JPH01308808A - Production of filmy superconductor - Google Patents
Production of filmy superconductorInfo
- Publication number
- JPH01308808A JPH01308808A JP63139749A JP13974988A JPH01308808A JP H01308808 A JPH01308808 A JP H01308808A JP 63139749 A JP63139749 A JP 63139749A JP 13974988 A JP13974988 A JP 13974988A JP H01308808 A JPH01308808 A JP H01308808A
- Authority
- JP
- Japan
- Prior art keywords
- ligand
- superconductor
- gas
- raw material
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 47
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000007789 gas Substances 0.000 claims abstract description 66
- 238000006243 chemical reaction Methods 0.000 claims abstract description 53
- 239000002994 raw material Substances 0.000 claims abstract description 50
- 239000003446 ligand Substances 0.000 claims abstract description 43
- 150000004696 coordination complex Chemical class 0.000 claims abstract description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000001301 oxygen Substances 0.000 claims abstract description 15
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052799 carbon Inorganic materials 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 6
- 239000012159 carrier gas Substances 0.000 abstract description 6
- 238000010438 heat treatment Methods 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 150000001875 compounds Chemical class 0.000 abstract description 4
- 239000000758 substrate Substances 0.000 abstract description 4
- 241001125929 Trisopterus luscus Species 0.000 abstract 1
- 238000011109 contamination Methods 0.000 abstract 1
- QAMFBRUWYYMMGJ-UHFFFAOYSA-N hexafluoroacetylacetone Chemical compound FC(F)(F)C(=O)CC(=O)C(F)(F)F QAMFBRUWYYMMGJ-UHFFFAOYSA-N 0.000 abstract 1
- 239000010408 film Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000000536 complexating effect Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 108010063955 thrombin receptor peptide (42-47) Proteins 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Chemical Vapour Deposition (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明はCVD法による膜状超電導体の製造方法に間す
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a film-like superconductor by a CVD method.
[従来の技術]
膜状超電導体を製造する方法としてはスクリーン印刷に
よる方法やスパッタリングによる方法が知られている。[Prior Art] Screen printing methods and sputtering methods are known as methods for manufacturing film-like superconductors.
しかしながら、粉状原料を用いるスクリーン印刷による
方法にあっては、超電導体が低密度で無配向な多結晶体
となって高い臨界電流密度が期待できず、また、焼結の
ための高温処理が必要なためにIC化に適さないという
欠点があった。一方、スパッタリングによる方法にあっ
ては、超電導体の成膜速度が遅く且つ組成が不安定とな
り易く、また、真空中で成膜することから装置を大型化
することが困難であるという欠点があった。However, in the screen printing method using powdered raw materials, the superconductor becomes a low-density, non-oriented polycrystalline body, so a high critical current density cannot be expected, and high-temperature treatment for sintering is required. Since it is necessary, it has the disadvantage that it is not suitable for IC implementation. On the other hand, methods using sputtering have the disadvantages that the superconductor film formation rate is slow, the composition tends to be unstable, and it is difficult to increase the size of the equipment because the film is formed in a vacuum. Ta.
ここで、薄膜の製造方法の一つとして組成結晶の配向性
、母材との付着強度、成膜の制御等に優れたCVD法が
あり、膜状超電導体の製造にこのCVD法を用いること
が考えられている。Here, as one of the methods for manufacturing thin films, there is a CVD method which is excellent in the orientation of compositional crystals, adhesion strength with the base material, control of film formation, etc., and this CVD method can be used to manufacture film-like superconductors. is considered.
[発明が解決しようとする課題]
膜状超電導体の製造にCVD法を用いる場合には、超電
導体の原料を気化させて反応チャンバ・内に導き、気相
反応を生じさせて超電導膜を製造することとなる。[Problem to be solved by the invention] When using the CVD method to produce a film-like superconductor, the superconductor raw material is vaporized and introduced into a reaction chamber to cause a gas phase reaction to produce a superconducting film. I will do it.
