JPS63225528A - Production of superconductive compound oxide - Google Patents

Production of superconductive compound oxide

Info

Publication number
JPS63225528A
JPS63225528A JP5824687A JP5824687A JPS63225528A JP S63225528 A JPS63225528 A JP S63225528A JP 5824687 A JP5824687 A JP 5824687A JP 5824687 A JP5824687 A JP 5824687A JP S63225528 A JPS63225528 A JP S63225528A
Authority
JP
Japan
Prior art keywords
compound oxide
halide
compound
gas
compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5824687A
Other languages
Japanese (ja)
Inventor
Osamu Nakamura
修 中村
Keitaro Fukui
福井 慶太郎
Mitsuo Matsumura
松村 光雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP5824687A priority Critical patent/JPS63225528A/en
Publication of JPS63225528A publication Critical patent/JPS63225528A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To form a superconductive compound oxide to a thin film or wire and to enable to control its superconductivity at high temp., by producing a compound oxide of La, Sr and/or other metals, and Cr by the chemical vapor growth process. CONSTITUTION:A gaseous starting material consisting of at least an org. La compd. and/or a halide of La, an organometallic compd. of a metal M (at least one kind among Ca, Sr, Ba) and/or a halide of the metal M, an organocopper compd. and/or a halide of copper, contg. additionally an oxidizing agent is used as a gaseous reactant, and a compound oxide consisting primarily of a compd. expressed by the formula is formed on a substrate by the CVD process. In the formula, 0.02<x<0.20. By this method, a thin film or wire-shaped compound oxide having superconductivity at high temp. is produced easily. Moreover, the oxygen content in the compound oxide is controlled easily.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超伝導性複合酸化物の製造方法に関する。更に
詳しくは、本発明は化学気相成長(CVD)法を用いた
超伝導性複合酸化物の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a superconducting composite oxide. More specifically, the present invention relates to a method for producing a superconducting composite oxide using chemical vapor deposition (CVD).

(従来技術) 近年、電力を殆ど消費することなく強力な磁場を発生す
ることのできる超伝導現象の実用化の研究が進み、磁気
浮上列車、抜物理実験、M)ID発電等への応用が可能
となってきた。この背景には、臨界温度が高(、高温で
超伝導現象を発現する超伝導素材の開発や、臨界電流密
度を増大せしめるための研究開発が大きく貢献している
ことは言う迄もない、このような新素材の開発と相俟っ
て、通常の溶体化処理の他にも、化学的気相被着法を利
用して、超伝導素材を製造する方法が開示されている(
例えば特開昭49−43812号)。
(Prior art) In recent years, research has progressed on the practical application of superconductivity, which can generate a strong magnetic field without consuming almost any power, and its application to magnetic levitation trains, electric physics experiments, M)ID power generation, etc. has progressed. It has become possible. It goes without saying that the development of superconducting materials that exhibit superconducting phenomena at high critical temperatures (high critical temperatures) and research and development to increase critical current density have greatly contributed to this. Along with the development of new materials such as these, a method for manufacturing superconducting materials using chemical vapor deposition in addition to the usual solution treatment has been disclosed (
For example, Japanese Patent Publication No. 49-43812).

(発明が解決しようとする問題点) このような中で、最近(L a (1−x)  S r
x)Mx)2CuO4なる複合酸化物(x:0.05〜
0.10原子%程度)が40に以上の臨界温度を有する
高温超伝導体であることが発見された〔ケミストリー・
レターズ(Cheamistry Letters)、
429頁〜432頁、1月24日発行、(1987年)
〕。この超伝導体は、通常のセラミックの製造法と同様
に、ランタン、ストロンチウム、銅の各酸化物及び/又
は炭酸塩等を混合し、焼成して得られる。
(Problems to be solved by the invention) Recently, (L a (1-x) S r
x) Mx) 2CuO4 complex oxide (x: 0.05~
0.10 atom%) was discovered to be a high-temperature superconductor with a critical temperature of 40 or higher
Letters (Chemistry Letters),
Pages 429-432, published January 24, (1987)
]. This superconductor is obtained by mixing lanthanum, strontium, copper oxides and/or carbonates, and firing the mixture in the same manner as in ordinary ceramic manufacturing methods.

