(YBa2Cu30
7−δ)の均一な超電導膜を効率よく生成できた。
In addition, in each raw material container, Ba(HFA) 2 gas with a vapor pressure of 4 mmHg at 200°C, Y(DPM) 3 gas with a vapor pressure of 2 mmHg at 180°C, and Cu(DPM) 2 gas with a vapor pressure of 6 mmHg at 100°C. I got it. Then, these metal complex gases are introduced into the reaction vessel together with excess ligands, and 02 gas as an oxidizing gas is also directly introduced into the reaction vessel, at a reaction pressure of 10 to 100 Torr and a reaction temperature of 350 Torr.
The chemical reaction was carried out at ℃. After the reaction, the sample was heated to 600°C.
As a result of heat treatment for 10 hours in an oxygen atmosphere of
×105A/c1T12 superconductor (YBa2Cu30
7-δ) uniform superconducting film could be efficiently produced.

なお、上記Y(DPM)3に代えて、  Y (HFA
)3を用いるとともに配位子としてDPMに代えてHF
Aを用いたり、或は、Cu(DPM)2に代えてCu(
HFA)2を用いたり、或は、キャリアガスをArに代
えてHeを用いたりしても上記と同様な超電導体が得ら
れた。
In addition, in place of Y (DPM) 3 above, Y (HFA
)3 and HF instead of DPM as a ligand.
A or Cu(DPM) instead of Cu(DPM)2
A superconductor similar to the above was obtained even when HFA)2 was used or when He was used instead of Ar as the carrier gas.

〈実施例2〉 本実施例は、B 1−5r−Ca−Cu−○系の超電導
体を生成する例である。
<Example 2> This example is an example of producing a B 1-5r-Ca-Cu-○-based superconductor.

超電導原料となる金属錯体ガスとして、Bi(OC2H
5) 3ガス、 5r(HFA)2ガス、 Ca(HF
A)2ガス、CU(HFA)2ガスを用い、配位子ガス
として、5r(HFA)2に対してTHF、Ca(HF
A)2に対してTHFを用いた。これら金属錯体ガスは
、原料容器においてその金属錯体を配位子雰囲気中で蒸
発させることにより得た。
Bi(OC2H
5) 3 gases, 5r (HFA) 2 gases, Ca (HF
A) Using 2 gas and CU(HFA)2 gas, as the ligand gas, THF, Ca(HF
A) THF was used for 2. These metal complex gases were obtained by evaporating the metal complex in a ligand atmosphere in a raw material container.

また、キャリアガスとしてArガスを用いた。Furthermore, Ar gas was used as a carrier gas.

また、それぞれの原料容器において、120°Cて蒸気
圧lmmHgの]3 i (OC2H5)3ガス、80
℃で蒸気圧lmmHgの5r(HFA)2ガス、80℃
で蒸気圧lmmHgのCa (HFA)2ガス、150
℃で蒸気圧1.5mmHgの Cu(HFA)2ガスを
得た。そして、これら金属錯体ガスを余剰な配位子と共
に反応容器に導入し、酸化性ガスとしての02ガスも反
応容器に直接導入して、反応圧力10−100To r
 r、反応温度350℃で化学反応させた。キして、反
応後の試料を760℃の大気中で30時間熱処理した結
果、反応容器への搬送途中で金属錯体からの配位子の解
離を生ずることなく、臨界温度Tc=100に級、臨界
電流密度J c = 1. 5 X 10’A/am2
の超電導体(B i Ca5rCu20x)の均一な超
電導膜を効率よく生成できた。
In addition, in each raw material container, ]3 i (OC2H5)3 gas with a vapor pressure of 1 mmHg at 120°C, 80
5r(HFA)2 gas with vapor pressure lmmHg at 80°C
Ca (HFA)2 gas with vapor pressure lmmHg at 150
Cu(HFA)2 gas with a vapor pressure of 1.5 mmHg at ℃ was obtained. Then, these metal complex gases are introduced into the reaction vessel together with excess ligands, and 02 gas as an oxidizing gas is also directly introduced into the reaction vessel to raise the reaction pressure to 10-100 Torr.
r, a chemical reaction was carried out at a reaction temperature of 350°C. After the reaction, the sample was heat-treated in the atmosphere at 760°C for 30 hours. As a result, the critical temperature reached Tc = 100 without causing dissociation of the ligand from the metal complex during transportation to the reaction vessel. Critical current density J c = 1. 5 X 10'A/am2
A uniform superconducting film of the superconductor (B i Ca5rCu20x) could be efficiently produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る製造装置の構成図であ
る。 1.2.3は原料容器、 5は反応容器、 7は真空ポンプ、 9は基板、 10は酸素供給源、 11.12.13は配位子容器である。 特許出願人    三菱金属株式会社
FIG. 1 is a configuration diagram of a manufacturing apparatus according to an embodiment of the present invention. 1.2.3 is a raw material container, 5 is a reaction container, 7 is a vacuum pump, 9 is a substrate, 10 is an oxygen supply source, and 11.12.13 is a ligand container. Patent applicant Mitsubishi Metals Corporation

Claims (3)