このようなCVD法による膜状超電導体の製造を実現す
るためには次のような課題を解決する必要がある。すな
わち、成膜速度を速くするために超電導原料の蒸気圧を
高くするとともに、超電導体の組成に対応させて各原料
(原料ガス)の蒸気圧を制御する必要がある。In order to realize the production of a film-like superconductor by such a CVD method, it is necessary to solve the following problems. That is, in order to increase the film formation rate, it is necessary to increase the vapor pressure of the superconducting raw material and to control the vapor pressure of each raw material (raw material gas) in accordance with the composition of the superconductor.
超電導原料の蒸気圧を高めるには、超電導体原料の金属
元素を配位子と結合した金属錯体ととすることが有利で
ある。しかしながら、このような金属錯体を原料として
用いる場合には、配位子に含まれる炭素が生成した超電
導体膜に混入してしまい、超電導性に悪影響をおよぼし
てしまうという新たな問題が生じてしまう。In order to increase the vapor pressure of the superconducting raw material, it is advantageous to form the metal element of the superconducting raw material into a metal complex bonded to a ligand. However, when such metal complexes are used as raw materials, a new problem arises: the carbon contained in the ligands gets mixed into the produced superconductor film, adversely affecting superconductivity. .
本発明は上記従来の事情に鑑みなされたもので、金属錯
体を原料として用いる場合にあっても炭素の混入を防止
して、CVD法による膜状超電導体の製造を実現する製
造方法を提供することを目的とする。The present invention has been made in view of the above-mentioned conventional circumstances, and provides a manufacturing method that prevents the incorporation of carbon even when a metal complex is used as a raw material and realizes the manufacturing of a film-like superconductor by the CVD method. The purpose is to
[課題を解決するための手段及び作用]上記課題を解決
してCVD法による膜状超電導体の製造を実現する本発
明は、複数種類の超電導原料のいずれかを配位子を含む
金属錯体ガスとする工程と、前記複数種類の超電導原料
ガスを水蒸気及び酸素と共に反応室に導入して化学反応
を発生させて膜状超電導体を形成する工程とを備えたこ
とを特徴とする。[Means and effects for solving the problems] The present invention, which solves the above problems and realizes the production of a film-like superconductor by the CVD method, uses any of a plurality of types of superconducting raw materials as a metal complex gas containing a ligand. and a step of introducing the plurality of types of superconducting raw material gases together with water vapor and oxygen into a reaction chamber to cause a chemical reaction to form a film-like superconductor.
すなわち、超電導原料の金属元素を錯体化することによ
り当該超電導原料を気相化したときの蒸気圧を高め、超
電導体の生成速度を速める。そして、この錯体の配位子
を適宜選択することにより、その金属錯体ガスの蒸気圧
を適宜変更して最終生成物たる超電導物質の各構成元素
の組成比に応じた蒸気圧で反応させることができる。こ
こに、配位子(Ligand)としては金属錯体の種類
に応してHFA(Hexaf 1uoroacetyl
acetone)、DPM(Dipival。That is, by complexing the metal elements of the superconducting raw material, the vapor pressure when the superconducting raw material is turned into a vapor phase is increased, and the production rate of the superconductor is accelerated. By appropriately selecting the ligands of this complex, it is possible to change the vapor pressure of the metal complex gas appropriately and cause the reaction to occur at a vapor pressure that corresponds to the composition ratio of each constituent element of the superconducting material that is the final product. can. Here, the ligand may be HFA (Hexaf 1uoroacetyl) depending on the type of metal complex.
acetone), DPM (Dipival.
ymethane)、THF (T e t r ah
ydro f u ran)、DMF (D ime
t hy I formamido)、ジオキサン、ジ
エチルエーテル、ジメチルアセトアミド等を用いる。ymethane), THF (T et rah
ydro fu ran), DMF (Dime
dioxane, diethyl ether, dimethylacetamide, etc. are used.