しかしながら、この素材は合金等と異なり展延性がない
ために、上記の製造方法によっては、実用化のための薄
膜化や線材化をすることができないという欠点があった
However, unlike alloys, this material does not have malleability, and therefore, depending on the manufacturing method described above, it has the disadvantage that it cannot be made into a thin film or wire for practical use.

本発明者等は、従来のかかる欠点を解決すべく鋭意検討
した結果、CVD法によれば、薄膜化又は線材化された
、上記高温超伝導体たる複合酸化物を容易に得ることが
できる上、複合酸化物中の酸素の量を制御することも容
易であり、これにより高温超伝導体としての特性を制御
することもできることを見い出し、本発明に到達した。
The inventors of the present invention have made extensive studies to solve these conventional drawbacks, and have found that by using the CVD method, it is possible to easily obtain the above-mentioned composite oxide, which is a high-temperature superconductor, in the form of a thin film or wire. They discovered that it is easy to control the amount of oxygen in a composite oxide, and thereby the properties as a high-temperature superconductor, and have arrived at the present invention.

従って、本発明の第1の目的は、薄膜状又は線材状の高
温超伝導体複合酸化物を製造する方法を提供することに
ある。
Therefore, a first object of the present invention is to provide a method for producing a high temperature superconductor composite oxide in the form of a thin film or wire.

本発明の第2の目的は、複合酸化物の高温超伝導特性を
制御するに適した複合酸化物の製造方法を提供すること
にある。
A second object of the present invention is to provide a method for producing a composite oxide suitable for controlling the high-temperature superconducting properties of the composite oxide.

(問題を解決するための手段) 本発明の上記の諸口的は、少なくとも、有機ランタン化
合物及び/又はランタンのハロゲン化物、カルシウム、
ストロンチウム、バリウムの群から選択された少なくと
も1種の金属Mの有機金属化合物及び/又は金[Mのハ
ロゲン化物、有機銅化合物及び/又は銅のハロゲン化物
並びに酸化剤を含有する原料ガスを反応ガスとして用い
て、化学気相成長法によって基板上に(L a (1−
x) Mx )2CuO4(0.02<x<0.20)
を主成分とする複合酸化物を形成せしめることを特徴と
する超伝導性複合酸化物の製造方法によって達成された
(Means for solving the problem) The above aspects of the present invention include at least an organic lanthanum compound and/or a lanthanum halide, calcium,
A raw material gas containing an organometallic compound of at least one metal M selected from the group of strontium and barium and/or gold [a halide of M, an organocopper compound and/or a halide of copper, and an oxidizing agent] is used as a reaction gas. (L a (1-
x) Mx )2CuO4 (0.02<x<0.20)
This was achieved by a method for producing a superconducting composite oxide, which is characterized by forming a composite oxide containing as the main component.

本発明で使用する有機ランタン化合物としては、シクロ
ペンタジェニル、アセチルアセトン、アルコキシド、フ
ェニル等の化合物を挙げることができるが、これらの中
でもLa−シクロペンタジェニル化合物及びLa−アセ
チルアセトン化合物が好ましく、特にLa−シクロペン
タジェニル化合物が好ましい。
Examples of the organic lanthanum compound used in the present invention include compounds such as cyclopentagenyl, acetylacetone, alkoxide, and phenyl. Among these, La-cyclopentagenyl compounds and La-acetylacetone compounds are preferred, and particularly La-cyclopentadienyl compounds are preferred.

カルシウム、ストロンチウム及びバリウムの群から選択
された金属Mの有機金属化合物としては。
As an organometallic compound of metal M selected from the group of calcium, strontium and barium.

