JPH012219A - Manufacturing method of ceramic superconducting wire - Google Patents

Manufacturing method of ceramic superconducting wire

Info

Publication number
JPH012219A
JPH012219A JP62-158027A JP15802787A JPH012219A JP H012219 A JPH012219 A JP H012219A JP 15802787 A JP15802787 A JP 15802787A JP H012219 A JPH012219 A JP H012219A
Authority
JP
Japan
Prior art keywords
superconductor
plasma
superconducting wire
manufacturing
ceramic superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62-158027A
Other languages
Japanese (ja)
Other versions
JPS642219A (en
Inventor
志賀 章二
高見 博
田中 靖三
直樹 宇野
Original Assignee
古河電気工業株式会社
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP62-158027A priority Critical patent/JPH012219A/en
Publication of JPS642219A publication Critical patent/JPS642219A/en
Publication of JPH012219A publication Critical patent/JPH012219A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電カケープル、マグネット、電力貯蔵リンク
等に用いられるセラミックス超電導線材の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a ceramic superconducting wire used for power cables, magnets, power storage links, etc.

〔従来の技術とその問題点〕[Conventional technology and its problems]

最近、高い臨界温度を有する(L a S rlzc 
uOa 、(S c S r)zc u 04、(L 
a B a)zc u 04、YBa、Cu、O,−δ
、Y、Ba2Cu307−δ、DyBazcuso、−
δ、LiTizOaなどのセラミックス超電導体が注目
されているが、これらは金属材料のように塑性加工が出
来ず、これらの線材などを得るには、粉末冶金法または
PVD法などの気相成長法が応用されているが、前者は
粉末の製造から焼結まで多くの工程を要し、また途中の
加熱工程で酸素などの構成元素の出入りがおごリ&II
成や構造が変化し易いため、製造条件の管理を1iiI
i密に行わなければならず、生産性および経済性に劣る
欠点がある。またPVDは、真空中での処理のための長
尺のものに不向きであり、また生成物が還元したりして
組成的にも不安定であり、更に蒸発元素の付着歩留りが
低く、析出速度が遅いため、生産性に劣るなどの問題が
ある。
Recently, it has a high critical temperature (L a S rlzc
uOa, (S c S r) zc u 04, (L
a B a)zc u 04, YBa, Cu, O, -δ
, Y, Ba2Cu307-δ, DyBazcuso, -
Ceramic superconductors such as δ and LiTizOa are attracting attention, but these cannot be plastically worked like metal materials, and to obtain these wires, powder metallurgy or vapor phase growth methods such as PVD are required. However, the former requires many steps from manufacturing the powder to sintering, and the heating process in the middle of the process requires the entry and exit of constituent elements such as oxygen.
Since the composition and structure change easily, the manufacturing conditions must be managed 1iiiI.
It has to be carried out closely, which has the disadvantage of poor productivity and economy. In addition, PVD is unsuitable for producing long products for processing in vacuum, and the product is compositionally unstable due to reduction, and the deposition yield of evaporated elements is low, resulting in a rapid deposition rate. Since the process is slow, there are problems such as poor productivity.

c問題点を解決するための手段および作用〕本発明は、
かかる状況に漏みなされたもので、その目的とするとこ
ろは、組成および構造が厳密にコントロールされたセラ
ミックス8!電導線材を高能率に量産できる製造方法を
提供することにある。
c.Means and effects for solving problems] The present invention has the following features:
The product was leaked in such a situation, and its purpose was to create ceramics 8! whose composition and structure were strictly controlled. The object of the present invention is to provide a manufacturing method that allows highly efficient mass production of conductive wires.

即ち本発明は、超電導体の構成元素が溶解された原料液
をプラズマにより加熱分解して、超電導体微細粉を反応
生成せしめ、この超電導体微細粉を走行する所望数の基
体上に凝集付着させたのち、これを冷却し、次いで熱処
理することを特徴とするものである。
That is, the present invention heats and decomposes a raw material liquid in which the constituent elements of a superconductor are dissolved using plasma, reacts and generates superconductor fine powder, and causes the superconductor fine powder to coagulate and adhere on a desired number of traveling substrates. This is then cooled and then heat treated.

以下に本発明を図を参照して具体的に説明する。The present invention will be specifically explained below with reference to the drawings.

第1図は、本発明を実施する装置の一例を示す概念図で
ある。所望数の線、条などの基体1がアンコイラ−2よ
り供給され、反応炉3に導かれる。
FIG. 1 is a conceptual diagram showing an example of an apparatus for implementing the present invention. A desired number of substrates 1 such as wires and strips are supplied from an uncoiler 2 and guided to a reactor 3.