そして、金属錯体ガスを反応室で反応させて超電導体を
生成するに際し、反応室に導入した水蒸気と金属錯体の
配位子との反応により配位子を金属元素から切り離し、
生成される超電導体に配位子の炭素が混入するのを防止
する。When the metal complex gas is reacted in the reaction chamber to produce a superconductor, the ligand of the metal complex is separated from the metal element by the reaction between the water vapor introduced into the reaction chamber and the ligand of the metal complex.
This prevents carbon as a ligand from being mixed into the produced superconductor.
例えば、Ba(HFA)2錯体については下記の反応に
よりBaから配位子を切り離し、この切り離した配位子
を反応室から排出することにより、超電導体の生成に関
与する原料を炭素を含まない状態とする。For example, for Ba(HFA)2 complex, the ligand is separated from Ba by the following reaction, and the separated ligand is discharged from the reaction chamber, thereby converting the raw material involved in the production of superconductor into a carbon-free material. state.
Ba (HFA)2+2H20
CF3 0H
一+Ba (OH)2+2 0=C−C=C−CF3[
発明の効果コ
本発明の製造方法によれば、超電導原料を金属錯体ガス
とすることにより、超電導原料ガスの蒸気圧を高めるこ
とを実現し、膜状超電導体の生産性を向上することがで
きる。そして、超電導原料ガスを水蒸気及び酸素と共に
反応室に導入して化学反応を生じさせることにより、水
と配位子との反応により超電導体原料の金属元素から配
位子を切り離すようにしたため、配位子に含まれる炭素
が生成された超電導体に混入するのを防止することがで
き、臨界温度、臨界電流密度等の超電導性に優れた膜状
超電導体を製造することができる。Ba (HFA)2+2H20 CF3 0H 1+Ba (OH)2+2 0=C-C=C-CF3[
Effects of the Invention According to the manufacturing method of the present invention, by using a metal complex gas as the superconducting raw material, it is possible to increase the vapor pressure of the superconducting raw material gas and improve the productivity of the film-like superconductor. . By introducing superconducting raw material gas into the reaction chamber together with water vapor and oxygen to cause a chemical reaction, the ligands are separated from the metal element of the superconducting raw material by the reaction between water and the ligands. It is possible to prevent carbon contained in the ions from being mixed into the produced superconductor, and it is possible to produce a film-like superconductor with excellent superconductivity such as critical temperature and critical current density.
[実施例]
まず、本発明を実施するための装置の一例を第1図に基
づいて説明する。[Example] First, an example of an apparatus for implementing the present invention will be described based on FIG. 1.
同図において、1.2.3はそれぞれ超電導体原料とな
る金属元素若しくは金属錯体を収容した原料容器であり
、これら原料容器1.2.3の上流には蒸気状の配位子
を収容した配位子容器11.12.13が設けられ、こ
れら配位子容器11、l2.13は原料容器1.2.3
にそれぞれ接続されている。なお、通常、超電導元素の
化合物に配位子を付加して錯体ガスを作るが、例えば、
Baメタルを直接配位子で錯体化し、金属錯体ガスを得
ることもできる。In the figure, 1.2.3 are raw material containers containing metal elements or metal complexes, which are the raw materials for superconductors, and vaporized ligands are stored upstream of these raw material containers 1.2.3. Ligand containers 11.12.13 are provided, and these ligand containers 11, 12.13 are the raw material containers 1.2.3.
are connected to each. Usually, a complex gas is created by adding a ligand to a compound of a superconducting element, for example,
A metal complex gas can also be obtained by directly complexing Ba metal with a ligand.