例えば、Ca−シクロペンタジェニル化合物、Ca−ア
セチルアセトン化合物、Ca−アルコキシド化合物;S
r−シクロペンタジェニル化合物、Sr−アセチルアセ
トン化合物、Sr−アルコキシド化合物、Sr−アルキ
ル化合物;Ba−シクロペンタジェニル化合物% B 
a−アセチルアセトン化合物、Ba−アルコキシド化合
物:Cu−シクロペンタジェニル化合物、Cu−アセチ
ルアセトン化合物及びCu−アルコキシド化合物等を挙
げることができる。これらの中でも、特にシクロペンタ
ジェニル化合物及びアセチルアセトン化合物が好ましい
For example, Ca-cyclopentagenyl compound, Ca-acetylacetone compound, Ca-alkoxide compound;
r-cyclopentagenyl compound, Sr-acetylacetone compound, Sr-alkoxide compound, Sr-alkyl compound; Ba-cyclopentagenyl compound% B
a-acetylacetone compound, Ba-alkoxide compound: Cu-cyclopentagenyl compound, Cu-acetylacetone compound, Cu-alkoxide compound, etc. can be mentioned. Among these, cyclopentagenyl compounds and acetylacetone compounds are particularly preferred.

上記金属Mとしては、臨界温度を挙げるという観点から
特にストロンチウムが好ましい。
As the metal M, strontium is particularly preferable from the viewpoint of raising the critical temperature.

ストロンチウムをバリウム及び/又はカルシウムによっ
て少な(とも1部を置換した場合には、臨界温度はスト
ロンチウムの場合より低下するが、超伝導体の加工性や
コストパフォーマンス等の観点から改善することができ
る。加工性やコストパフォーマンスを重視する場合には
、更に他の金属を不純物として添加することもできる。
If a small amount (at least a portion) of strontium is replaced with barium and/or calcium, the critical temperature will be lower than in the case of strontium, but it can be improved from the viewpoint of processability and cost performance of the superconductor. If workability and cost performance are important, other metals may be added as impurities.

本発明で使用することのできる、ランタン、カルシウム
、ストロンチウム、バリウム、銅等のハロゲン化合物は
、公知の化合物の中から通貨選択することができるが、
特に塩素化合物及び弗素化合物を使用することが好まし
い。
Halogen compounds such as lanthanum, calcium, strontium, barium, copper, etc. that can be used in the present invention can be selected from among known compounds.
It is particularly preferred to use chlorine compounds and fluorine compounds.

本発明で使用する酸化剤は、常温で気体であり、化窒素
、二酸化炭素等を挙げることができるが、取り扱い性等
の観点から、特に酸素ガスが好ましい。
The oxidizing agent used in the present invention is a gas at room temperature, and examples thereof include nitrogen chloride and carbon dioxide, but oxygen gas is particularly preferred from the viewpoint of ease of handling.

本発明においては、必要に応じて、適宜原料ガスを希ガ
ス等のキャリアガスで希釈することができる。
In the present invention, the raw material gas can be appropriately diluted with a carrier gas such as a rare gas, if necessary.

希ガスとしては、コストの観点から通常アルゴンガスを
使用するが、勿論これに限定されるものではない。
As the rare gas, argon gas is usually used from the viewpoint of cost, but of course it is not limited to this.

又、反応ガス中の酸素の分圧を制御することにより膜中
に含有される酸素の量を調整することができる。これに
よって、膜の高温超伝導性をコントロールすることがで
きる。
Furthermore, the amount of oxygen contained in the film can be adjusted by controlling the partial pressure of oxygen in the reaction gas. This allows the high-temperature superconductivity of the film to be controlled.