【特許請求の範囲】[Claims] (1)複数種類の超電導原料のいずれかを配位子の存在
下で気化させて金属錯体ガスとする工程と、前記複数種
類の超電導原料ガスを反応室に導入して化学反応を発生
させて膜状超電導体を形成する工程とを備えたことを特
徴とする膜状超電導体の製造方法。
(1) A step of vaporizing one of multiple types of superconducting raw materials in the presence of a ligand to produce a metal complex gas, and introducing the multiple types of superconducting raw material gases into a reaction chamber to generate a chemical reaction. 1. A method for producing a film-like superconductor, comprising a step of forming a film-like superconductor.
(2)酸化性ガスを反応室に直接導入することを特徴と
する特許請求の範囲第1項記載の膜状超電導体の製造方
法。
(2) The method for producing a film-like superconductor according to claim 1, characterized in that an oxidizing gas is directly introduced into the reaction chamber.
(3)超電導原料となる金属錯体を気化させる原料容器
と、原料容器から供給された超電導原料ガスを酸化性ガ
ス雰囲気中で反応させて膜状超電導体を形成する反応容
器とを備えた膜状超電導体の製造装置において、前記原
料容器の上流に当該原料容器に配位子を供給する配位子
容器を設けたことを特徴とする膜状超電導体の製造装置
(3) Membrane-like material comprising a raw material container for vaporizing a metal complex serving as a superconducting raw material, and a reaction vessel for forming a film-like superconductor by reacting the superconducting raw material gas supplied from the raw material container in an oxidizing gas atmosphere. An apparatus for producing a film-like superconductor, characterized in that a ligand container for supplying a ligand to the raw material container is provided upstream of the raw material container.
JP13975188A 1988-06-06 1988-06-06 Production of filmy superconductor and device therefor Pending JPH01308802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13975188A JPH01308802A (en) 1988-06-06 1988-06-06 Production of filmy superconductor and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13975188A JPH01308802A (en) 1988-06-06 1988-06-06 Production of filmy superconductor and device therefor

Publications (1)

Publication Number Publication Date
JPH01308802A true JPH01308802A (en) 1989-12-13

Family

ID=15252542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13975188A Pending JPH01308802A (en) 1988-06-06 1988-06-06 Production of filmy superconductor and device therefor

Country Status (1)

Country Link
JP (1) JPH01308802A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193405A (en) * 1987-06-16 1989-04-12 Kawasaki Steel Corp Complex compound for forming oxide superconductor thin film and method for forming said thin film
JPH0337102A (en) * 1989-07-03 1991-02-18 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Production of oxide superconductor by metal organic chemical vapor deposition method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310515A (en) * 1987-06-12 1988-12-19 Nippon Telegr & Teleph Corp <Ntt> Manufacture of superconductor membrane
JPH01104774A (en) * 1987-10-14 1989-04-21 Matsushita Electric Ind Co Ltd Production of thin film of oxide superconductor
JPH01148798A (en) * 1987-12-07 1989-06-12 Matsushita Electric Ind Co Ltd Production of superconducting thin film
JPH01219016A (en) * 1988-02-27 1989-09-01 Riken Corp Production of thin superconducting ceramic film containing dispersed oxide
JPH01257194A (en) * 1988-04-06 1989-10-13 Ube Ind Ltd Production of thin single crystal film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310515A (en) * 1987-06-12 1988-12-19 Nippon Telegr & Teleph Corp <Ntt> Manufacture of superconductor membrane
JPH01104774A (en) * 1987-10-14 1989-04-21 Matsushita Electric Ind Co Ltd Production of thin film of oxide superconductor
JPH01148798A (en) * 1987-12-07 1989-06-12 Matsushita Electric Ind Co Ltd Production of superconducting thin film
JPH01219016A (en) * 1988-02-27 1989-09-01 Riken Corp Production of thin superconducting ceramic film containing dispersed oxide
JPH01257194A (en) * 1988-04-06 1989-10-13 Ube Ind Ltd Production of thin single crystal film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193405A (en) * 1987-06-16 1989-04-12 Kawasaki Steel Corp Complex compound for forming oxide superconductor thin film and method for forming said thin film
JPH0337102A (en) * 1989-07-03 1991-02-18 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Production of oxide superconductor by metal organic chemical vapor deposition method

Similar Documents

Publication Publication Date Title
KR910007382B1 (en) Superconductor material and method of manufacturing super-conductor film
EP0453107B1 (en) Chemical deposition methods using supercritical fluid solutions
JPH02225317A (en) Production of oxide superconductor by chemical gas phase deposition method
JP2786200B2 (en) Raw material mixture for forming oxide superconductor thin film and method for forming oxide superconductor thin film
JPH01308802A (en) Production of filmy superconductor and device therefor
JPH01308804A (en) Production of filmy superconductor
JPH02283603A (en) Production method of oxide ceramics superconductive substance on substrate
JPH01308805A (en) Production of filmy superconductor
JPH01308808A (en) Production of filmy superconductor
JPH01308806A (en) Production of filmy superconductor
JPH01308807A (en) Production of filmy superconductor
JPH01308809A (en) Production of filmy superconductor
JP2661169B2 (en) Superconductor thin film manufacturing method
JP2856859B2 (en) Method for producing oxide superconductor by metal organic chemical vapor deposition
JPH0285370A (en) Manufacture of thin oxide film
JPH0254811A (en) Manufacture of superconductor thin film
JPH09195050A (en) Production of oxide or metal
JP4236807B2 (en) Manufacturing method of oxide superconductor
JPH01219016A (en) Production of thin superconducting ceramic film containing dispersed oxide
JPH0255219A (en) Production of superconductor thin film
JP4112314B2 (en) Oxide superconducting conductor manufacturing liquid material supply device for CVD reactor and oxide superconducting conductor manufacturing method
JP3202045B2 (en) Method of manufacturing oxide superconductor by CVD method
JP2539032B2 (en) Continuous raw material supply device for oxide superconductor manufacturing apparatus and continuous raw material supply method
JPH0375207A (en) Production of thin film of oxide superconductor
JPH03287768A (en) Vaporizer for cvd material to produce oxide superconductor