原料容器1.2.3の下流には反応容器5が設けられ、
原料容器1.2.3はそれぞれ反応容器Sに接続されて
いる。そして、反応容器5には酸素供給源10が接続さ
れていると共に、トラップ6を介して真空ポンプ7が接
続されている。この酸素供給源10の酸素には所定員の
水蒸気が含まれており、反応容器5には酸素と共に所定
量の水蒸気が供給される。また、各原料容器1.2.3
、反応容器5及び原料容器1.2.3から反応容器5へ
の管路にはヒータ8が配設されている。A reaction vessel 5 is provided downstream of the raw material vessel 1.2.3,
The raw material vessels 1.2.3 are each connected to a reaction vessel S. An oxygen supply source 10 is connected to the reaction vessel 5, and a vacuum pump 7 is also connected via a trap 6. The oxygen of this oxygen supply source 10 contains a predetermined amount of water vapor, and a predetermined amount of water vapor is supplied to the reaction vessel 5 along with the oxygen. In addition, each raw material container 1.2.3
A heater 8 is disposed in the pipeline from the reaction vessel 5 and the raw material vessel 1.2.3 to the reaction vessel 5.
上記構成のCVD装置において、反応容器5内に超電導
体を膜状に付着させる基板9を設置し、真空ポンプ7に
より反応容器5内を減圧すると共にヒータ8により加熱
して超電導体の生成を開始する。In the CVD apparatus having the above configuration, a substrate 9 on which a superconductor is deposited in a film form is installed inside the reaction vessel 5, and the inside of the reaction vessel 5 is depressurized by the vacuum pump 7 and heated by the heater 8 to start producing the superconductor. do.
すなわち、配位子容器11.12.13の上流側からキ
ャリアガスとしてのアルゴンガス(Ar)を供給し、配
位子容器11.12.13内に収容されている配位子ガ
スをArガスに乗せて原料容器1.2.3へ供給する。That is, argon gas (Ar) is supplied as a carrier gas from the upstream side of the ligand container 11.12.13, and the ligand gas contained in the ligand container 11.12.13 is supplied with Ar gas. and feed it to the raw material container 1.2.3.
そして、ヒータ8による加熱条件下で、原料容器1.2
.3内の超電導体原料を金属錯体ガス(配位子の付加反
応によるアダクツを含む)とし、この金属錯体ガスをA
rガスに乗せて反応容器5へ供給する。なお、原料容器
1.2.3から反応容器5への搬送途中において、ヒー
タ8による加熱で金属錯体ガスの温度が保持される。Then, under heating conditions by the heater 8, the raw material container 1.2
.. The superconductor raw material in 3 is a metal complex gas (including adducts due to the addition reaction of ligands), and this metal complex gas is
It is carried on r gas and supplied to the reaction vessel 5. Note that during the transfer from the raw material container 1.2.3 to the reaction container 5, the temperature of the metal complex gas is maintained by heating by the heater 8.
このように、各原料容器1.2.3から金属錯体ガス(
例えば、原料容器1からBa錯体ガス、原料容器2から
Y錯体ガス、原料容器3からCu錯体ガス)を供給する
と共に酸素源10から水蒸気H20を含んだ酸素02を
供給して、反応容器5内で化学反応を生じさせ、所定の
超電導物質を基板9上に降り積もらせて膜状の超電導体
を生成する。In this way, the metal complex gas (
For example, Ba complex gas from raw material container 1, Y complex gas from raw material container 2, and Cu complex gas from raw material container 3) are supplied, and oxygen 02 containing water vapor H20 is supplied from oxygen source 10, and the inside of reaction container 5 is supplied with oxygen 02 containing water vapor H20. A chemical reaction is caused, and a predetermined superconducting substance is deposited on the substrate 9 to produce a film-like superconductor.