化学気相成長法(CV D)としては、v1ICvD法
、光CVD法又はプラズマCVD法でも良いが、本発明
においては特に熱CVD法が好ましい。熱CVD法の条
件は、基板温度600℃〜1200℃、好ましくは75
0℃〜1100℃であり反応室内の圧力は5To r 
r〜760Torr、好ましくは15Torr〜100
Torrであり、酸素を大過剰として行うことが好まし
い。特に800℃以上とした場合には、製膜と同時に焼
結することができるので、別個に焼結する工程が不要と
なって好ましい、一方、Cuは他の金属より少な目とす
ることができる。
The chemical vapor deposition method (CVD) may be a v1ICvD method, a photo CVD method, or a plasma CVD method, but a thermal CVD method is particularly preferred in the present invention. The conditions for the thermal CVD method are a substrate temperature of 600°C to 1200°C, preferably 75°C.
The temperature is 0°C to 1100°C and the pressure inside the reaction chamber is 5 Torr.
r~760Torr, preferably 15Torr~100
Torr, and is preferably carried out with a large excess of oxygen. In particular, when the temperature is 800° C. or higher, sintering can be performed at the same time as film formation, which eliminates the need for a separate sintering process, which is preferable.On the other hand, the amount of Cu can be smaller than that of other metals.

反応ガスをプラズマ化する方法としては、例えば、高周
波、低周波等によるグロー放電法、アーク放電法等の各
種放電法の他、プラズマジェット法等の公知の方法の中
から適宜選択して用いることができる、装置の簡便さや
プラズマ状態の制御のし易さ等の観点からグロー放電法
が特に好ましい。この場合、電力密度は、約0.01W
/cm2〜2 W / c m 2とすることが好まし
い。
As a method for turning the reactive gas into plasma, for example, in addition to various discharge methods such as glow discharge method using high frequency or low frequency, arc discharge method, etc., the method may be appropriately selected from known methods such as plasma jet method. The glow discharge method is particularly preferable from the viewpoints of simplicity of the apparatus and ease of controlling the plasma state. In this case, the power density is approximately 0.01W
/cm2~2 W/cm2 is preferable.

反応室内の圧力は0.05Torr 〜20T。The pressure inside the reaction chamber is 0.05 Torr to 20T.

rr、好ましくは0.2Torr〜2Torr、基板温
度は400℃〜1200℃であるが、特に、800℃以
上とした場合には、作製膜の結晶化が良好となり好まし
い。
rr, preferably 0.2 Torr to 2 Torr, and the substrate temperature is 400° C. to 1200° C., but it is particularly preferable to set the temperature to 800° C. or higher, since the crystallization of the produced film will be good.

以下に、本発明の方法を図面に従って更に詳述する。第
1図は、熱CVD法によって基板上に超伝導素材を成長
させるための装置である0図中符号l及び3はガス導入
口であり、符号5及び7の試料容器中のランタン化合物
及び銅の化合物を加熱する°と同時にキャリアガスを流
して、これらの原料ガスを前記ガス導入口3から、予め
排気された反応管10中に導入し、同時に酸化剤として
酸素ガスを導入する。酸素ガスの導入口は、独立に設け
てもよい、一方、反応管中に設置されたルツボ9の中の
ストロンチウム化合物に、赤外イメージ炉1から発する
赤外線を集中させてストロンチウムを揮発させ、そのた
めのキャリアガスをガス導入口1から導入する。このよ
うにして、必要な原料ガスが混在した反応ガスは反応管
中を流れて、例えば、ターボ分子ポンプ及びロータリー
ポンプを用いて排気する。基板11は赤外イメージ炉2
によって加熱された領域に設置されており、反応ガスが
この領域を通過する際に分解して基板上に主として(L
a (t−x)Srx)Mx)2CuO4が成長する。
Below, the method of the present invention will be explained in more detail with reference to the drawings. Figure 1 shows an apparatus for growing a superconducting material on a substrate by the thermal CVD method. In Figure 0, symbols 1 and 3 are gas inlet ports, and lanthanum compounds and copper in sample containers 5 and 7 are shown. At the same time as heating the compound, a carrier gas is caused to flow, and these raw material gases are introduced from the gas inlet 3 into the previously evacuated reaction tube 10, and at the same time, oxygen gas is introduced as an oxidizing agent. The oxygen gas inlet may be provided independently.On the other hand, infrared rays emitted from the infrared imaging furnace 1 are concentrated on the strontium compound in the crucible 9 installed in the reaction tube to volatilize the strontium. carrier gas is introduced from gas inlet 1. In this way, the reaction gas mixed with the necessary raw material gas flows through the reaction tube and is exhausted using, for example, a turbomolecular pump and a rotary pump. The substrate 11 is an infrared image furnace 2
The reaction gas is placed in a region heated by
a (t-x)Srx)Mx)2CuO4 grows.