反応炉3においてはノズル4より供給された原料液がプ
ラズマ5により加熱され分解、反応して超電導体微細粉
が生成され、これが走行する基体1上に付着して冷却室
6および加熱炉7を経てリコイラー8に巻きとられる。
In the reactor 3, the raw material liquid supplied from the nozzle 4 is heated by the plasma 5, decomposed and reacted to produce superconductor fine powder, which adheres to the traveling base 1 and flows into the cooling chamber 6 and heating furnace 7. After that, it is wound up by the recoiler 8.

上分において基体lには、カーボンファイバ、Mo、S
USなどの耐熱性材料が用いられる。原料液は、水や有
機溶媒に超電導体の構成元素を含有する化合物例えばY
 Cl 3 、B a CI z 、CuCl、などの
塩化物が所定のモル比で溶解されたものである。金属塩
の他にハロゲン、カルコゲンなどの元素を溶液成分とし
て含有せしめ、これを超電導体に包含させることもでき
る。原料液の組成や濃度は予備実験により最適値が決定
される。
In the upper part, the base l contains carbon fiber, Mo, S
A heat resistant material such as US is used. The raw material liquid is a compound containing constituent elements of the superconductor, such as Y, in water or an organic solvent.
Chlorides such as Cl 3 , Ba Cl z , CuCl, etc. are dissolved in a predetermined molar ratio. In addition to metal salts, elements such as halogen and chalcogen can also be contained as solution components and incorporated into the superconductor. Optimum values for the composition and concentration of the raw material liquid are determined through preliminary experiments.

酸化物系超電導体を製造する場合は、プラズマの放電ガ
スに酸素を用いると超電導体の酸素濃度が高位に安定し
て好適であるが、ハロゲンガスや不活性ガスを用いても
差支えない。
When manufacturing an oxide-based superconductor, it is preferable to use oxygen as the plasma discharge gas because the oxygen concentration in the superconductor remains stable at a high level, but halogen gas or inert gas may also be used.

超電導体微細粉の密着性を高めるため、基体を予備加熱
することが好ましいが、基体の走行速度が遅いときは、
基体は反応炉内を通過中に十分加熱されるのであえてす
る必要がない、しかし基体の走行速度が速いときは、反
応炉手前に予熱炉を配置して予備加熱を行うとよい、こ
の際の温度はプラズマ処理温度以下とすることが好まし
く、それはプラズマ加熱部内で超電導体微細粉が基体に
凝集付着するのは基体温度が、プラズマ加熱部より低い
ためと考えられるからである。なお超電導体微細粉の基
体への密着性および付着量は、基体の予備加熱温度によ
って変化する0発明者等の実験結果によると、基体の好
ましい予備加熱温度はプラズマ処理温度以下600″C
の範囲である。反応炉を出て冷却した超電導体微細粉付
着基体を加熱炉を通して熱処理することにより超電導特
性が最高に向上される場合がある。即ち、プラズマ加熱
部の高温域で反応生成した超電導体は、高温での平衡ま
たは準平面状態にあり、Otなどの組成や結晶&1ll
lは、必ずしも最適な状態にはなく、この調整がこの加
熱炉による熱処理においてなされる。
In order to improve the adhesion of the superconductor fine powder, it is preferable to preheat the substrate, but when the substrate travels at a slow speed,
There is no need to do this as the substrate will be sufficiently heated while passing through the reactor. However, if the substrate is moving at a high speed, it is advisable to place a preheating furnace in front of the reactor to perform preheating. The temperature is preferably lower than the plasma processing temperature, because it is thought that the superconductor fine powder coagulates and adheres to the substrate in the plasma heating section because the substrate temperature is lower than that in the plasma heating section. Note that the adhesion and adhesion amount of superconductor fine powder to the substrate vary depending on the preheating temperature of the substrate.According to the experimental results of the inventors, the preferable preheating temperature of the substrate is 600"C below the plasma treatment temperature.
is within the range of The superconducting properties may be maximized by heat-treating the superconductor fine powder-adhered substrate, which has cooled after exiting the reactor, through a heating furnace. In other words, the superconductor produced by reaction in the high temperature region of the plasma heating section is in an equilibrium or quasi-planar state at high temperature, and has a composition such as Ot, crystal &
l is not necessarily in an optimal state, and this adjustment is made during the heat treatment using this heating furnace.