ここで、反応容器5の反応において、水蒸気により金属
錯体の配位結合が切れ、切り離された配位子は分解する
ことなく反応容器5からトラップ6へ排出される。従っ
て、生成された超電導体には配位子すなわちそれに含ま
れる炭素が混入することはなく、超電導性に優れた超電
導体が得られる。尚、配位子と結合したままの金属元素
が残存したり、或は、超電導性に悪影響を及ぼすことと
なる水分が残存してしまうのを防止するため、金属錯体
と等量する水蒸気を反応室に供給するのが好ましい。ま
た、反応において加熱する温度は、酸化を促進する目的
の他に、残余してしまった水分を蒸発させて超電導性を
維持する必要から、ある程度の高温(例えば、350℃
)とするのが好ましい。Here, in the reaction in the reaction vessel 5, the coordination bonds of the metal complex are broken by the water vapor, and the separated ligands are discharged from the reaction vessel 5 to the trap 6 without being decomposed. Therefore, the generated superconductor is not contaminated with the ligand, that is, the carbon contained therein, and a superconductor with excellent superconductivity can be obtained. In addition, in order to prevent the metal elements remaining bonded to the ligands or the remaining moisture that would have an adverse effect on superconductivity, an equal amount of water vapor was added to the metal complex during the reaction. Preferably, it is supplied to the chamber. In addition, in addition to promoting oxidation, the temperature at which the reaction is heated is a certain degree of high temperature (for example, 350 ° C.
) is preferable.
なお、配位子容器から原料容器へ金属錯体の化学型論的
組成を超えて配位子ガスを供給して金属錯体ガスを過剰
な配位子ガスと共に反応容器へ搬送したり、或は、原料
容器から反応容器への搬送途中において更なる配位子ガ
スを金属錯体ガスに混入させると、搬送途中における金
属錯体の分解を防止して原料の消失を防止することがで
きる。In addition, by supplying a ligand gas from the ligand container to the raw material container in excess of the chemical typological composition of the metal complex and transporting the metal complex gas together with the excess ligand gas to the reaction container, or If additional ligand gas is mixed into the metal complex gas during transportation from the raw material container to the reaction container, it is possible to prevent decomposition of the metal complex during transportation and prevent disappearance of the raw material.
上記した装置はBa−¥−Cu−0系の超電導体を生成
する例であるが、B 1−5r−Ca−Cu−〇系の超
電導体を生成する場合には上記した装置に原料容器受に
は配位子容器を備えた系を更に1系列増加させれば良い
。The above-mentioned apparatus is an example of producing a Ba-¥-Cu-0 system superconductor, but when producing a B1-5r-Ca-Cu-○ system superconductor, the above-mentioned apparatus is used to receive a raw material container. For this purpose, it is sufficient to add one more system equipped with a ligand container.
次いで、上記した装置により膜状超電導体を生成した実
施例を以下に説明する。Next, an example in which a film-like superconductor was produced using the above-described apparatus will be described below.
〈実施例1〉
本実施例は、Ba−Y−Cu−0系の超電導体を生成す
る例である。<Example 1> This example is an example of producing a Ba-Y-Cu-0 based superconductor.
起電導原料となる金属錯体ガスとして、Ba(HFA)
2ガス、Y(DPM)3ガス、Cu(DPM)2ガスを
用い、配位子ガスとして、Ba(HFA)2に対してT
HFS Y (DPM)3に対してDPMを用いた。な
お、Cu(DPM)2は安定であるので配位子容器から
原料容器へ供給する配位子は用いなかフた。Ba (HFA) is used as a metal complex gas as a raw material for electromotive conduction.
2 gas, Y(DPM) 3 gas, and Cu(DPM) 2 gas, and T as a ligand gas for Ba(HFA) 2.
DPM was used for HFS Y (DPM)3. Note that since Cu(DPM)2 is stable, the ligand supplied from the ligand container to the raw material container was not used.
また、キャリアガスとしてArガスを用いた。Furthermore, Ar gas was used as a carrier gas.