ガスの流量制御や混在方法については、公知の如(、各
種のパルプ、流量メーター、混合室等を適宜組み合わせ
ることができる。
Regarding gas flow rate control and mixing methods, various pulps, flow meters, mixing chambers, etc. can be appropriately combined as known.

(発明の効果) 本発明によれば、製造当初から薄膜状又は線状とするこ
とができるので、高温超伝導性を示すものの延性や展性
がなく、実用化し難い素材を実用化する上で極めて好都
合である。又、酸素の分圧を変えるのみで、高温超伝導
体としての特性を調整する事が極めて容易であるのみな
らず、基板温度を高くしておくことによって実質的に焼
成し、独立の焼成工程を省略することができるという利
点もある。
(Effects of the Invention) According to the present invention, since it can be made into a thin film or linear form from the beginning of manufacture, it is possible to put into practical use materials that exhibit high-temperature superconductivity but lack ductility or malleability and are difficult to put into practical use. This is extremely convenient. In addition, it is not only extremely easy to adjust the properties of a high-temperature superconductor simply by changing the partial pressure of oxygen, but it is also possible to virtually sinter it by keeping the substrate temperature high, making it possible to create an independent sintering process. Another advantage is that it can be omitted.

以下に本発明を実施例によって更に詳述するが、本発明
はこれによって限定されるものではない。
EXAMPLES The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited thereto.

(実施例) 実施例1゜ 第1図の如きCVD装置を用い、約150℃に保持した
固体材料容器5にメチルシクロペンタジェニルランタン
(La  (C5H5)2CI(3)を入れ、キャリア
ガスとしてAr(アルゴン)ガスを10 S CCM 
(Standard cubic centisete
rper m1nute : CC/分)流した。一方
、約200℃に保った固体材料容器7にはアセチルアセ
トン銅を入れ、キャリアガスとしてArガスを603C
CM流した。又、酸化剤として02(酸素)ガスを11
005CC流し、合わせてガス導入口3より70φX7
00mmの石英管を用いた反応管10へ導入した0反応
管迄の流路は、金属化合物が付着しないように温度調節
を行った。
(Example) Example 1 Using a CVD apparatus as shown in Fig. 1, methylcyclopentadienyl lanthanum (La (C5H5)2CI(3)) was placed in a solid material container 5 kept at about 150°C, and was used as a carrier gas. Ar (argon) gas at 10 S CCM
(Standard cubic centisete
per m1nute: CC/min). On the other hand, copper acetylacetone was placed in the solid material container 7 kept at about 200°C, and Ar gas was added as a carrier gas at 603°C.
A commercial was played. In addition, 02 (oxygen) gas is used as an oxidizing agent at 11
005CC flowing, total 70φX7 from gas inlet port 3
The temperature of the flow path up to the 0 reaction tube introduced into the reaction tube 10 using a 00 mm quartz tube was adjusted to prevent metal compounds from adhering.