この加熱炉は、プラズマ加熱部より低温に保持され、酸
化、還元などの雰囲気がとれるよう設計される。
This heating furnace is maintained at a lower temperature than the plasma heating section and is designed to provide an oxidizing, reducing, etc. atmosphere.

また、反応炉の出口直後に冷却室を配置して、ここで超
電導体が付着した基体を冷却してやると、超電導体の結
晶粗大化ならびに超電導体と基体間の有害反応を抑止し
高純度の緻密微細な組織となし得るので有効である。な
お、この際の冷却用の冷媒には空気、不活性ガス、水、
有機溶媒などが適用できる。
In addition, by placing a cooling chamber immediately after the exit of the reactor and cooling the substrate to which the superconductor is attached, it is possible to suppress coarsening of the superconductor crystals and harmful reactions between the superconductor and the substrate, resulting in a high-purity, dense structure. This is effective because it can form a fine structure. In addition, the refrigerant for cooling at this time may be air, inert gas, water,
Organic solvents can be used.

本発明においては、反応炉をでたあと、超電導体が付着
した基体を、冷却室と加熱炉に通すことによって、優れ
た超電導特性の線材が安定して製造される。
In the present invention, a wire rod with excellent superconducting properties is stably produced by passing the substrate to which the superconductor is attached after leaving the reactor through a cooling chamber and a heating furnace.

更に本発明の利点を述べると、通常のCVD法では、ガ
ス状の原料を個別に供給して反応させるので、多成分系
の超電導体を製造する場合、多くの反応の組み合わせが
可能となり、目的とする超電導体以外の物質が生成し包
含されるので、得られる超電導体の超電導特性が低下し
がちである。
A further advantage of the present invention is that in the normal CVD method, gaseous raw materials are individually supplied and reacted, so when manufacturing a multi-component superconductor, many reaction combinations are possible. Since substances other than the intended superconductor are generated and included, the superconducting properties of the obtained superconductor tend to deteriorate.

これに対し本発明法によれば予め原料を所定の割合に配
合しておくので、目的とする以外の反応は大巾に抑制さ
れる。またこの種の多成分系の超電導体は、電気的特性
に結晶異方性をもつものであるが本発明の一連のプロセ
スは、この点も考慮してなされている。
On the other hand, according to the method of the present invention, since the raw materials are blended in a predetermined ratio in advance, reactions other than the intended ones are largely suppressed. Furthermore, this type of multi-component superconductor has crystal anisotropy in its electrical properties, and the series of processes of the present invention are carried out with this point in mind.

更に、本発明方法は原料液供給ノズルを複数にし、プラ
ズマトーチも複数にしてやれば多数本の基体を同時に処
理できる。
Further, in the method of the present invention, by using a plurality of raw material liquid supply nozzles and a plurality of plasma torches, a large number of substrates can be processed simultaneously.

以上基体上に超電導体微細粉の反応生成、付着、冷却、
熱処理の工程を各−回づつ行うことで説明してきたが、
かかる操作を複数回繰り返してやって厚膜化することが
可能である。また基体上に予め超電導体との反応を抑え
るバッファー層を設けること、超電導体の保護、安定化
を目的に表面層に非超電導物質を被覆することは、得ら
れる超電導体の超電導特性を向上させる点で有効である
As described above, the reaction generation, adhesion, and cooling of superconductor fine powder on the substrate.
Although we have explained by performing the heat treatment process one time at a time,
It is possible to increase the thickness by repeating this operation multiple times. In addition, providing a buffer layer on the substrate in advance to suppress the reaction with the superconductor, and coating the surface layer with a non-superconducting substance for the purpose of protecting and stabilizing the superconductor improve the superconducting properties of the resulting superconductor. It is valid in points.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

Y−Ba−Cu−0系のセラミックス超電導線材を第1
図に示した装置を用いて製造した。基体には、Y2O,
とZrO,の混合酸化物を2μ被覆した50μφのカー
ボンファイバを用いた。原料液には、Y、 Cl s 
、B a CI z 、 Cu CI zがそれぞれモ
ル比でl:2:3の割合で配合された原料を8.5%溶
解した水溶液を用いた。
The first Y-Ba-Cu-0 ceramic superconducting wire
It was manufactured using the equipment shown in the figure. The base contains Y2O,
A 50 μφ carbon fiber coated with 2 μ of a mixed oxide of ZrO and ZrO was used. The raw material liquid contains Y, Cl s
, B a CI z , and Cu CI z in a molar ratio of 1:2:3, respectively, were dissolved in an aqueous solution of 8.5%.