また、それぞれの原料容器において、200℃て蒸気圧
4mmHgのBa(HFA)aガス、180℃で蒸気圧
2mmHgのY(DPM)3ガス、1o o ’cで蒸
気圧6mmHgのCu(DPM)2ガスを得た。そして
、これら金属錯体ガスをそれに等量する水蒸気H20を
含んだ02ガスと共に反応容器に導入して、反応圧力1
0〜100To r r、反応温度350℃で化学反応
させた。そして、反応後の試料を600℃の酸素雰囲気
中で10時間熱処理した結果、臨界温度Tc=90に級
、臨界電流密度J C:3 X 105A/am2の、
炭素を含まない超電導体(YBa2Cu30v−δ)の
均一な膜が生成できた。In addition, in each raw material container, Ba(HFA)a gas with a vapor pressure of 4 mmHg at 200°C, Y(DPM)3 gas with a vapor pressure of 2 mmHg at 180°C, and Cu(DPM)2 with a vapor pressure of 6 mmHg at 1o o 'c. Got gas. Then, these metal complex gases are introduced into a reaction vessel together with 02 gas containing an equal amount of water vapor H20, and the reaction pressure is 1.
A chemical reaction was carried out at 0 to 100 Torr and a reaction temperature of 350°C. After the reaction, the sample was heat-treated in an oxygen atmosphere at 600°C for 10 hours, resulting in a critical temperature Tc of 90 and a critical current density JC of 3 x 105A/am2.
A uniform film of carbon-free superconductor (YBa2Cu30v-δ) was produced.
なお、上記Y(DPM)3に代えて、 Y (HFA
)3を用いるとともに配位子としてDPMに代えてHF
Aを用いたり、或は、Cu(DPM)2に代えてCu(
HFA)2を用いたり、或は、キャリアガスをArに代
えてHeを用いたりしても上記と同様な超電導体が得ら
れた。In addition, in place of Y (DPM) 3 above, Y (HFA
)3 and HF instead of DPM as a ligand.
A or Cu(DPM) instead of Cu(DPM)2
A superconductor similar to the above was obtained even when HFA)2 was used or when He was used instead of Ar as the carrier gas.
〈実施例2〉
本実施例は、B 1−5r−Ca−Cu−○系の超電導
体を生成する例である。<Example 2> This example is an example of producing a B 1-5r-Ca-Cu-○-based superconductor.
超電導原料となる金属錯体ガスとして、Bi(OC2H
5)3ガス、 5r(HFA)2ガス、Ca(HFA)
2ガス、Cu(HFA)2ガスを用い、配位子ガスとし
て、5r(HFA)2に対してTHF、Ca (HFA
)2に対してTHFを用いた。Bi(OC2H
5) 3 gases, 5r (HFA) 2 gases, Ca (HFA)
2 gas, Cu (HFA) 2 gas, and THF, Ca (HFA) for 5r (HFA) 2 as a ligand gas.
) THF was used for 2.
また、キャリアガスとしてArガスを用いた。Furthermore, Ar gas was used as a carrier gas.
また、それぞれの原料容器において、120℃で蒸気圧
lmmHgのBi(OC2H3)3ガス、80°Cで蒸
気圧lmmHgの5r(HFA)2ガス、80℃で蒸気
圧lmmHgのCa(HFA)2ガス、150℃で蒸気
圧1.5mmHgの Cu (HFA)2ガスを得た。In addition, in each raw material container, Bi(OC2H3)3 gas with a vapor pressure of lmmHg at 120°C, 5r(HFA)2 gas with a vapor pressure of lmmHg at 80°C, and Ca(HFA)2 gas with a vapor pressure of lmmHg at 80°C. , Cu(HFA)2 gas with a vapor pressure of 1.5 mmHg was obtained at 150 °C.
そして、これら金属錯体ガスをそれに等量する水蒸気H
20を含んだ02ガスと共に反応容器に導入して、反応
圧力10〜100Torr、反応温度350℃で化学反
応させた。そして、反応後の試料を750℃の大気中で
30時間熱処理した結果、臨界温度Tc=100に級、
臨界電流密度J c = 2 X 10’A/I?ff
+2の、炭素を含まない超電導体(BiCaSrCu2
0、)の均一な膜が生成できた。Then, these metal complex gases are mixed with water vapor H
The mixture was introduced into a reaction vessel together with 02 gas containing 20, and a chemical reaction was carried out at a reaction pressure of 10 to 100 Torr and a reaction temperature of 350°C. After the reaction, the sample was heat-treated in the atmosphere at 750°C for 30 hours, resulting in a critical temperature of Tc = 100.