一方、反応管内に5iC(炭化ケイ素)被覆のグラファ
イト製ルツボ9を置き、ルツボを赤外イメージ炉13に
て約550℃度に保ち、ルツボ内にはアセチルアセトン
・ストロンチウム(Sr(c5H702)2)を入れた
。気化するアセチルアセトンストロンチウムのキャリア
ガスとしてガス導入口1よりArガスを403CCMで
導入し、ターボ分子ポンプ及びロータリーポンプを用い
て排気した。
On the other hand, a graphite crucible 9 coated with 5iC (silicon carbide) is placed in the reaction tube, and the crucible is maintained at approximately 550°C in an infrared image furnace 13, and acetylacetone strontium (Sr(c5H702)2) is placed in the crucible. I put it in. Ar gas was introduced at 403 CCM from gas inlet 1 as a carrier gas for strontium acetylacetonate to be vaporized, and was evacuated using a turbo molecular pump and a rotary pump.

上記の混合ガスを、赤外イメージ炉I5にて約850℃
に加熱したサセプタ(S i C被覆グラファイト)上
の石英ガラス基板上にて圧力20T。
The above mixed gas was heated to approximately 850°C in an infrared image furnace I5.
A pressure of 20 T was applied on a quartz glass substrate on a susceptor (S i C coated graphite) heated to .

rrで熱分解させ、厚さ約1.5μmの薄膜を作製した
It was thermally decomposed at rr to produce a thin film with a thickness of about 1.5 μm.

作製した薄膜を低温下で帯磁率測定したところ、超伝導
臨界温度は約39にであまた。
When the magnetic susceptibility of the fabricated thin film was measured at low temperatures, the superconducting critical temperature was found to be approximately 39.

実施例2゜ 実施例1と同じCVD装置を用い、固体材料容器5には
、メチルシクロペンタジェニルランタン(La (C5
H5)2CH3) 、固体材料容器7にはシクロペンタ
ジェニルトリエチルホスフィン銅(Cu (C5H5)
P (C2)(5)3)を入れた。容器温度はそれぞれ
約150℃、約120℃とし、キャリアガスとしてAr
をそれぞれ約lOより反応管に導入した。
Example 2 Using the same CVD apparatus as in Example 1, methylcyclopentadienyl lanthanum (La (C5
H5)2CH3), solid material container 7 contains cyclopentadienyltriethylphosphine copper (Cu (C5H5)
P (C2) (5) 3) was added. The container temperatures were approximately 150°C and 120°C, respectively, and Ar was used as the carrier gas.
were each introduced into the reaction tube at about 1O.

反応管内のルツボにはアセチルアセトンCaを入れ、赤
外イメージ炉13にて約500℃に昇温し、Arキャリ
アガスをガス導入口1より約405CCM流した。
Acetylacetone Ca was placed in a crucible in the reaction tube, and the temperature was raised to about 500° C. in an infrared image furnace 13, and about 405 CCM of Ar carrier gas was flowed through the gas inlet 1.

以上の混合ガスを、赤外イメージ炉15にて加熱したS
iC被覆グラファイト製サセプタ上の石英ガラス基板表
面で、基板温度約800℃、圧力的20To r rに
て熱分解反応させ、厚さ約1゜3μmのWI#膜を作製
した。
The above mixed gas was heated in an infrared image furnace 15.
A WI# film having a thickness of about 1° to 3 μm was produced by carrying out a thermal decomposition reaction on the surface of a quartz glass substrate on an iC-coated graphite susceptor at a substrate temperature of about 800° C. and a pressure of 20 Torr.

作製した薄膜を低温下で帯磁率測定したところ、超伝導
臨界温度は約17にであった。
When the magnetic susceptibility of the produced thin film was measured at low temperature, the superconducting critical temperature was approximately 17.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明で使用することのできる熱CVD装置
の概念図の一例である。図中、符号l及び3はガス導入
口、5及び7は固体材料容器、9はルツボ、10は反応
管、11は基板、13及び15は赤外イメージ炉である
FIG. 1 is an example of a conceptual diagram of a thermal CVD apparatus that can be used in the present invention. In the figure, numerals 1 and 3 are gas inlet ports, 5 and 7 are solid material containers, 9 is a crucible, 10 is a reaction tube, 11 is a substrate, and 13 and 15 are infrared image furnaces.