プラズマには、0□ガスプラズマを用い、反応炉3内に
プラズマトーチ9と原料混合液を供給するノズル4をそ
れぞれ左右に上下5段連設して、プラズマ加熱部とした
。上記構成の装置にて基体を100本同時に走行させ、
これを反応炉手前で500°Cに予熱したのち反応炉3
内を通過させた。
A 0□ gas plasma was used as the plasma, and a plasma torch 9 and a nozzle 4 for supplying the raw material mixture were arranged in five rows on the left and right in the reaction furnace 3, forming a plasma heating section. 100 bases are run simultaneously using the device with the above configuration,
After preheating this to 500°C in front of the reactor, reactor 3
I let it pass inside.

基体のプラズマ加熱部の通過時間は45秒で、反応炉出
口の基体温度は、約480°Cであった0次いでこの超
電導体が付着した基体を冷却室で水冷したあと加熱炉で
0□気流中750℃5分の熱処理を施し超電導線を得た
The passage time of the substrate through the plasma heating section was 45 seconds, and the substrate temperature at the exit of the reactor was approximately 480°C.The substrate with the superconductor attached thereto was then cooled with water in a cooling chamber, and then heated with airflow in a heating furnace. A heat treatment was performed at 750° C. for 5 minutes to obtain a superconducting wire.

実施例−2 実施例−1において、反応室をでたあとの冷却を行わな
かった外は同一操作で超電導線を得た。
Example 2 A superconducting wire was obtained in the same manner as in Example 1 except that the wire was not cooled after leaving the reaction chamber.

実施例−3 実施例−1において、冷却室をでたあとの熱処理を行わ
なかった外は同一操作で超電導線を得た。
Example 3 A superconducting wire was obtained in the same manner as in Example 1, except that no heat treatment was performed after leaving the cooling chamber.

比較例 比較のため下記の従来方法によりサンプルを製造した。Comparative example For comparison, samples were manufactured using the following conventional method.

比較例−1 Y B a t Cu 301の酸化物超電導体をター
ゲットとしてマグネトロンスパッタ装置を用いて、実施
例と同じ基体上に1時間スパッタリングを行って超電導
線を得た。なお基体温度は600℃、真空度は0.1T
orrとした。
Comparative Example 1 A superconducting wire was obtained by sputtering on the same substrate as in Example for 1 hour using a magnetron sputtering device using an oxide superconductor of Y Bat Cu 301 as a target. The base temperature is 600℃ and the degree of vacuum is 0.1T.
It was set as orr.

以上実施例1〜3および比較例にて得た4種の超電導線
について、臨界温度(Tc)と臨界電流密度(Jc)を
測定した。結果は、超電導体の付着厚さを併記して第1
表に示した。
The critical temperature (Tc) and critical current density (Jc) of the four types of superconducting wires obtained in Examples 1 to 3 and Comparative Example were measured. The results are shown in the first table, including the superconductor adhesion thickness.
Shown in the table.

第  1  表 第1表より明らかなように本発明方法品(実施例1〜3
)は、比較方法品(比較例−1)に較べてTc5Jcが
高く、特に反応炉をでたあと冷却および熱処理を施した
もの(実施例−1)は、J。
Table 1 As is clear from Table 1, the method of the present invention (Examples 1 to 3)
) has a higher Tc5Jc than the comparative method product (Comparative Example-1), and in particular, the product that was cooled and heat-treated after leaving the reactor (Example-1) had a J.

が最高の値を示している。shows the highest value.

また本発明の超電導体の付着速度は、比較例に示した従
来法に較べて300倍以上であり、且つ本発明は多数本
を同時処理できるので掻めて生産性の高いものである。
Further, the deposition speed of the superconductor of the present invention is 300 times or more compared to the conventional method shown in the comparative example, and the present invention can process a large number of superconductors at the same time, resulting in high productivity.

〔効果〕〔effect〕

以上述べたように、本発明によればTc、J。 As described above, according to the present invention, Tc, J.

などの特性に優れたセラミックス超電導線材を漬産でき
るので、工業上顕著な効果を奏する。
Ceramic superconducting wires with excellent properties such as these can be produced in a pickled manner, resulting in significant industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を実施する装置の一例を示す概念図で
ある。 1・・・基体、 2・・・アンコイラ−13・・・反応
炉、4・・・ノズル、 5・・・プラズマ、 6・・・
冷却室、7・・・加熱炉、 8・・・リコイラー、 9
・・・プラズマトーチ。
FIG. 1 is a conceptual diagram showing an example of an apparatus for implementing the present invention. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Uncoiler-13... Reactor, 4... Nozzle, 5... Plasma, 6...
Cooling room, 7...Heating furnace, 8...Recoiler, 9
...Plasma torch.