Critical current density J c = 2 x 10'A/I? ff
+2 carbon-free superconductor (BiCaSrCu2
A uniform film of 0, ) was produced.
〈実施例3〉
超電導体にある量のフッ素を添加することにより超電導
体の露界温度Tc及び機械的強度の向上を図ることがで
きることに着目しく特願昭63−19053号、昭和6
3年1月29日出願参照)、本実施例は、フッ素を添加
したBa−Y−Cu−0系の超電導体を生成する例であ
る。<Example 3> Japanese Patent Application No. 1989-19053 and 1982 focused on the fact that the exposed temperature Tc and mechanical strength of a superconductor can be improved by adding a certain amount of fluorine to the superconductor.
This example is an example of producing a fluorine-doped Ba-Y-Cu-0 superconductor.
超電導原料となる金属錯体ガスとして、Ba(HFA)
2ガス、Y(HFA)3ガス、Cu(HFA)2ガスを
用い、配位子ガスとして、Ba(HFA)2に対してH
FA、Y (HFA)3に対してHFAを用いた。なお
、Cu(HFA)2は安定であるので配位子容器から原
料容器へ供給する配位子は用いなかった。Ba (HFA) is used as a metal complex gas as a superconducting raw material.
2 gas, Y(HFA) 3 gas, and Cu(HFA) 2 gas, and H as the ligand gas for Ba(HFA) 2.
HFA was used for FA, Y (HFA)3. Note that, since Cu(HFA)2 is stable, the ligand supplied from the ligand container to the raw material container was not used.
また、キャリアガスとしてArガスを用いた。Furthermore, Ar gas was used as a carrier gas.
また、それぞれの原料容器において、200℃で蒸気圧
4mmHgのBa(HFA)2ガス、120℃で蒸気圧
2mmHgのY(HFA)3ガス、100℃で蒸気圧6
mmHgのCu(HFA)2ガスを得た。そして、これ
ら金属錯体ガスをそれに等量する水蒸気H20を含んだ
02ガスと共に反応容器に導入して、加熱下において反
応圧力10〜100Torrて化学反応させた。そして
、反応後の試料を600℃の酸素雰囲気中で10時間熱
処理した結果、反応時の加熱温度が350℃で炭素を含
むことなくフッ素を含有した超電導体(YBa2Cu3
0v−δ)の均一な膜が生成できた。In addition, in each raw material container, Ba(HFA) 2 gas with a vapor pressure of 4 mmHg at 200°C, Y(HFA) 3 gas with a vapor pressure of 2 mmHg at 120°C, and 6 vapor pressure at 100°C.
Cu(HFA)2 gas of mmHg was obtained. Then, these metal complex gases were introduced into a reaction vessel together with 02 gas containing an equivalent amount of water vapor H20, and a chemical reaction was caused under heating at a reaction pressure of 10 to 100 Torr. After the reaction, the sample was heat-treated in an oxygen atmosphere at 600°C for 10 hours. As a result, the heating temperature during the reaction was 350°C, and a superconductor (YBa2Cu3
A uniform film of 0v-δ) was able to be produced.
なお、上記Y(HFA)3に代えY(DPM)3を用い
たり、或は、Cu(HFA)2に代えてCu(DPM)
2を用いてもよく、この場合にあってもフッ素を含有す
る配位子(HFA)若しくはフッ素源ガスを反応容器に
導入することにより超電導体へのフッ素添加量を確保す
ることができ、上記と同様な超電導体が得られた。In addition, Y(DPM)3 may be used instead of Y(HFA)3, or Cu(DPM) may be used instead of Cu(HFA)2.
2 may be used, and even in this case, the amount of fluorine added to the superconductor can be ensured by introducing a fluorine-containing ligand (HFA) or a fluorine source gas into the reaction vessel, and the above A superconductor similar to that was obtained.