Claims (1)

【特許請求の範囲】[Claims] 少なくとも、有機ランタン化合物及び/又はランタンの
ハロゲン化物、カルシウム、ストロンチウム、バリウム
の群から選択された少なくとも1種の金属Mの有機金属
化合物及び/又は金属Mのハロゲン化物、有機銅化合物
及び/又は銅のハロゲン化物並びに酸化剤を含有する原
料ガスを反応ガスとして用いて、化学気相成長法によっ
て基板上に(La_(_1_−_x_)M_x)2Cu
O_4(0.02<x<0.20)を主成分とする複合
酸化物を形成せしめることを特徴とする超伝導性複合酸
化物の製造方法。
At least an organometallic compound of at least one metal M selected from the group consisting of an organolanthanum compound and/or a halide of lanthanum, calcium, strontium, and barium, and/or a halide of the metal M, an organocopper compound, and/or copper. (La_(_1_-_x_)M_x)2Cu was deposited on the substrate by chemical vapor deposition using a raw material gas containing a halide and an oxidizing agent as a reaction gas.
A method for producing a superconducting composite oxide, comprising forming a composite oxide whose main component is O_4 (0.02<x<0.20).
JP5824687A 1987-03-13 1987-03-13 Production of superconductive compound oxide Pending JPS63225528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5824687A JPS63225528A (en) 1987-03-13 1987-03-13 Production of superconductive compound oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5824687A JPS63225528A (en) 1987-03-13 1987-03-13 Production of superconductive compound oxide

Publications (1)

Publication Number Publication Date
JPS63225528A true JPS63225528A (en) 1988-09-20

Family

ID=13078764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5824687A Pending JPS63225528A (en) 1987-03-13 1987-03-13 Production of superconductive compound oxide

Country Status (1)

Country Link
JP (1) JPS63225528A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244530A (en) * 1987-03-30 1988-10-12 Sumitomo Electric Ind Ltd Formation of superconductive thin film
JPS63244528A (en) * 1987-03-30 1988-10-12 Sumitomo Electric Ind Ltd Formation of superconductive thin layer
JPS63245829A (en) * 1987-03-31 1988-10-12 Sumitomo Electric Ind Ltd Manufacture of oxide superconductive thin film
EP0311401A2 (en) * 1987-10-09 1989-04-12 Fujitsu Limited Process for chemical vapor deposition
JPH0193405A (en) * 1987-06-16 1989-04-12 Kawasaki Steel Corp Complex compound for forming oxide superconductor thin film and method for forming said thin film
JPH0193424A (en) * 1987-08-25 1989-04-12 American Teleph & Telegr Co <Att> Manufacture of structure having superconductive thin film
EP0371796A2 (en) * 1988-11-30 1990-06-06 Fujitsu Limited Apparatus and process for chemical vapor deposition
US5185317A (en) * 1988-02-19 1993-02-09 Northwestern University Method of forming superconducting Tl-Ba-Ca-Cu-O films
US6110542A (en) * 1990-09-25 2000-08-29 Semiconductor Energy Laboratory Co., Ltd. Method for forming a film
US6217661B1 (en) 1987-04-27 2001-04-17 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6677001B1 (en) * 1986-11-10 2004-01-13 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD method and apparatus