Claims (4)

【特許請求の範囲】[Claims] (1)超電導体の構成元素が溶解した原料液を、プラズ
マにより加熱分解して超電導体微細粉を反応生成せしめ
、この超電導体微細粉を走行する所望数の基体上に凝集
付着させたのちこれを冷却し、次いで熱処理を施すこと
を特徴とするセラミックス超電導線材の製造方法。
(1) The raw material liquid in which the constituent elements of the superconductor are dissolved is thermally decomposed by plasma to react and generate superconductor fine powder, and this superconductor fine powder is coagulated and deposited on a desired number of moving substrates. 1. A method for producing a ceramic superconducting wire, which comprises cooling the material and then subjecting it to heat treatment.
(2)プラズマが放電ガスに酸素ガスを用いたものであ
り製造される超電導体が酸化物系超電導体であることを
特徴とする特許請求の範囲第1項記載のセラミックス超
電導線材の製造方法。
(2) The method for manufacturing a ceramic superconducting wire according to claim 1, wherein the plasma uses oxygen gas as a discharge gas and the manufactured superconductor is an oxide-based superconductor.
(3)原料液が複数のノズルから供給され、これを複数
のプラズマトーチによりプラズマ加熱分解して、超電導
体微細粉を反応生成せしめ、この超電導体微細粉が複数
の基体上に凝集付着されていることを特徴とする特許請
求の範囲第1項記載のセラミックス超電導線材の製造方
法。
(3) Raw material liquid is supplied from multiple nozzles, and is subjected to plasma thermal decomposition using multiple plasma torches to react and generate superconductor fine powder, which is coagulated and adhered onto multiple substrates. A method for manufacturing a ceramic superconducting wire according to claim 1, characterized in that:
(4)基体がプラズマ温度より低い温度に予熱されて供
給されていることを特徴とする特許請求の範囲第1項記
載のセラミックス超電導線材の製造方法。
(4) The method for manufacturing a ceramic superconducting wire according to claim 1, wherein the substrate is supplied after being preheated to a temperature lower than the plasma temperature.
JP62-158027A 1987-06-25 Manufacturing method of ceramic superconducting wire Pending JPH012219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62-158027A JPH012219A (en) 1987-06-25 Manufacturing method of ceramic superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62-158027A JPH012219A (en) 1987-06-25 Manufacturing method of ceramic superconducting wire

Publications (2)

Publication Number Publication Date
JPS642219A JPS642219A (en) 1989-01-06
JPH012219A true JPH012219A (en) 1989-01-06

Family

ID=

Similar Documents

Publication Publication Date Title
JPH08506216A (en) Superconducting YBa formed at a low temperature. Lower 2 Cu Cu Lower 3 O Lower 7-x
JP2866265B2 (en) Method for producing high critical temperature superconducting flexible conductor
JP3192666B2 (en) Method and apparatus for producing oxide superconducting film
JPS63274032A (en) Method of forming superconducting layer on substrate
JPS63225528A (en) Production of superconductive compound oxide
JPH012219A (en) Manufacturing method of ceramic superconducting wire
JPH01309956A (en) Production of oxide superconductor
JPH04295016A (en) Thermally sprayed thick lead-containing layer
JPH012220A (en) Manufacturing method of ceramic superconducting wire
JPH01260717A (en) Method and apparatus for manufacture of metal oxide superconducting material layer
JP2003308745A (en) Method and device for manufacturing oxide superconductive wire
JPH03109204A (en) Production of superconducting thin film
JPS63299019A (en) Manufacture of thin film superconductive material
JPH01188677A (en) Production of superconducting thin film
JPH01261204A (en) Production of oxide based superconductor
JPH01298006A (en) Production of oxide-based superconductor
JPH01298005A (en) Production of oxide-based superconductor
RU2082821C1 (en) Method of preparing iridium coatings
JPH05178614A (en) Production of oxide superconductor film and equipment therefor
JPH03153501A (en) Formation of multiple oxide superconducting thin film
Suzuki et al. Superconducting thin films of Bi-Pb-Sr-Ca-Cu-O synthesized by the spray-inductively coupled plasma technique
JPH01164729A (en) Production of superconducting material
JPH06216420A (en) Manufacture of oxide superconducting thin-film
JPH01298007A (en) Production of oxide-based superconductor
JPS642219A (en) Manufacture of ceramic superconductive wire material