第1図は本発明の一実施例に係る製造装置の構成図であ
る。
1.2.3は原料容器、
5は反応容器、
7は真空ポンプ、
9は基板、
10は酸素供給源、
11.12.13は配位子容器である。
特許出願人 三菱金属株式会社FIG. 1 is a configuration diagram of a manufacturing apparatus according to an embodiment of the present invention. 1.2.3 is a raw material container, 5 is a reaction container, 7 is a vacuum pump, 9 is a substrate, 10 is an oxygen supply source, and 11.12.13 is a ligand container. Patent applicant Mitsubishi Metals Corporation
Claims (1)
錯体ガスとする工程と、前記複数種類の超電導原料ガス
を水蒸気及び酸素と共に反応室に導入して化学反応を発
生させて膜状超電導体を形成する工程とを備えたことを
特徴とする膜状超電導体の製造方法。A step of converting one of the plurality of types of superconducting raw materials into a metal complex gas containing a ligand, and introducing the plurality of types of superconducting raw material gases together with water vapor and oxygen into a reaction chamber to generate a chemical reaction to form a film-like superconductor. 1. A method for producing a film-like superconductor, comprising a step of forming a superconductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63139749A JPH01308808A (en) | 1988-06-06 | 1988-06-06 | Production of filmy superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63139749A JPH01308808A (en) | 1988-06-06 | 1988-06-06 | Production of filmy superconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01308808A true JPH01308808A (en) | 1989-12-13 |
Family
ID=15252490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63139749A Pending JPH01308808A (en) | 1988-06-06 | 1988-06-06 | Production of filmy superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01308808A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0285370A (en) * | 1988-06-07 | 1990-03-26 | Nissan Motor Co Ltd | Manufacture of thin oxide film |
-
1988
- 1988-06-06 JP JP63139749A patent/JPH01308808A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0285370A (en) * | 1988-06-07 | 1990-03-26 | Nissan Motor Co Ltd | Manufacture of thin oxide film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910007382B1 (en) | Superconductor material and method of manufacturing super-conductor film | |
JPH02225317A (en) | Production of oxide superconductor by chemical gas phase deposition method | |
JP2786200B2 (en) | Raw material mixture for forming oxide superconductor thin film and method for forming oxide superconductor thin film | |
US4982019A (en) | Volatile divalent metal alkoxides | |
JPS63225528A (en) | Production of superconductive compound oxide | |
JPH01308808A (en) | Production of filmy superconductor | |
JPH01308804A (en) | Production of filmy superconductor | |
Bade et al. | Deposition of oxide films by metal‐organic molecular‐beam epitaxy | |
JPH02283603A (en) | Production method of oxide ceramics superconductive substance on substrate | |
JPH01308802A (en) | Production of filmy superconductor and device therefor | |
JPH01308806A (en) | Production of filmy superconductor | |
JPH01308809A (en) | Production of filmy superconductor | |
JP2661169B2 (en) | Superconductor thin film manufacturing method | |
JPH0285370A (en) | Manufacture of thin oxide film | |
JPH01308805A (en) | Production of filmy superconductor | |
JPH01308807A (en) | Production of filmy superconductor | |
JPH01219016A (en) | Production of thin superconducting ceramic film containing dispersed oxide | |
JPH09195050A (en) | Production of oxide or metal | |
JPH0255219A (en) | Production of superconductor thin film | |
JPH0254811A (en) | Manufacture of superconductor thin film | |
KR100298129B1 (en) | PROCESS FOR THE PREPARATION OF (Ba, Sr)TiO3 THIN LAYER | |
JPH02221116A (en) | Production of oxide superconductor by cvd | |
JP3202045B2 (en) | Method of manufacturing oxide superconductor by CVD method | |
JP2539032B2 (en) | Continuous raw material supply device for oxide superconductor manufacturing apparatus and continuous raw material supply method | |
JPH02255508A (en) | Production of superconducting thin film by chemical vapor growth method of organic metallic complex |