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677001B1 (en) * 1986-11-10 2004-01-13 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD method and apparatus
JPS63244528A (en) * 1987-03-30 1988-10-12 Sumitomo Electric Ind Ltd Formation of superconductive thin layer
JPS63244530A (en) * 1987-03-30 1988-10-12 Sumitomo Electric Ind Ltd Formation of superconductive thin film
JPS63245829A (en) * 1987-03-31 1988-10-12 Sumitomo Electric Ind Ltd Manufacture of oxide superconductive thin film
US6838126B2 (en) 1987-04-27 2005-01-04 Semiconductor Energy Laboratory Co., Ltd. Method for forming I-carbon film
US6217661B1 (en) 1987-04-27 2001-04-17 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6423383B1 (en) 1987-04-27 2002-07-23 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
JPH0193405A (en) * 1987-06-16 1989-04-12 Kawasaki Steel Corp Complex compound for forming oxide superconductor thin film and method for forming said thin film
JPH0193424A (en) * 1987-08-25 1989-04-12 American Teleph & Telegr Co <Att> Manufacture of structure having superconductive thin film
JPH01212220A (en) * 1987-10-09 1989-08-25 Fujitsu Ltd Vapor growth method for superconducting material
EP0311401A3 (en) * 1987-10-09 1990-12-05 Fujitsu Limited Process for chemical vapor deposition
US4931425A (en) * 1987-10-09 1990-06-05 Fujitsu Limited Process for chemical vapor deposition of superconductive oxide
EP0311401A2 (en) * 1987-10-09 1989-04-12 Fujitsu Limited Process for chemical vapor deposition
US5185317A (en) * 1988-02-19 1993-02-09 Northwestern University Method of forming superconducting Tl-Ba-Ca-Cu-O films
EP0371796A2 (en) * 1988-11-30 1990-06-06 Fujitsu Limited Apparatus and process for chemical vapor deposition
US5183510A (en) * 1988-11-30 1993-02-02 Fujitsu Limited Apparatus and process for chemical vapor deposition
US6660342B1 (en) 1990-09-25 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Pulsed electromagnetic energy method for forming a film
US6110542A (en) * 1990-09-25 2000-08-29 Semiconductor Energy Laboratory Co., Ltd. Method for forming a film
US7125588B2 (en) 1990-09-25 2006-10-24 Semiconductor Energy Laboratory Co., Ltd. Pulsed plasma CVD method for forming a film

Similar Documents

Publication Publication Date Title
KR910007382B1 (en) Superconductor material and method of manufacturing super-conductor film
JPS63225528A (en) Production of superconductive compound oxide
JP2829221B2 (en) Method of forming oxide film on metal substrate by thermal plasma evaporation method
JPH10509939A (en) Metal oxide growth equipment using metalorganic vapor phase epitaxy
JPH02225317A (en) Production of oxide superconductor by chemical gas phase deposition method
JP2786200B2 (en) Raw material mixture for forming oxide superconductor thin film and method for forming oxide superconductor thin film
Tu et al. High-speed deposition of yttria stabilized zirconia by MOCVD
JPH01104774A (en) Production of thin film of oxide superconductor
JPH02283603A (en) Production method of oxide ceramics superconductive substance on substrate
JPH09195050A (en) Production of oxide or metal
JP3808250B2 (en) CVD reactor and oxide superconductor manufacturing method
JP4034052B2 (en) Manufacturing method of oxide superconductor
JP3342785B2 (en) Apparatus and method for producing oxide superconducting conductor
JPS63307275A (en) Mocvd device for preparing thin film of high-temperature superconductor
JP3880708B2 (en) Manufacturing apparatus and manufacturing method of oxide superconductor
JP2539032B2 (en) Continuous raw material supply device for oxide superconductor manufacturing apparatus and continuous raw material supply method
JPH0331482A (en) Manufacture of material contain- ing either one or both of alkali earth metal and alkali earth metal oxide
JP3939486B2 (en) Liquid material supply device for CVD
JPH0254769A (en) Manufacture of thin superconductor film
JP4030801B2 (en) Liquid raw material for CVD and manufacturing method of oxide superconductor
JPH01220311A (en) Manufacture of superconductive ceramic wire rod
JPH0375207A (en) Production of thin film of oxide superconductor
JPH012219A (en) Manufacturing method of ceramic superconducting wire
JPH02221116A (en) Production of oxide superconductor by cvd
JP2004091809A (en) Liquid material feeding device for cvd, and method for manufacturing oxide superconductor